/* * asus_acpi.c - Asus Laptop ACPI Extras * * * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * The development page for this driver is located at * http://sourceforge.net/projects/acpi4asus/ * * Credits: * Pontus Fuchs - Helper functions, cleanup * Johann Wiesner - Small compile fixes * John Belmonte - ACPI code for Toshiba laptop was a good starting point. * �ic Burghard - LED display support for W1N * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/types.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/backlight.h> #include <acpi/acpi_drivers.h> #include <acpi/acpi_bus.h> #include <asm/uaccess.h> #define ASUS_ACPI_VERSION "0.30" #define PROC_ASUS "asus" /* The directory */ #define PROC_MLED "mled" #define PROC_WLED "wled" #define PROC_TLED "tled" #define PROC_BT "bluetooth" #define PROC_LEDD "ledd" #define PROC_INFO "info" #define PROC_LCD "lcd" #define PROC_BRN "brn" #define PROC_DISP "disp" #define ACPI_HOTK_NAME "Asus Laptop ACPI Extras Driver" #define ACPI_HOTK_CLASS "hotkey" #define ACPI_HOTK_DEVICE_NAME "Hotkey" /* * Some events we use, same for all Asus */ #define BR_UP 0x10 #define BR_DOWN 0x20 /* * Flags for hotk status */ #define MLED_ON 0x01 /* Mail LED */ #define WLED_ON 0x02 /* Wireless LED */ #define TLED_ON 0x04 /* Touchpad LED */ #define BT_ON 0x08 /* Internal Bluetooth */ MODULE_AUTHOR("Julien Lerouge, Karol Kozimor"); MODULE_DESCRIPTION(ACPI_HOTK_NAME); MODULE_LICENSE("GPL"); static uid_t asus_uid; static gid_t asus_gid; module_param(asus_uid, uint, 0); MODULE_PARM_DESC(asus_uid, "UID for entries in /proc/acpi/asus"); module_param(asus_gid, uint, 0); MODULE_PARM_DESC(asus_gid, "GID for entries in /proc/acpi/asus"); /* For each model, all features implemented, * those marked with R are relative to HOTK, A for absolute */ struct model_data { char *name; /* name of the laptop________________A */ char *mt_mled; /* method to handle mled_____________R */ char *mled_status; /* node to handle mled reading_______A */ char *mt_wled; /* method to handle wled_____________R */ char *wled_status; /* node to handle wled reading_______A */ char *mt_tled; /* method to handle tled_____________R */ char *tled_status; /* node to handle tled reading_______A */ char *mt_ledd; /* method to handle LED display______R */ char *mt_bt_switch; /* method to switch Bluetooth on/off_R */ char *bt_status; /* no model currently supports this__? */ char *mt_lcd_switch; /* method to turn LCD on/off_________A */ char *lcd_status; /* node to read LCD panel state______A */ char *brightness_up; /* method to set brightness up_______A */ char *brightness_down; /* method to set brightness down ____A */ char *brightness_set; /* method to set absolute brightness_R */ char *brightness_get; /* method to get absolute brightness_R */ char *brightness_status;/* node to get brightness____________A */ char *display_set; /* method to set video output________R */ char *display_get; /* method to get video output________R */ }; /* * This is the main structure, we can use it to store anything interesting * about the hotk device */ struct asus_hotk { struct acpi_device *device; /* the device we are in */ acpi_handle handle; /* the handle of the hotk device */ char status; /* status of the hotk, for LEDs */ u32 ledd_status; /* status of the LED display */ struct model_data *methods; /* methods available on the laptop */ u8 brightness; /* brightness level */ enum { A1x = 0, /* A1340D, A1300F */ A2x, /* A2500H */ A4G, /* A4700G */ D1x, /* D1 */ L2D, /* L2000D */ L3C, /* L3800C */ L3D, /* L3400D */ L3H, /* L3H, L2000E, L5D */ L4R, /* L4500R */ L5x, /* L5800C */ L8L, /* L8400L */ M1A, /* M1300A */ M2E, /* M2400E, L4400L */ M6N, /* M6800N, W3400N */ M6R, /* M6700R, A3000G */ P30, /* Samsung P30 */ S1x, /* S1300A, but also L1400B and M2400A (L84F) */ S2x, /* S200 (J1 reported), Victor MP-XP7210 */ W1N, /* W1000N */ W5A, /* W5A */ W3V, /* W3030V */ xxN, /* M2400N, M3700N, M5200N, M6800N, S1300N, S5200N*/ A4S, /* Z81sp */ F3Sa, /* (Centrino) */ R1F, END_MODEL } model; /* Models currently supported */ u16 event_count[128]; /* Count for each event TODO make this better */ }; /* Here we go */ #define A1x_PREFIX "\\_SB.PCI0.ISA.EC0." #define L3C_PREFIX "\\_SB.PCI0.PX40.ECD0." #define M1A_PREFIX "\\_SB.PCI0.PX40.EC0." #define P30_PREFIX "\\_SB.PCI0.LPCB.EC0." #define S1x_PREFIX "\\_SB.PCI0.PX40." #define S2x_PREFIX A1x_PREFIX #define xxN_PREFIX "\\_SB.PCI0.SBRG.EC0." static struct model_data model_conf[END_MODEL] = { /* * TODO I have seen a SWBX and AIBX method on