/* * linux/drivers/mtd/onenand/onenand_sim.c * * The OneNAND simulator * * Copyright © 2005-2007 Samsung Electronics * Kyungmin Park <kyungmin.park@samsung.com> * * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com> * Flex-OneNAND simulator support * Copyright (C) Samsung Electronics, 2008 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/init.h> #include <linux/vmalloc.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/onenand.h> #include <linux/io.h> #ifndef CONFIG_ONENAND_SIM_MANUFACTURER #define CONFIG_ONENAND_SIM_MANUFACTURER 0xec #endif #ifndef CONFIG_ONENAND_SIM_DEVICE_ID #define CONFIG_ONENAND_SIM_DEVICE_ID 0x04 #endif #define CONFIG_FLEXONENAND ((CONFIG_ONENAND_SIM_DEVICE_ID >> 9) & 1) #ifndef CONFIG_ONENAND_SIM_VERSION_ID #define CONFIG_ONENAND_SIM_VERSION_ID 0x1e #endif #ifndef CONFIG_ONENAND_SIM_TECHNOLOGY_ID #define CONFIG_ONENAND_SIM_TECHNOLOGY_ID CONFIG_FLEXONENAND #endif /* Initial boundary values for Flex-OneNAND Simulator */ #ifndef CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY #define CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY 0x01 #endif #ifndef CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY #define CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY 0x01 #endif static int manuf_id = CONFIG_ONENAND_SIM_MANUFACTURER; static int device_id = CONFIG_ONENAND_SIM_DEVICE_ID; static int version_id = CONFIG_ONENAND_SIM_VERSION_ID; static int technology_id = CONFIG_ONENAND_SIM_TECHNOLOGY_ID; static int boundary[] = { CONFIG_FLEXONENAND_SIM_DIE0_BOUNDARY, CONFIG_FLEXONENAND_SIM_DIE1_BOUNDARY, }; struct onenand_flash { void __iomem *base; void __iomem *data; }; #define ONENAND_CORE(flash) (flash->data) #define ONENAND_CORE_SPARE(flash, this, offset) \ ((flash->data) + (this->chipsize) + (offset >> 5)) #define ONENAND_MAIN_AREA(this, offset) \ (this->base + ONENAND_DATARAM + offset) #define ONENAND_SPARE_AREA(this, offset) \ (this->base + ONENAND_SPARERAM + offset) #define ONENAND_GET_WP_STATUS(this) \ (readw(this->base + ONENAND_REG_WP_STATUS)) #define ONENAND_SET_WP_STATUS(v, this) \ (writew(v, this->base + ONENAND_REG_WP_STATUS)) /* It has all 0xff chars */ #define MAX_ONENAND_PAGESIZE (4096 + 128) static unsigned char *ffchars; #if CONFIG_FLEXONENAND #define PARTITION_NAME "Flex-OneNAND simulator partition" #else #define PARTITION_NAME "OneNAND simulator partition" #endif static struct mtd_partition os_partitions[] = { { .name = PARTITION_NAME, .offset = 0, .size = MTDPART_SIZ_FULL, }, }; /* * OneNAND simulator mtd */ struct onenand_info { struct mtd_info mtd; struct mtd_partition *parts; struct onenand_chip onenand; struct onenand_flash flash; }; static struct onenand_info *info; #define DPRINTK(format, args...) \ do { \ printk(KERN_DEBUG "%s[%d]: " format "\n", __func__, \ __LINE__, ##args); \ } while (0) /** * onenand_lock_handle - Handle Lock scheme * @this: OneNAND device structure * @cmd: The command to be sent * * Send lock command to OneNAND device. * The lock scheme depends on chip type. */ static void onenand_lock_handle(struct onenand_chip *this, int cmd) { int block_lock_scheme; int status; status = ONENAND_GET_WP_STATUS(this); block_lock_scheme = !