/* * Linux driver for Disk-On-Chip Millennium * (c) 1999 Machine Vision Holdings, Inc. * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> */ #include <linux/kernel.h> #include <linux/module.h> #include <asm/errno.h> #include <asm/io.h> #include <asm/uaccess.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/types.h> #include <linux/bitops.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/doc2000.h> /* #define ECC_DEBUG */ /* I have no idea why some DoC chips can not use memcop_form|to_io(). * This may be due to the different revisions of the ASIC controller built-in or * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment * this:*/ #undef USE_MEMCPY static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, struct mtd_oob_ops *ops); static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, struct mtd_oob_ops *ops); static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); static struct mtd_info *docmillist = NULL; /* Perform the required delay cycles by reading from the NOP register */ static void DoC_Delay(void __iomem * docptr, unsigned short cycles) { volatile char dummy; int i; for (i = 0; i < cycles; i++) dummy = ReadDOC(docptr, NOP); } /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ static int _DoC_WaitReady(void __iomem * docptr) { unsigned short c = 0xffff; DEBUG(MTD_DEBUG_LEVEL3, "_DoC_WaitReady called for out-of-line wait\n"); /* Out-of-line routine to wait for chip response */ while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B) && --c) ; if (c == 0) DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n"); return (c == 0); } static inline int DoC_WaitReady(void __iomem * docptr) { /* This is inline, to optimise the common case, where it's ready instantly */ int ret = 0; /* 4 read form NOP register should be issued in prior to the read from CDSNControl see Software Requirement 11.4 item 2. */ DoC_Delay(docptr, 4); if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) /* Call the out-of-line routine to wait */ ret = _DoC_WaitReady(docptr); /* issue 2 read from NOP register after reading from CDSNControl register see Software Requirement 11.4 item 2. */ DoC_Delay(docptr, 2); return ret; } /* DoC_Command: Send a flash command to the flash chip through the CDSN IO register with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ static void DoC_Command(void __iomem * docptr, unsigned char command, unsigned char xtraflags) { /* Assert the CLE (Command Latch Enable) line to the flash chip */ WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); DoC_Delay(docptr, 4); /* Send the command */ WriteDOC(command, docptr, Mil_CDSN_IO); WriteDOC(0x00, docptr, WritePipeTerm); /* Lower the CLE line */ WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); DoC_Delay(docptr, 4); } /* DoC_Address: Set the current address for the flash chip through the CDSN IO register with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ static inline void DoC_Address(void __iomem * docptr, int numbytes, unsigned long ofs, unsigned char xtraflags1, unsigned char xtraflags2) { /* Assert the ALE (Address Latch Enable) line to the flash chip */ WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); DoC_Delay(docptr, 4); /* Send the address */ switch (numbytes) { case 1: /* Send single byte, bits 0-7. */ WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO); WriteDOC(0x00, docptr, WritePipeTerm); break; case 2: /* Send bits 9-16 followed by 17-23 */ WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO); WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO); WriteDOC(0x00, docptr, WritePipeTerm); break; case 3: /* Send 0-7, 9-16, then 17-23 */ WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO); WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO); WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO); WriteDOC(0x00, docptr, WritePipeTerm); break; default: return; } /* Lower the ALE line */ WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, CDSNControl); DoC_Delay(docptr, 4); } /* DoC_SelectChip: Select a given flash chip within the current floor */ static int DoC_SelectChip(void __iomem * docptr, int chip) { /* Select the individual flash chip requested */ WriteDOC(chip, docptr, CDSNDeviceSelect); DoC_Delay(docptr, 4); /* Wait for it to be ready */ return DoC_WaitReady(docptr); } /* DoC_SelectFloor: Select a given floor (bank of flash chips) */ static int DoC_SelectFloor(void __iomem * docptr, int floor) { /* Select the floor (bank) of chips required */ WriteDOC(floor, docptr, FloorSelect); /* Wait for the chip to be ready */ return DoC_WaitReady(docptr); } /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) { int mfr, id, i, j; volatile char dummy; /* Page in the required floor/chip FIXME: is this supported by Millennium ?? */ DoC_SelectFloor(doc->virtadr, floor); DoC_SelectChip(doc->virtadr, chip); /* Reset the chip, see Software Requirement 11.4 item 1. */ DoC_Command(doc->virtadr, NAND_CMD_RESET, CDSN_CTRL_WP); DoC_WaitReady(doc->virtadr); /* Read the NAND chip ID: 1. Send ReadID command */ DoC_Command(doc->virtadr, NAND_CMD_READID, CDSN_CTRL_WP); /* Read the NAND chip ID: 2. Send address byte zero */ DoC_Address(doc->virtadr, 1, 0x00, CDSN_CTRL_WP, 0x00); /* Read the manufacturer and device id codes of the flash device through CDSN IO register see Software Requirement 11.4 item 5.*/ dummy = ReadDOC(doc->virtadr, ReadPipeInit); DoC_Delay(doc->virtadr, 2); mfr = ReadDOC(doc->virtadr, Mil_CDSN_IO); DoC_Delay(doc->virtadr, 2); id = ReadDOC(doc->virtadr, Mil_CDSN_IO); dummy = ReadDOC(doc->virtadr, LastDataRead); /* No response - return failure */ if (mfr == 0xff || mfr == 0) return 0; /* FIXME: to deal with multi-flash on multi-Millennium case more carefully */ for (i = 0; nand_flash_ids[i].name != NULL; i++) { if ( id == nand_flash_ids[i].id) { /* Try to identify manufacturer */ for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { if (nand_manuf_ids[j].id == mfr) break; } printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, " "Chip ID: %2.2X (%s:%s)\n", mfr, id, nand_manuf_ids[j].name, nand_flash_ids[i].name); doc->mfr = mfr; doc->id = id; doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1; break; } } if (nand_flash_ids[i].name == NULL) return 0; else return 1; } /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ static void DoC_ScanChips(struct DiskOnChip *this) { int floor, chip; int numchips[MAX_FLOORS_MIL]; int ret; this->numchips = 0; this->mfr = 0; this->id = 0; /* For each floor, find the number of valid chips it contains */ for (floor = 0,ret = 1; floor < MAX_FLOORS_MIL; floor++) { numchips[floor] = 0; for (chip = 0; chip < MAX_CHIPS_MIL && ret != 0; chip++) { ret = DoC_IdentChip(this, floor, chip); if (ret) { numchips[floor]++; this->numchips++; } } } /* If there are none at all that we recognise, bail */ if (!this->numchips) { printk("No flash chips recognised.\n"); return; } /* Allocate an array to hold the information for each chip */ this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); if (!this->chips){ printk("No memory for allocating chip info structures\n"); return; } /* Fill out the chip array with {floor, chipno} for each * detected chip in the device. */ for (floor = 0, ret = 0; floor < MAX_FLOORS_MIL; floor++) { for (chip = 0 ; chip < numchips[floor] ; chip++) { this->chips[ret].floor = floor; this->chips[ret].chip = chip; this->chips[ret].curadr = 0; this->chips[ret].curmode = 0x50; ret++; } } /* Calculate and print the total size of the device */ this->totlen = this->numchips * (1 << this->chipshift); printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", this->numchips ,this->totlen >> 20); } static int DoCMil_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) { int tmp1, tmp2, retval; if (doc1->physadr == doc2->physadr) return 1; /* Use the alias resolution register which was set aside for this * purpose. If it's value is the same on both chips, they might * be the same chip, and we write to one and check for a change in * the other. It's unclear if this register is usuable in the * DoC 2000 (it's in the Millenium docs), but it seems to work. */ tmp1 = ReadDOC(doc1->virtadr, AliasResolution); tmp2 = ReadDOC(doc2->virtadr, AliasResolution); if (tmp1 != tmp2) return 0; WriteDOC((tmp1+1) % 0xff, doc1->virtadr, AliasResolution); tmp2 = ReadDOC(doc2->virtadr, AliasResolution); if (tmp2 == (tmp1+1) % 0xff) retval = 1; else retval = 0; /* Restore register contents. May not be necessary, but do it just to * be safe. */ WriteDOC(tmp1, doc1->virtadr, AliasResolution); return retval; } /* This routine is found from the docprobe code by symbol_get(), * which will bump the use count of this module. */ void DoCMil_init(struct mtd_info *mtd) { struct DiskOnChip *this = mtd->priv; struct DiskOnChip *old = NULL; /* We must avoid being called twice for the same device. */ if (docmillist) old = docmillist->priv; while (old) { if (DoCMil_is_alias(this, old)) { printk(KERN_NOTICE "Ignoring DiskOnChip Millennium at " "0x%lX - already configured\n", this->physadr); iounmap(this->virtadr); kfree(mtd); return; } if (old->nextdoc) old = old->nextdoc->priv; else old = NULL; } mtd->name = "DiskOnChip Millennium"; printk(KERN_NOTICE "DiskOnChip Millennium found at address 0x%lX\n", this->physadr); mtd->type = MTD_NANDFLASH; mtd->flags = MTD_CAP_NANDFLASH; mtd->size = 0; /* FIXME: erase size is not always 8KiB */ mtd->erasesize = 0x2000; mtd->writesize = 512; mtd->oobsize = 16; mtd->owner = THIS_MODULE; mtd->erase = doc_erase; mtd->point = NULL; mtd->unpoint = NULL; mtd->read = doc_read; mtd->write = doc_write; mtd->read_oob = doc_read_oob; mtd->write_oob = doc_write_oob; mtd->sync = NULL; this->totlen = 0; this->numchips = 0; this->curfloor = -1; this->curchip = -1; /* Ident all the chips present. */ DoC_ScanChips(this); if (!this->totlen) { kfree(mtd); iounmap(this->virtadr); } else { this->nextdoc = docmillist; docmillist = mtd; mtd->size = this->totlen; add_mtd_device(mtd); return; } } EXPORT_SYMBOL_GPL(DoCMil_init); static int doc_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { int i, ret; volatile char dummy; unsigned char syndrome[6], eccbuf[6]; struct DiskOnChip *this = mtd->priv; void __iomem *docptr = this->virtadr; struct Nand *mychip = &this->chips[from >> (this->chipshift)]; /* Don't allow read past end of device */ if (from >= this->totlen) return -EINVAL; /* Don't allow a single read to cross a 512-byte block boundary */ if (from + len > ((from | 0x1ff) + 1)) len = ((from | 0x1ff) + 1) - from; /* Find the chip which is to be used and select it */ if (this->curfloor != mychip->floor) { DoC_SelectFloor(docptr, mychip->floor); DoC_SelectChip(docptr, mychip->chip); } else if (this->curchip != mychip->chip) { DoC_SelectChip(docptr, mychip->chip); } this->curfloor = mychip->floor; this->curchip = mychip->chip; /* issue the Read0 or Read1 command depend on which half of the page we are accessing. Polling the Flash Ready bit after issue 3 bytes address in Sequence Read Mode, see Software Requirement 11.4 item 1.*/ DoC_Command(docptr, (from >> 8) & 1, CDSN_CTRL_WP); DoC_Address(docptr, 3, from, CDSN_CTRL_WP, 0x00); DoC_WaitReady(docptr); /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ WriteDOC (DOC_ECC_RESET, docptr, ECCConf); WriteDOC (DOC_ECC_EN, docptr, ECCConf); /* Read the data via the internal pipeline through CDSN IO register, see Pipelined Read Operations 11.3 */ dummy = ReadDOC(docptr, ReadPipeInit); #ifndef USE_MEMCPY for (i = 0; i < len-1; i++) { /* N.B. you have to increase the source address in this way or the ECC logic will not work properly */ buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); } #else memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1); #endif buf[len - 1] = ReadDOC(docptr, LastDataRead); /* Let the caller know we completed it */ *retlen = len; ret = 0; /* Read the ECC data from Spare Data Area, see Reed-Solomon EDC/ECC 11.1 */ dummy = ReadDOC(docptr, ReadPipeInit); #ifndef USE_MEMCPY for (i = 0; i < 5; i++) { /* N.B. you have to increase the source address in this way or the ECC logic will not work properly */ eccbuf[i] = ReadDOC(docptr, Mil_CDSN_IO + i); } #else memcpy_fromio(eccbuf, docptr + DoC_Mil_CDSN_IO, 5); #endif eccbuf[5] = ReadDOC(docptr, LastDataRead); /* Flush the pipeline */ dummy = ReadDOC(docptr, ECCConf); dummy = ReadDOC(docptr, ECCConf); /* Check the ECC Status */ if (ReadDOC(docptr, ECCConf) & 0x80) { int nb_errors; /* There was an ECC error */ #ifdef ECC_DEBUG printk("DiskOnChip ECC Error: Read at %lx\n", (long)from); #endif /* Read the ECC syndrom through the DiskOnChip ECC logic. These syndrome will be all ZERO when there is no error */ for (i = 0; i < 6; i++) { syndrome[i] = ReadDOC(docptr, ECCSyndrome0 + i); } nb_errors = doc_decode_ecc(buf, syndrome); #ifdef ECC_DEBUG printk("ECC Errors corrected: %x\n", nb_errors); #endif if (nb_errors < 0) { /* We return error, but have actually done the read. Not that this can be told to user-space, via sys_read(), but at least MTD-aware stuff can know about it by checking *retlen */ ret = -EIO; } } #ifdef PSYCHO_DEBUG printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", (long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], eccbuf[4], eccbuf[5]); #endif /* disable the ECC engine */ WriteDOC(DOC_ECC_DIS, docptr , ECCConf); return ret; } static int doc_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { int i,ret = 0; char eccbuf[6]; volatile char dummy; struct DiskOnChip *this = mtd->priv; void __iomem *docptr = this->virtadr; struct Nand *mychip = &this->chips[to >> (this->chipshift)]; /* Don't allow write past end of device */ if (to >= this->totlen) return -EINVAL; #if 0 /* Don't allow a single write to cross a 512-byte block boundary */ if (to + len > ( (to | 0x1ff) + 1)) len = ((to | 0x1ff) + 1) - to; #else /* Don't allow writes which aren't exactly one block */ if (to & 0x1ff || len != 0x200) return -EINVAL; #endif /* Find the chip which is to be used and select it */ if (this->curfloor != mychip->floor) { DoC_SelectFloor(docptr, mychip->floor); DoC_SelectChip(docptr, mychip->chip); } else if (this->curchip != mychip->chip) { DoC_SelectChip(docptr, mychip->chip); } this->curfloor = mychip->floor; this->curchip = mychip->chip; /* Reset the chip, see Software Requirement 11.4 item 1. */ DoC_Command(docptr, NAND_CMD_RESET, 0x00); DoC_WaitReady(docptr); /* Set device to main plane of flash */ DoC_Command(docptr, NAND_CMD_READ0, 0x00); /* issue the Serial Data In command to initial the Page Program process */ DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); DoC_Address(docptr, 3, to, 0x00, 0x00); DoC_WaitReady(docptr); /* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/ WriteDOC (DOC_ECC_RESET, docptr, ECCConf); WriteDOC (DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); /* Write the data via the internal pipeline through CDSN IO register, see Pipelined Write Operations 11.2 */ #ifndef USE_MEMCPY for (i = 0; i < len; i++) { /* N.B. you have to increase the source address in this way or the ECC logic will not work properly */ WriteDOC(buf[i], docptr, Mil_CDSN_IO + i); } #else memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len); #endif WriteDOC(0x00, docptr, WritePipeTerm); /* Write ECC data to flash, the ECC info is generated by the DiskOnChip ECC logic see Reed-Solomon EDC/ECC 11.1 */ WriteDOC(0, docptr, NOP); WriteDOC(0, docptr, NOP); WriteDOC(0, docptr, NOP); /* Read the ECC data through the DiskOnChip ECC logic */ for (i = 0; i < 