some models, like L1400B, * it seems to be a kind of switch, but what for ? */ { .name = "A1x", .mt_mled = "MLED", .mled_status = "\\MAIL", .mt_lcd_switch = A1x_PREFIX "_Q10", .lcd_status = "\\BKLI", .brightness_up = A1x_PREFIX "_Q0E", .brightness_down = A1x_PREFIX "_Q0F"}, { .name = "A2x", .mt_mled = "MLED", .mt_wled = "WLED", .wled_status = "\\SG66", .mt_lcd_switch = "\\Q10", .lcd_status = "\\BAOF", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "A4G", .mt_mled = "MLED", /* WLED present, but not controlled by ACPI */ .mt_lcd_switch = xxN_PREFIX "_Q10", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\ADVG"}, { .name = "D1x", .mt_mled = "MLED", .mt_lcd_switch = "\\Q0D", .lcd_status = "\\GP11", .brightness_up = "\\Q0C", .brightness_down = "\\Q0B", .brightness_status = "\\BLVL", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "L2D", .mt_mled = "MLED", .mled_status = "\\SGP6", .mt_wled = "WLED", .wled_status = "\\RCP3", .mt_lcd_switch = "\\Q10", .lcd_status = "\\SGP0", .brightness_up = "\\Q0E", .brightness_down = "\\Q0F", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "L3C", .mt_mled = "MLED", .mt_wled = "WLED", .mt_lcd_switch = L3C_PREFIX "_Q10", .lcd_status = "\\GL32", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\_SB.PCI0.PCI1.VGAC.NMAP"}, { .name = "L3D", .mt_mled = "MLED", .mled_status = "\\MALD", .mt_wled = "WLED", .mt_lcd_switch = "\\Q10", .lcd_status = "\\BKLG", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "L3H", .mt_mled = "MLED", .mt_wled = "WLED", .mt_lcd_switch = "EHK", .lcd_status = "\\_SB.PCI0.PM.PBC", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "L4R", .mt_mled = "MLED", .mt_wled = "WLED", .wled_status = "\\_SB.PCI0.SBRG.SG13", .mt_lcd_switch = xxN_PREFIX "_Q10", .lcd_status = "\\_SB.PCI0.SBSM.SEO4", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\_SB.PCI0.P0P1.VGA.GETD"}, { .name = "L5x", .mt_mled = "MLED", /* WLED present, but not controlled by ACPI */ .mt_tled = "TLED", .mt_lcd_switch = "\\Q0D", .lcd_status = "\\BAOF", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "L8L" /* No features, but at least support the hotkeys */ }, { .name = "M1A", .mt_mled = "MLED", .mt_lcd_switch = M1A_PREFIX "Q10", .lcd_status = "\\PNOF", .brightness_up = M1A_PREFIX "Q0E", .brightness_down = M1A_PREFIX "Q0F", .brightness_status = "\\BRIT", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "M2E", .mt_mled = "MLED", .mt_wled = "WLED", .mt_lcd_switch = "\\Q10", .lcd_status = "\\GP06", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "M6N", .mt_mled = "MLED", .mt_wled = "WLED", .wled_status = "\\_SB.PCI0.SBRG.SG13", .mt_lcd_switch = xxN_PREFIX "_Q10", .lcd_status = "\\_SB.BKLT", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\SSTE"}, { .name = "M6R", .mt_mled = "MLED", .mt_wled = "WLED", .mt_lcd_switch = xxN_PREFIX "_Q10", .lcd_status = "\\_SB.PCI0.SBSM.SEO4", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\_SB.PCI0.P0P1.VGA.GETD"}, { .name = "P30", .mt_wled = "WLED", .mt_lcd_switch = P30_PREFIX "_Q0E", .lcd_status = "\\BKLT", .brightness_up = P30_PREFIX "_Q68", .brightness_down = P30_PREFIX "_Q69", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\DNXT"}, { .name = "S1x", .mt_mled = "MLED", .mled_status = "\\EMLE", .mt_wled = "WLED", .mt_lcd_switch = S1x_PREFIX "Q10", .lcd_status = "\\PNOF", .brightness_set = "SPLV", .brightness_get = "GPLV"}, { .name = "S2x", .mt_mled = "MLED", .mled_status = "\\MAIL", .mt_lcd_switch = S2x_PREFIX "_Q10", .lcd_status = "\\BKLI", .brightness_up = S2x_PREFIX "_Q0B", .brightness_down = S2x_PREFIX "_Q0A"}, { .name = "W1N", .mt_mled = "MLED", .mt_wled = "WLED", .mt_ledd = "SLCM", .mt_lcd_switch = xxN_PREFIX "_Q10", .lcd_status = "\\BKLT", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\ADVG"}, { .name = "W5A", .mt_bt_switch = "BLED", .mt_wled = "WLED", .mt_lcd_switch = xxN_PREFIX "_Q10", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\ADVG"}, { .name = "W3V", .mt_mled = "MLED", .mt_wled = "WLED", .mt_lcd_switch = xxN_PREFIX "_Q10", .lcd_status = "\\BKLT", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB"}, { .name = "xxN", .mt_mled = "MLED", /* WLED present, but not controlled by ACPI */ .mt_lcd_switch = xxN_PREFIX "_Q10", .lcd_status = "\\BKLT", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\ADVG"}, { .name = "A4S", .brightness_set = "SPLV", .brightness_get = "GPLV", .mt_bt_switch = "BLED", .mt_wled = "WLED" }, { .name = "F3Sa", .mt_bt_switch = "BLED", .mt_wled = "WLED", .mt_mled = "MLED", .brightness_get = "GPLV", .brightness_set = "SPLV", .mt_lcd_switch = "\\_SB.PCI0.SBRG.EC0._Q10", .lcd_status = "\\_SB.PCI0.SBRG.EC0.RPIN", .display_get = "\\ADVG", .display_set = "SDSP", }, { .name = "R1F", .mt_bt_switch = "BLED", .mt_mled = "MLED", .mt_wled = "WLED", .mt_lcd_switch = "\\Q10", .lcd_status = "\\GP06", .brightness_set = "SPLV", .brightness_get = "GPLV", .display_set = "SDSP", .display_get = "\\INFB" } }; /* procdir we use */ static struct proc_dir_entry *asus_proc_dir; static struct backlight_device *asus_backlight_device; /* * This header is made available to allow proper configuration given model, * revision number , ... this info cannot go in struct asus_hotk because it is * available before the hotk */ static struct acpi_table_header *asus_info; /* The actual device the driver binds to */ static struct asus_hotk *hotk; /* * The hotkey driver and autoloading declaration */ static int asus_hotk_add(struct acpi_device *device); static int asus_hotk_remove(struct acpi_device *device, int type); static void asus_hotk_notify(struct acpi_device *device, u32 event); static const struct acpi_device_id asus_device_ids[] = { {"ATK0100", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, asus_device_ids); static struct acpi_driver asus_hotk_driver = { .name = "asus_acpi", .class = ACPI_HOTK_CLASS, .owner = THIS_MODULE, .ids = asus_device_ids, .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, .ops = { .add = asus_hotk_add, .remove = asus_hotk_remove, .notify = asus_hotk_notify, }, }; /* * This function evaluates an ACPI method, given an int as parameter, the * method is searched within the scope of the handle, can be NULL. The output * of the method is written is output, which can also be NULL * * returns 1 if write is successful, 0 else. */ static int write_acpi_int(acpi_handle handle, const char *method, int val, struct acpi_buffer *output) { struct acpi_object_list params; /* list of input parameters (int) */ union acpi_object in_obj; /* the only param we use */ acpi_status status; params.count = 1; params.pointer = &in_obj; in_obj.type = ACPI_TYPE_INTEGER; in_obj.integer.value = val; status = acpi_evaluate_object(handle, (char *)method, ¶ms, output); return (status == AE_OK); } static int read_acpi_int(acpi_handle handle, const char *method, int *val) { struct acpi_buffer output; union acpi_object out_obj; acpi_status status; output.length = sizeof(out_obj); output.pointer = &out_obj; status = acpi_evaluate_object(handle, (char *)method, NULL, &output); *val = out_obj.integer.value; return (status == AE_OK) && (out_obj.type == ACPI_TYPE_INTEGER); } static int asus_info_proc_show(struct seq_file *m, void *v) { int temp; seq_printf(m, ACPI_HOTK_NAME " " ASUS_ACPI_VERSION "\n"); seq_printf(m, "Model reference : %s\n", hotk->methods->name); /* * The SFUN method probably allows the original driver to get the list * of features supported by a given model. For now, 0x0100 or 0x0800 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card. * The significance of others is yet to be found. */ if (read_acpi_int(hotk->handle, "SFUN", &temp)) seq_printf(m, "SFUN value : 0x%04x\n", temp); /* * Another value for userspace: the ASYM method returns 0x02 for * battery low and 0x04 for battery critical, its readings tend to be * more accurate than those provided by _BST. * Note: since not all the laptops provide this method, errors are * silently ignored. */ if (read_acpi_int(hotk->handle, "ASYM", &temp)) seq_printf(m, "ASYM value : 0x%04x\n", temp); if (asus_info) { seq_printf(m, "DSDT length : %d\n", asus_info->length); seq_printf(m, "DSDT checksum : %d\n", asus_info->checksum); seq_printf(m, "DSDT revision : %d\n", asus_info->revision); seq_printf(m, "OEM id : %.*s\n", ACPI_OEM_ID_SIZE, asus_info->oem_id); seq_printf(m, "OEM table id : %.*s\n", ACPI_OEM_TABLE_ID_SIZE, asus_info->oem_table_id); seq_printf(m, "OEM revision : 0x%x\n", asus_info->oem_revision); seq_printf(m, "ASL comp vendor id : %.*s\n", ACPI_NAME_SIZE, asus_info->asl_compiler_id); seq_printf(m, "ASL comp revision : 0x%x\n", asus_info->asl_compiler_revision); } return 0; } static int asus_info_proc_open(struct inode *inode, struct file *file) { return single_open(file, asus_info_proc_show, NULL); } static const struct file_operations asus_info_proc_fops = { .owner = THIS_MODULE, .open = asus_info_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* * /proc handlers * We write our info in page, we begin at offset off and cannot write more * than count bytes. We set eof to 1 if we handle those 2 values. We return the * number of bytes written in page */ /* Generic LED functions */ static int read_led(const char *ledname, int ledmask) { if (ledname) { int led_status; if (read_acpi_int(NULL, ledname, &led_status)) return led_status; else printk(KERN_WARNING "Asus ACPI: Error reading LED " "status\n"); } return (hotk->status & ledmask) ? 