(this->options & ONENAND_HAS_CONT_LOCK); switch (cmd) { case ONENAND_CMD_UNLOCK: case ONENAND_CMD_UNLOCK_ALL: if (block_lock_scheme) ONENAND_SET_WP_STATUS(ONENAND_WP_US, this); else ONENAND_SET_WP_STATUS(status | ONENAND_WP_US, this); break; case ONENAND_CMD_LOCK: if (block_lock_scheme) ONENAND_SET_WP_STATUS(ONENAND_WP_LS, this); else ONENAND_SET_WP_STATUS(status | ONENAND_WP_LS, this); break; case ONENAND_CMD_LOCK_TIGHT: if (block_lock_scheme) ONENAND_SET_WP_STATUS(ONENAND_WP_LTS, this); else ONENAND_SET_WP_STATUS(status | ONENAND_WP_LTS, this); break; default: break; } } /** * onenand_bootram_handle - Handle BootRAM area * @this: OneNAND device structure * @cmd: The command to be sent * * Emulate BootRAM area. It is possible to do basic operation using BootRAM. */ static void onenand_bootram_handle(struct onenand_chip *this, int cmd) { switch (cmd) { case ONENAND_CMD_READID: writew(manuf_id, this->base); writew(device_id, this->base + 2); writew(version_id, this->base + 4); break; default: /* REVIST: Handle other commands */ break; } } /** * onenand_update_interrupt - Set interrupt register * @this: OneNAND device structure * @cmd: The command to be sent * * Update interrupt register. The status depends on command. */ static void onenand_update_interrupt(struct onenand_chip *this, int cmd) { int interrupt = ONENAND_INT_MASTER; switch (cmd) { case ONENAND_CMD_READ: case ONENAND_CMD_READOOB: interrupt |= ONENAND_INT_READ; break; case ONENAND_CMD_PROG: case ONENAND_CMD_PROGOOB: interrupt |= ONENAND_INT_WRITE; break; case ONENAND_CMD_ERASE: interrupt |= ONENAND_INT_ERASE; break; case ONENAND_CMD_RESET: interrupt |= ONENAND_INT_RESET; break; default: break; } writew(interrupt, this->base + ONENAND_REG_INTERRUPT); } /** * onenand_check_overwrite - Check if over-write happened * @dest: The destination pointer * @src: The source pointer * @count: The length to be check * * Returns: 0 on same, otherwise 1 * * Compare the source with destination */ static int onenand_check_overwrite(void *dest, void *src, size_t count) { unsigned int *s = (unsigned int *) src; unsigned int *d = (unsigned int *) dest; int i; count >>= 2; for (i = 0; i < count; i++) if ((*s++ ^ *d++) != 0) return 1; return 0; } /** * onenand_data_handle - Handle OneNAND Core and DataRAM * @this: OneNAND device structure * @cmd: The command to be sent * @dataram: Which dataram used * @offset: The offset to OneNAND Core * * Copy data from OneNAND Core to DataRAM (read) * Copy data from DataRAM to OneNAND Core (write) * Erase the OneNAND Core (erase) */ static void onenand_data_handle(struct onenand_chip *this, int cmd, int dataram, unsigned int offset) { struct mtd_info *mtd = &info->mtd; struct onenand_flash *flash = this->priv; int main_offset, spare_offset, die = 0; void __iomem *src; void __iomem *dest; unsigned int i; static int pi_operation; int erasesize, rgn; if (dataram) { main_offset = mtd->writesize; spare_offset = mtd->oobsize; } else { main_offset = 0; spare_offset = 0; } if (pi_operation) { die = readw(this->base + ONENAND_REG_START_ADDRESS2); die >>= ONENAND_DDP_SHIFT; } switch (cmd) { case FLEXONENAND_CMD_PI_ACCESS: pi_operation = 1; break; case ONENAND_CMD_RESET: pi_operation = 0; break; case ONENAND_CMD_READ: src = ONENAND_CORE(flash) + offset; dest = ONENAND_MAIN_AREA(this, main_offset); if (pi_operation) { writew(boundary[die], this->base + ONENAND_DATARAM); break; } memcpy(dest, src, mtd->writesize); /* Fall through */ case ONENAND_CMD_READOOB: src = ONENAND_CORE_SPARE(flash, this, offset); dest = ONENAND_SPARE_AREA(this, spare_offset); memcpy(dest, src, mtd->oobsize); break; case ONENAND_CMD_PROG: src = ONENAND_MAIN_AREA(this, main_offset); dest = ONENAND_CORE(flash) + offset; if (pi_operation) { boundary[die] = readw(this->base + ONENAND_DATARAM); break; } /* To handle partial write */ for (i = 0; i < (1 << mtd->subpage_sft); i++) { int off = i * this->subpagesize; if (!memcmp(src + off, ffchars, this->subpagesize)) continue; if (memcmp(dest + off, ffchars, this->subpagesize) && onenand_check_overwrite(dest + off, src + off, this->subpagesize)) printk(KERN_ERR "over-write happened at 0x%08x\n", offset); memcpy(dest + off, src + off, this->subpagesize); } /* Fall through */ case ONENAND_CMD_PROGOOB: src = ONENAND_SPARE_AREA(this, spare_offset); /* Check all data is 0xff chars */ if (!memcmp(src, ffchars, mtd->oobsize)) break; dest = ONENAND_CORE_SPARE(flash, this, offset); if (memcmp(dest, ffchars, mtd->oobsize) && onenand_check_overwrite(dest, src, mtd->oobsize)) printk(KERN_ERR "OOB: over-write happened at 0x%08x\n", offset); memcpy(dest, src, mtd->oobsize); break; case ONENAND_CMD_ERASE: if (pi_operation) break; if (FLEXONENAND(this)) { rgn = flexonenand_region(mtd, offset); erasesize = mtd->eraseregions[rgn].erasesize; } else erasesize = mtd->erasesize; memset(ONENAND_CORE(flash) + offset, 0xff, erasesize); memset(ONENAND_CORE_SPARE(flash, this, offset), 0xff, (erasesize >> 5)); break; default: break; } } /** * onenand_command_handle - Handle command * @this: OneNAND device structure * @cmd: The command to be sent * * Emulate OneNAND command. */ static void onenand_command_handle(struct onenand_chip *this, int cmd) { unsigned long offset = 0; int block = -1, page = -1, bufferram = -1; int dataram = 0; switch (cmd) { case ONENAND_CMD_UNLOCK: case ONENAND_CMD_LOCK: case ONENAND_CMD_LOCK_TIGHT: case ONENAND_CMD_UNLOCK_ALL: onenand_lock_handle(this, cmd); break; case ONENAND_CMD_BUFFERRAM: /* Do nothing */ return; default: block = (int) readw(this->base + ONENAND_REG_START_ADDRESS1); if (block & (1 << ONENAND_DDP_SHIFT)) { block &= ~(1 << ONENAND_DDP_SHIFT); /* The half of chip block */ block += this->chipsize >> (this->erase_shift + 1); } if (cmd == ONENAND_CMD_ERASE) break; page = (int) readw(this->base + ONENAND_REG_START_ADDRESS8); page = (page >> ONENAND_FPA_SHIFT); bufferram = (int) readw(this->base + ONENAND_REG_START_BUFFER); bufferram >>= ONENAND_BSA_SHIFT; bufferram &= ONENAND_BSA_DATARAM1; dataram = (bufferram == ONENAND_BSA_DATARAM1) ? 