6; i++) { eccbuf[i] = ReadDOC(docptr, ECCSyndrome0 + i); } /* ignore the ECC engine */ WriteDOC(DOC_ECC_DIS, docptr , ECCConf); #ifndef USE_MEMCPY /* Write the ECC data to flash */ for (i = 0; i < 6; i++) { /* N.B. you have to increase the source address in this way or the ECC logic will not work properly */ WriteDOC(eccbuf[i], docptr, Mil_CDSN_IO + i); } #else memcpy_toio(docptr + DoC_Mil_CDSN_IO, eccbuf, 6); #endif /* write the block status BLOCK_USED (0x5555) at the end of ECC data FIXME: this is only a hack for programming the IPL area for LinuxBIOS and should be replace with proper codes in user space utilities */ WriteDOC(0x55, docptr, Mil_CDSN_IO); WriteDOC(0x55, docptr, Mil_CDSN_IO + 1); WriteDOC(0x00, docptr, WritePipeTerm); #ifdef PSYCHO_DEBUG printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], eccbuf[4], eccbuf[5]); #endif /* Commit the Page Program command and wait for ready see Software Requirement 11.4 item 1.*/ DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); DoC_WaitReady(docptr); /* Read the status of the flash device through CDSN IO register see Software Requirement 11.4 item 5.*/ DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP); dummy = ReadDOC(docptr, ReadPipeInit); DoC_Delay(docptr, 2); if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { printk("Error programming flash\n"); /* Error in programming FIXME: implement Bad Block Replacement (in nftl.c ??) */ *retlen = 0; ret = -EIO; } dummy = ReadDOC(docptr, LastDataRead); /* Let the caller know we completed it */ *retlen = len; return ret; } static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, struct mtd_oob_ops *ops) { #ifndef USE_MEMCPY int i; #endif volatile char dummy; struct DiskOnChip *this = mtd->priv; void __iomem *docptr = this->virtadr; struct Nand *mychip = &this->chips[ofs >> this->chipshift]; uint8_t *buf = ops->oobbuf; size_t len = ops->len; BUG_ON(ops->mode != MTD_OOB_PLACE); ofs += ops->ooboffs; /* Find the chip which is to be used and select it */ if (this->curfloor != mychip->floor) { DoC_SelectFloor(docptr, mychip->floor); DoC_SelectChip(docptr, mychip->chip); } else if (this->curchip != mychip->chip) { DoC_SelectChip(docptr, mychip->chip); } this->curfloor = mychip->floor; this->curchip = mychip->chip; /* disable the ECC engine */ WriteDOC (DOC_ECC_RESET, docptr, ECCConf); WriteDOC (DOC_ECC_DIS, docptr, ECCConf); /* issue the Read2 command to set the pointer to the Spare Data Area. Polling the Flash Ready bit after issue 3 bytes address in Sequence Read Mode, see Software Requirement 11.4 item 1.*/ DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP); DoC_Address(docptr, 3, ofs, CDSN_CTRL_WP, 0x00); DoC_WaitReady(docptr); /* Read the data out via the internal pipeline through CDSN IO register, see Pipelined Read Operations 11.3 */ dummy = ReadDOC(docptr, ReadPipeInit); #ifndef USE_MEMCPY for (i = 0; i < len-1; i++) { /* N.B. you have to increase the source address in this way or the ECC logic will not work properly */ buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i); } #else memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1); #endif buf[len - 1] = ReadDOC(docptr, LastDataRead); ops->retlen = len; return 0; } static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, struct mtd_oob_ops *ops) { #ifndef USE_MEMCPY int i; #endif volatile char dummy; int ret = 0; struct DiskOnChip *this = mtd->priv; void __iomem *docptr = this->virtadr; struct Nand *mychip = &this->chips[ofs >> this->chipshift]; uint8_t *buf = ops->oobbuf; size_t len = ops->len; BUG_ON(ops->mode != MTD_OOB_PLACE); ofs += ops->ooboffs; /* Find the chip which is to be used and select it */ if (this->curfloor != mychip->floor) { DoC_SelectFloor(docptr, mychip->floor); DoC_SelectChip(docptr, mychip->chip); } else if (this->curchip != mychip->chip) { DoC_SelectChip(docptr, mychip->chip); } this->curfloor = mychip->floor; this->curchip = mychip->chip; /* disable the ECC engine */ WriteDOC (DOC_ECC_RESET, docptr, ECCConf); WriteDOC (DOC_ECC_DIS, docptr, ECCConf); /* Reset the chip, see Software Requirement 11.4 item 1. */ DoC_Command(docptr, NAND_CMD_RESET, CDSN_CTRL_WP); DoC_WaitReady(docptr); /* issue the Read2 command to set the pointer to the Spare Data Area. */ DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP); /* issue the Serial Data In command to initial the Page Program process */ DoC_Command(docptr, NAND_CMD_SEQIN, 0x00); DoC_Address(docptr, 3, ofs, 0x00, 0x00); /* Write the data via the internal pipeline through CDSN IO register, see Pipelined Write Operations 11.2 */ #ifndef USE_MEMCPY for (i = 0; i < len; i++) { /* N.B. you have to increase the source address in this way or the ECC logic will not work properly */ WriteDOC(buf[i], docptr, Mil_CDSN_IO + i); } #else memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len); #endif WriteDOC(0x00, docptr, WritePipeTerm); /* Commit the Page Program command and wait for ready see Software Requirement 11.4 item 1.*/ DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00); DoC_WaitReady(docptr); /* Read the status of the flash device through CDSN IO register see Software Requirement 11.4 item 5.*/ DoC_Command(docptr, NAND_CMD_STATUS, 0x00); dummy = ReadDOC(docptr, ReadPipeInit); DoC_Delay(docptr, 2); if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { printk("Error programming oob data\n"); /* FIXME: implement Bad Block Replacement (in nftl.c ??) */ ops->retlen = 0; ret = -EIO; } dummy = ReadDOC(docptr, LastDataRead); ops->retlen = len; return ret; } int doc_erase (struct mtd_info *mtd, struct erase_info *instr) { volatile char dummy; struct DiskOnChip *this = mtd->priv; __u32 ofs = instr->addr; __u32 len = instr->len; void __iomem *docptr = this->virtadr; struct Nand *mychip = &this->chips[ofs >> this->chipshift]; if (len != mtd->erasesize) printk(KERN_WARNING "Erase not right size (%x != %x)n", len, mtd->erasesize); /* Find the chip which is to be used and select it */ if (this->curfloor != mychip->floor) { DoC_SelectFloor(docptr, mychip->floor); DoC_SelectChip(docptr, mychip->chip); } else if (this->curchip != mychip->chip) { DoC_SelectChip(docptr, mychip->chip); } this->curfloor = mychip->floor; this->curchip = mychip->chip; instr->state = MTD_ERASE_PENDING; /* issue the Erase Setup command */ DoC_Command(docptr, NAND_CMD_ERASE1, 0x00); DoC_Address(docptr, 2, ofs, 0x00, 0x00); /* Commit the Erase Start command and wait for ready see Software Requirement 11.4 item 1.*/ DoC_Command(docptr, NAND_CMD_ERASE2, 0x00); DoC_WaitReady(docptr); instr->state = MTD_ERASING; /* Read the status of the flash device through CDSN IO register see Software Requirement 11.4 item 5. FIXME: it seems that we are not wait long enough, some blocks are not erased fully */ DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP); dummy = ReadDOC(docptr, ReadPipeInit); DoC_Delay(docptr, 2); if (ReadDOC(docptr, Mil_CDSN_IO) & 1) { printk("Error Erasing at 0x%x\n", ofs); /* There was an error FIXME: implement Bad Block Replacement (in nftl.c ??) */ instr->state = MTD_ERASE_FAILED; } else instr->state = MTD_ERASE_DONE; dummy = ReadDOC(docptr, LastDataRead); mtd_erase_callback(instr); return 0; } /**************************************************************************** * * Module stuff * ****************************************************************************/ static void __exit cleanup_doc2001(void) { struct mtd_info *mtd; struct DiskOnChip *this; while ((mtd=docmillist)) { this = mtd->priv; docmillist = this->nextdoc; del_mtd_device(mtd); iounmap(this->virtadr); kfree(this->chips); kfree(mtd); } } module_exit(cleanup_doc2001); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); MODULE_DESCRIPTION("Alternative driver for DiskOnChip Millennium");