1 : 0; } static int parse_arg(const char __user *buf, unsigned long count, int *val) { char s[32]; if (!count) return 0; if (count > 31) return -EINVAL; if (copy_from_user(s, buf, count)) return -EFAULT; s[count] = 0; if (sscanf(s, "%i", val) != 1) return -EINVAL; return count; } /* FIXME: kill extraneous args so it can be called independently */ static int write_led(const char __user *buffer, unsigned long count, char *ledname, int ledmask, int invert) { int rv, value; int led_out = 0; rv = parse_arg(buffer, count, &value); if (rv > 0) led_out = value ? 1 : 0; hotk->status = (led_out) ? (hotk->status | ledmask) : (hotk->status & ~ledmask); if (invert) /* invert target value */ led_out = !led_out; if (!write_acpi_int(hotk->handle, ledname, led_out, NULL)) printk(KERN_WARNING "Asus ACPI: LED (%s) write failed\n", ledname); return rv; } /* * Proc handlers for MLED */ static int mled_proc_show(struct seq_file *m, void *v) { seq_printf(m, "%d\n", read_led(hotk->methods->mled_status, MLED_ON)); return 0; } static int mled_proc_open(struct inode *inode, struct file *file) { return single_open(file, mled_proc_show, NULL); } static ssize_t mled_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { return write_led(buffer, count, hotk->methods->mt_mled, MLED_ON, 1); } static const struct file_operations mled_proc_fops = { .owner = THIS_MODULE, .open = mled_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = mled_proc_write, }; /* * Proc handlers for LED display */ static int ledd_proc_show(struct seq_file *m, void *v) { seq_printf(m, "0x%08x\n", hotk->ledd_status); return 0; } static int ledd_proc_open(struct inode *inode, struct file *file) { return single_open(file, ledd_proc_show, NULL); } static ssize_t ledd_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { int rv, value; rv = parse_arg(buffer, count, &value); if (rv > 0) { if (!write_acpi_int (hotk->handle, hotk->methods->mt_ledd, value, NULL)) printk(KERN_WARNING "Asus ACPI: LED display write failed\n"); else hotk->ledd_status = (u32) value; } return rv; } static const struct file_operations ledd_proc_fops = { .owner = THIS_MODULE, .open = ledd_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = ledd_proc_write, }; /* * Proc handlers for WLED */ static int wled_proc_show(struct seq_file *m, void *v) { seq_printf(m, "%d\n", read_led(hotk->methods->wled_status, WLED_ON)); return 0; } static int wled_proc_open(struct inode *inode, struct file *file) { return single_open(file, wled_proc_show, NULL); } static ssize_t wled_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { return write_led(buffer, count, hotk->methods->mt_wled, WLED_ON, 0); } static const struct file_operations wled_proc_fops = { .owner = THIS_MODULE, .open = wled_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = wled_proc_write, }; /* * Proc handlers for Bluetooth */ static int bluetooth_proc_show(struct seq_file *m, void *v) { seq_printf(m, "%d\n", read_led(hotk->methods->bt_status, BT_ON)); return 0; } static int bluetooth_proc_open(struct inode *inode, struct file *file) { return single_open(file, bluetooth_proc_show, NULL); } static ssize_t bluetooth_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { /* Note: mt_bt_switch controls both internal Bluetooth adapter's presence and its LED */ return write_led(buffer, count, hotk->methods->mt_bt_switch, BT_ON, 0); } static const struct file_operations bluetooth_proc_fops = { .owner = THIS_MODULE, .open = bluetooth_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = bluetooth_proc_write, }; /* * Proc handlers for TLED */ static int tled_proc_show(struct seq_file *m, void *v) { seq_printf(m, "%d\n", read_led(hotk->methods->tled_status, TLED_ON)); return 0; } static int tled_proc_open(struct inode *inode, struct file *file) { return single_open(file, tled_proc_show, NULL); } static ssize_t tled_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { return write_led(buffer, count, hotk->methods->mt_tled, TLED_ON, 0); } static const struct file_operations tled_proc_fops = { .owner = THIS_MODULE, .open = tled_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = tled_proc_write, }; static int get_lcd_state(void) { int