1 : 0; break; } if (block != -1) offset = onenand_addr(this, block); if (page != -1) offset += page << this->page_shift; onenand_data_handle(this, cmd, dataram, offset); onenand_update_interrupt(this, cmd); } /** * onenand_writew - [OneNAND Interface] Emulate write operation * @value: value to write * @addr: address to write * * Write OneNAND register with value */ static void onenand_writew(unsigned short value, void __iomem * addr) { struct onenand_chip *this = info->mtd.priv; /* BootRAM handling */ if (addr < this->base + ONENAND_DATARAM) { onenand_bootram_handle(this, value); return; } /* Command handling */ if (addr == this->base + ONENAND_REG_COMMAND) onenand_command_handle(this, value); writew(value, addr); } /** * flash_init - Initialize OneNAND simulator * @flash: OneNAND simulator data strucutres * * Initialize OneNAND simulator. */ static int __init flash_init(struct onenand_flash *flash) { int density, size; int buffer_size; flash->base = kzalloc(131072, GFP_KERNEL); if (!flash->base) { printk(KERN_ERR "Unable to allocate base address.\n"); return -ENOMEM; } density = device_id >> ONENAND_DEVICE_DENSITY_SHIFT; density &= ONENAND_DEVICE_DENSITY_MASK; size = ((16 << 20) << density); ONENAND_CORE(flash) = vmalloc(size + (size >> 5)); if (!ONENAND_CORE(flash)) { printk(KERN_ERR "Unable to allocate nand core address.\n"); kfree(flash->base); return -ENOMEM; } memset(ONENAND_CORE(flash), 0xff, size + (size >> 5)); /* Setup registers */ writew(manuf_id, flash->base + ONENAND_REG_MANUFACTURER_ID); writew(device_id, flash->base + ONENAND_REG_DEVICE_ID); writew(version_id, flash->base + ONENAND_REG_VERSION_ID); writew(technology_id, flash->base + ONENAND_REG_TECHNOLOGY); if (density < 2 && (!CONFIG_FLEXONENAND)) buffer_size = 0x0400; /* 1KiB page */ else buffer_size = 0x0800; /* 2KiB page */ writew(buffer_size, flash->base + ONENAND_REG_DATA_BUFFER_SIZE); return 0; } /** * flash_exit - Clean up OneNAND simulator * @flash: OneNAND simulator data structures * * Clean up OneNAND simulator. */ static void flash_exit(struct onenand_flash *flash) { vfree(ONENAND_CORE(flash)); kfree(flash->base); } static int __init onenand_sim_init(void) { /* Allocate all 0xff chars pointer */ ffchars = kmalloc(MAX_ONENAND_PAGESIZE, GFP_KERNEL); if (!ffchars) { printk(KERN_ERR "Unable to allocate ff chars.\n"); return -ENOMEM; } memset(ffchars, 0xff, MAX_ONENAND_PAGESIZE); /* Allocate OneNAND simulator mtd pointer */ info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL); if (!info) { printk(KERN_ERR "Unable to allocate core structures.\n"); kfree(ffchars); return -ENOMEM; } /* Override write_word function */ info->onenand.write_word = onenand_writew; if (flash_init(&info->flash)) { printk(KERN_ERR "Unable to allocate flash.\n"); kfree(ffchars); kfree(info); return -ENOMEM; } info->parts = os_partitions; info->onenand.base = info->flash.base; info->onenand.priv = &info->flash; info->mtd.name = "OneNAND simulator"; info->mtd.priv = &info->onenand; info->mtd.owner = THIS_MODULE; if (onenand_scan(&info->mtd, 1)) { flash_exit(&info->flash); kfree(ffchars); kfree(info); return -ENXIO; } add_mtd_partitions(&info->mtd, info->parts, ARRAY_SIZE(os_partitions)); return 0; } static void __exit onenand_sim_exit(void) { struct onenand_chip *this = info->mtd.priv; struct onenand_flash *flash = this->priv; onenand_release(&info->mtd); flash_exit(flash); kfree(ffchars); kfree(info); } module_init(onenand_sim_init); module_exit(onenand_sim_exit); MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>"); MODULE_DESCRIPTION("The OneNAND flash simulator"); MODULE_LICENSE("GPL");