lcd = 0; if (hotk->model == L3H) { /* L3H and the like have to be handled differently */ acpi_status status = 0; struct acpi_object_list input; union acpi_object mt_params[2]; struct acpi_buffer output; union acpi_object out_obj; input.count = 2; input.pointer = mt_params; /* Note: the following values are partly guessed up, but otherwise they seem to work */ mt_params[0].type = ACPI_TYPE_INTEGER; mt_params[0].integer.value = 0x02; mt_params[1].type = ACPI_TYPE_INTEGER; mt_params[1].integer.value = 0x02; output.length = sizeof(out_obj); output.pointer = &out_obj; status = acpi_evaluate_object(NULL, hotk->methods->lcd_status, &input, &output); if (status != AE_OK) return -1; if (out_obj.type == ACPI_TYPE_INTEGER) /* That's what the AML code does */ lcd = out_obj.integer.value >> 8; } else if (hotk->model == F3Sa) { unsigned long long tmp; union acpi_object param; struct acpi_object_list input; acpi_status status; /* Read pin 11 */ param.type = ACPI_TYPE_INTEGER; param.integer.value = 0x11; input.count = 1; input.pointer = ¶m; status = acpi_evaluate_integer(NULL, hotk->methods->lcd_status, &input, &tmp); if (status != AE_OK) return -1; lcd = tmp; } else { /* We don't have to check anything if we are here */ if (!read_acpi_int(NULL, hotk->methods->lcd_status, &lcd)) printk(KERN_WARNING "Asus ACPI: Error reading LCD status\n"); if (hotk->model == L2D) lcd = ~lcd; } return (lcd & 1); } static int set_lcd_state(int value) { int lcd = 0; acpi_status status = 0; lcd = value ? 1 : 0; if (lcd != get_lcd_state()) { /* switch */ if (hotk->model != L3H) { status = acpi_evaluate_object(NULL, hotk->methods->mt_lcd_switch, NULL, NULL); } else { /* L3H and the like must be handled differently */ if (!write_acpi_int (hotk->handle, hotk->methods->mt_lcd_switch, 0x07, NULL)) status = AE_ERROR; /* L3H's AML executes EHK (0x07) upon Fn+F7 keypress, the exact behaviour is simulated here */ } if (ACPI_FAILURE(status)) printk(KERN_WARNING "Asus ACPI: Error switching LCD\n"); } return 0; } static int lcd_proc_show(struct seq_file *m, void *v) { seq_printf(m, "%d\n", get_lcd_state()); return 0; } static int lcd_proc_open(struct inode *inode, struct file *file) { return single_open(file, lcd_proc_show, NULL); } static ssize_t lcd_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { int rv, value; rv = parse_arg(buffer, count, &value); if (rv > 0) set_lcd_state(value); return rv; } static const struct file_operations lcd_proc_fops = { .owner = THIS_MODULE, .open = lcd_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = lcd_proc_write, }; static int read_brightness(struct backlight_device *bd) { int value; if (hotk->methods->brightness_get) { /* SPLV/GPLV laptop */ if (!read_acpi_int(hotk->handle, hotk->methods->brightness_get, &value)) printk(KERN_WARNING "Asus ACPI: Error reading brightness\n"); } else if (hotk->methods->brightness_status) { /* For D1 for example */ if (!read_acpi_int(NULL, hotk->methods->brightness_status, &value)) printk(KERN_WARNING "Asus ACPI: Error reading brightness\n"); } else /* No GPLV method */ value = hotk->brightness; return value; } /* * Change the brightness level */ static int set_brightness(int value) { acpi_status status = 0; int ret = 0; /* SPLV laptop */ if (hotk->methods->brightness_set) { if (!write_acpi_int(hotk->handle, hotk->methods->brightness_set, value, NULL)) { printk(KERN_WARNING "Asus ACPI: Error changing brightness\n"); ret = -EIO; } goto out; } /* No SPLV method if we are here, act as appropriate */ value -= read_brightness(NULL); while (value != 0) { status = acpi_evaluate_object(NULL, (value > 0) ? hotk->methods->brightness_up : hotk->methods->brightness_down, NULL, NULL); (value > 0) ? value-- : value++; if (ACPI_FAILURE(status)) { printk(KERN_WARNING "Asus ACPI: Error changing brightness\n"); ret = -EIO; } } out: return ret; } static int set_brightness_status(struct backlight_device *bd) { return set_brightness(bd->props.brightness); } static int brn_proc_show(struct seq_file *m, void *v) { seq_printf(m, "%d\n", read_brightness(NULL)); return 0; } static int brn_proc_open(struct inode *inode, struct file *file) { return single_open(file, brn_proc_show, NULL); } static ssize_t brn_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { int rv, value; rv = parse_arg(buffer, count, &value); if (rv > 0) { value = (0 < value) ? ((15 < value) ? 15 : value) : 0; /* 0 <= value <= 15 */ set_brightness(value); } return rv; } static const struct file_operations brn_proc_fops = { .owner = THIS_MODULE, .open = brn_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = brn_proc_write, }; static void set_display(int value) { /* no sanity check needed for now */ if (!write_acpi_int(hotk->handle, hotk->methods->display_set, value, NULL)) printk(KERN_WARNING "Asus ACPI: Error setting display\n"); return; } /* * Now, *this* one could be more user-friendly, but so far, no-one has * complained. The significance of bits is the same as in proc_write_disp() */ static int disp_proc_show(struct seq_file *m, void *v) { int value = 0; if (!read_acpi_int(hotk->handle, hotk->methods->display_get, &value)) printk(KERN_WARNING "Asus ACPI: Error reading display status\n"); value &= 0x07; /* needed for some models, shouldn't hurt others */ seq_printf(m, "%d\n", value); return 0; } static int disp_proc_open(struct inode *inode, struct file *file) { return single_open(file, disp_proc_show, NULL); } /* * Experimental support for display switching. As of now: 1 should activate * the LCD output, 2 should do for CRT, and 4 for TV-Out. Any combination * (bitwise) of these will suffice. I never actually tested 3 displays hooked * up simultaneously, so be warned. See the acpi4asus README for more info. */ static ssize_t disp_proc_write(struct file *file, const char __user *buffer, size_t count, loff_t *pos) { int rv, value; rv = parse_arg(buffer, count, &value); if (rv > 0) set_display(value); return rv; } static const struct file_operations disp_proc_fops = { .owner = THIS_MODULE, .open = disp_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = disp_proc_write, }; static int asus_proc_add(char *name, const struct file_operations *proc_fops, mode_t mode, struct acpi_device *device) { struct proc_dir_entry *proc; proc = proc_create_data(name, mode, acpi_device_dir(device), proc_fops, acpi_driver_data(device)); if (!proc) { printk(KERN_WARNING " Unable to create %s fs entry\n", name); return -1; } proc->uid = asus_uid; proc->gid = asus_gid; return 0; } static int asus_hotk_add_fs(struct acpi_device *device) { struct proc_dir_entry *proc; mode_t mode; if ((asus_uid == 0) && (asus_gid == 0)) { mode = S_IFREG | S_IRUGO | S_IWUSR | S_IWGRP; } else { mode = S_IFREG | S_IRUSR | S_IRGRP | S_IWUSR | S_IWGRP; printk(KERN_WARNING " asus_uid and asus_gid parameters are " "deprecated, use chown and chmod instead!\n"); } acpi_device_dir(device) = asus_proc_dir; if (!acpi_device_dir(device)) return -ENODEV; proc = proc_create(PROC_INFO, mode, acpi_device_dir(device), &asus_info_proc_fops); if (proc) { proc->uid = asus_uid; proc->gid = asus_gid; } else { printk(KERN_WARNING " Unable to create " PROC_INFO " fs entry\n"); } if (hotk->methods->mt_wled) { asus_proc_add(PROC_WLED, &wled_proc_fops, mode, device); } if (hotk->methods->mt_ledd) { asus_proc_add(PROC_LEDD, &ledd_proc_fops, mode, device); } if (hotk->methods->mt_mled) { asus_proc_add(PROC_MLED, &mled_proc_fops, mode, device); } if (hotk->methods->mt_tled) { asus_proc_add(PROC_TLED, &tled_proc_fops, mode, device); } if (hotk->methods->mt_bt_switch) { asus_proc_add(PROC_BT, &bluetooth_proc_fops, mode, device); } /* * We need both read node and write method as LCD switch is also * accessible from the keyboard */ if (hotk->methods->mt_lcd_switch && hotk->methods->lcd_status) { asus_proc_add(PROC_LCD, &lcd_proc_fops, mode, device); } if ((hotk->methods->brightness_up && hotk->methods->brightness_down) || (hotk->methods->brightness_get && hotk->methods->brightness_set)) { asus_proc_add(PROC_BRN, &brn_proc_fops, mode, device); } if (hotk->methods->display_set) { asus_proc_add(PROC_DISP, &disp_proc_fops, mode, device); } return 0; } static int asus_hotk_remove_fs(struct acpi_device *device) { if (acpi_device_dir(device)) { remove_proc_entry(PROC_INFO, acpi_device_dir(device)); if (hotk->methods->mt_wled) remove_proc_entry(PROC_WLED, acpi_device_dir(device)); if (hotk->methods->mt_mled) remove_proc_entry(PROC_MLED, acpi_device_dir(device)); if (hotk->methods->mt_tled) remove_proc_entry(PROC_TLED, acpi_device_dir(device)); if (hotk->methods->mt_ledd) remove_proc_entry(PROC_LEDD, acpi_device_dir(device)); if (hotk->methods->mt_bt_switch) remove_proc_entry(PROC_BT, acpi_device_dir(device)); if (hotk->methods->mt_lcd_switch && hotk->methods->lcd_status) remove_proc_entry(PROC_LCD, acpi_device_dir(device)); if ((hotk->methods->brightness_up && hotk->methods->brightness_down) || (hotk->methods->brightness_get && hotk->methods->brightness_set)) remove_proc_entry(PROC_BRN, acpi_device_dir(device)); if (hotk->methods->display_set) remove_proc_entry(PROC_DISP, acpi_device_dir(device)); } return 0; } static void asus_hotk_notify(struct acpi_device *device, u32 event) { /* TODO Find a better way to handle events count. */ if (!hotk) return; /* * The BIOS *should* be sending us device events, but apparently * Asus uses system events instead, so just ignore any device * events we get. */ if (event > ACPI_MAX_SYS_NOTIFY) return; if ((event & ~((u32) BR_UP)) < 16) hotk->brightness = (event & ~((u32) BR_UP)); else if ((event & ~((u32) BR_DOWN)) < 16) hotk->brightness = (event & ~((u32) BR_DOWN)); acpi_bus_generate_proc_event(hotk->device, event, hotk->event_count[event % 128]++); return; } /* * Match the model string to the list of supported models. Return END_MODEL if * no match or model is NULL. */ static int asus_model_match(char *model) { if (model == NULL) return END_MODEL; if (strncmp(model, "L3D", 3) == 0) return L3D; else if (strncmp(model, "L2E", 3) == 0 || strncmp(model, "L3H", 3) == 0 || strncmp(model, "L5D", 3) == 0) return L3H; else if (strncmp(model, "L3", 2) == 0 || strncmp(model, "L2B", 3) == 0) return L3C; else if (strncmp(model, "L8L", 3) == 0) return L8L; else if (strncmp(model, "L4R", 3) == 0) return L4R; else if (strncmp(model, "M6N", 3) == 0 || strncmp(model, "W3N", 3) == 0) return M6N; else if (strncmp(model, "M6R", 3) == 0 || strncmp(model, "A3G", 3) == 0) return M6R; else if (strncmp(model, "M2N", 3) == 0 || strncmp(model, "M3N", 3) == 0 || strncmp(model, "M5N", 3) == 0 || strncmp(model, "S1N", 3) == 0 || strncmp(model, "S5N", 3) == 0) return xxN; else if (strncmp(model, "M1", 2) == 0) return M1A; else if (strncmp(model, "M2", 2) == 0 || strncmp(model, "L4E", 3) == 0) return M2E; else if (strncmp(model, "L2", 2) == 0) return L2D; else if (strncmp(model, "L8", 2) == 0) return S1x; else if (strncmp(model, "D1", 2) == 0) return D1x; else if (strncmp(model, "A1", 2) == 0) return A1x; else if (strncmp(model, "A2", 2) == 0) return A2x; else if (strncmp(model, "J1", 2) == 0) return S2x; else if (strncmp(model, "L5", 2) == 0) return L5x; else if (strncmp(model, "A4G", 3) == 0) return A4G; else if (strncmp(model, "W1N", 3) == 0) return W1N; else if (strncmp(model, "W3V", 3) == 0) return W3V; else if (strncmp(model, "W5A", 3) == 0) return W5A; else if (strncmp(model, "R1F", 3) == 0) return R1F; else if (strncmp(model, "A4S", 3) == 0) return A4S; else if (strncmp(model, "F3Sa", 4) == 0) return F3Sa; else return END_MODEL; } /* * This function is used to initialize the hotk with right values. In this * method, we can make all the detection we want, and modify the hotk struct */ static int asus_hotk_get_info(void) { struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *model = NULL; int bsts_result; char *string = NULL; acpi_status status; /* * Get DSDT headers early enough to allow for differentiating between * models, but late enough to allow acpi_bus_register_driver() to fail * before doing anything ACPI-specific. Should we encounter a machine, * which needs special handling (i.e. its hotkey device has a different * HID), this bit will be moved. A global variable asus_info contains * the DSDT header. */ status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus_info); if (ACPI_FAILURE(status)) printk(KERN_WARNING " Couldn't get the DSDT table header\n"); /* We have to write 0 on init this far for all ASUS models */ if (!write_acpi_int(hotk->handle, "INIT", 0, &buffer)) { printk(KERN_ERR " Hotkey initialization failed\n"); return -ENODEV; } /* This needs to be called for some laptops to init properly */ if (!read_acpi_int(hotk->handle, "BSTS", &bsts_result)) printk(KERN_WARNING " Error calling BSTS\n"); else if (bsts_result) printk(KERN_NOTICE " BSTS called, 0x%02x returned\n", bsts_result); /* * Try to match the object returned by INIT to the specific model. * Handle every possible object (or the lack of thereof) the DSDT * writers might throw at us. When in trouble, we pass NULL to * asus_model_match() and try something completely different. */ if (buffer.pointer) { model = buffer.pointer; switch (model->type) { case ACPI_TYPE_STRING: string = model->string.pointer; break; case ACPI_TYPE_BUFFER: string = model->buffer.pointer; break; default: kfree(model); model = NULL; break; } } hotk->model = asus_model_match(string); if (hotk->model == END_MODEL) { /* match failed */ if (asus_info && strncmp(asus_info->oem_table_id, "ODEM", 4) == 0) { hotk->model = P30; printk(KERN_NOTICE " Samsung P30 detected, supported\n"); hotk->methods = &model_conf[hotk->model]; kfree(model); return 0; } else { hotk->model = M2E; printk(KERN_NOTICE " unsupported model %s, trying " "default values\n", string); printk(KERN_NOTICE " send /proc/acpi/dsdt to the developers\n"); kfree(model); return -ENODEV; } } hotk->methods = &model_conf[hotk->model]; printk(KERN_NOTICE " %s model detected, supported\n", string); /* Sort of per-model blacklist */ if (strncmp(string, "L2B", 3) == 0) hotk->methods->lcd_status = NULL; /* L2B is similar enough to L3C to use its settings, with this only exception */ else if (strncmp(string, "A3G", 3) == 0) hotk->methods->lcd_status = "\\BLFG"; /* A3G is like M6R */ else if (strncmp(string, "S5N", 3) == 0 || strncmp(string, "M5N", 3) == 0 || strncmp(string, "W3N", 3) == 0) hotk->methods->mt_mled = NULL; /* S5N, M5N and W3N have no MLED */ else if (strncmp(string, "L5D", 3) == 0) hotk->methods->mt_wled = NULL; /* L5D's WLED is not controlled by ACPI */ else if (strncmp(string, "M2N", 3) == 0 || strncmp(string, "W3V", 3) == 0 || strncmp(string, "S1N", 3) == 0) hotk->methods->mt_wled = "WLED"; /* M2N, S1N and W3V have a usable WLED */ else if (asus_info) { if (strncmp(asus_info->oem_table_id, "L1", 2) == 0) hotk->methods->mled_status = NULL; /* S1300A reports L84F, but L1400B too, account for that */ } kfree(model); return 0; } static int asus_hotk_check(void) { int result = 0; result = acpi_bus_get_status(hotk->device); if (result) return result; if (hotk->device->status.present) { result = asus_hotk_get_info(); } else { printk(KERN_ERR " Hotkey device not present, aborting\n"); return -EINVAL; } return result; } static int asus_hotk_found; static int asus_hotk_add(struct acpi_device *device) { acpi_status status = AE_OK; int result; printk(KERN_NOTICE "Asus Laptop ACPI Extras version %s\n", ASUS_ACPI_VERSION); hotk = kzalloc(sizeof(struct asus_hotk), GFP_KERNEL); if (!hotk) return -ENOMEM; hotk->handle = device->handle; strcpy(acpi_device_name(device), ACPI_HOTK_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_HOTK_CLASS); device->driver_data = hotk; hotk->device = device; result = asus_hotk_check(); if (result) goto end; result = asus_hotk_add_fs(device); if (result) goto end; /* For laptops without GPLV: init the hotk->brightness value */ if ((!hotk->methods->brightness_get) && (!hotk->methods->brightness_status) && (hotk->methods->brightness_up && hotk->methods->brightness_down)) { status = acpi_evaluate_object(NULL, hotk->methods->brightness_down, NULL, NULL); if (ACPI_FAILURE(status)) printk(KERN_WARNING " Error changing brightness\n"); else { status = acpi_evaluate_object(NULL, hotk->methods->brightness_up, NULL, NULL); if (ACPI_FAILURE(status)) printk(KERN_WARNING " Strange, error changing" " brightness\n"); } } asus_hotk_found = 1; /* LED display is off by default */ hotk->ledd_status = 0xFFF; end: if (result) kfree(hotk); return result; } static int asus_hotk_remove(struct acpi_device *device, int type) { asus_hotk_remove_fs(device); kfree(hotk); return 0; } static const struct backlight_ops asus_backlight_data = { .get_brightness = read_brightness, .update_status = set_brightness_status, }; static void asus_acpi_exit(void) { if (asus_backlight_device) backlight_device_unregister(asus_backlight_device); acpi_bus_unregister_driver(&asus_hotk_driver); remove_proc_entry(PROC_ASUS, acpi_root_dir); return; } static int __init asus_acpi_init(void) { struct backlight_properties props; int result; result = acpi_bus_register_driver(&asus_hotk_driver); if (result < 0) return result; asus_proc_dir = proc_mkdir(PROC_ASUS, acpi_root_dir); if (!asus_proc_dir) { printk(KERN_ERR "Asus ACPI: Unable to create /proc entry\n"); acpi_bus_unregister_driver(&asus_hotk_driver); return -ENODEV; } /* * This is a bit of a kludge. We only want this module loaded * for ASUS systems, but there's currently no way to probe the * ACPI namespace for ASUS HIDs. So we just return failure if * we didn't find one, which will cause the module to be * unloaded. */ if (!asus_hotk_found) { acpi_bus_unregister_driver(&asus_hotk_driver); remove_proc_entry(PROC_ASUS, acpi_root_dir); return -ENODEV; } memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_PLATFORM; props.max_brightness = 15; asus_backlight_device = backlight_device_register("asus", NULL, NULL, &asus_backlight_data, &props); if (IS_ERR(asus_backlight_device)) { printk(KERN_ERR "Could not register asus backlight device\n"); asus_backlight_device = NULL; asus_acpi_exit(); return -ENODEV; } return 0; } module_init(asus_acpi_init); module_exit(asus_acpi_exit);