/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/delay.h> #include <linux/kernel.h> #include <linux/string.h> #include <bcmdefs.h> #include <linux/module.h> #include <linux/pci.h> #include <bcmutils.h> #include <siutils.h> #include <bcmdevs.h> #include <hndsoc.h> #include <sbchipc.h> #include <pci_core.h> #include <pcie_core.h> #include <nicpci.h> #include <bcmnvram.h> #include <bcmsrom.h> #include <pcicfg.h> #include <sbsocram.h> #ifdef BCMSDIO #include <bcmsdh.h> #include <sdio.h> #include <sbsdio.h> #include <sbhnddma.h> #include <sbsdpcmdev.h> #include <bcmsdpcm.h> #endif /* BCMSDIO */ #include <hndpmu.h> /* this file now contains only definitions for sb functions, only necessary *for devices using Sonics backplanes (bcm4329) */ /* if an amba SDIO device is supported, please further restrict the inclusion * of this file */ #ifdef BCMSDIO #include "siutils_priv.h" #endif /* local prototypes */ static si_info_t *si_doattach(si_info_t *sii, uint devid, void *regs, uint bustype, void *sdh, char **vars, uint *varsz); static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh); static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, u32 savewin, uint *origidx, void *regs); static void si_nvram_process(si_info_t *sii, char *pvars); /* dev path concatenation util */ static char *si_devpathvar(si_t *sih, char *var, int len, const char *name); static bool _si_clkctl_cc(si_info_t *sii, uint mode); static bool si_ispcie(si_info_t *sii); static uint socram_banksize(si_info_t *sii, sbsocramregs_t *r, u8 idx, u8 mtype); /* global variable to indicate reservation/release of gpio's */ static u32 si_gpioreservation; /* * Allocate a si handle. * devid - pci device id (used to determine chip#) * osh - opaque OS handle * regs - virtual address of initial core registers * bustype - pci/sb/sdio/etc * vars - pointer to a pointer area for "environment" variables * varsz - pointer to int to return the size of the vars */ si_t *si_attach(uint devid, void *regs, uint bustype, void *sdh, char **vars, uint *varsz) { si_info_t *sii; /* alloc si_info_t */ sii = kmalloc(sizeof(si_info_t), GFP_ATOMIC); if (sii == NULL) { SI_ERROR(("si_attach: malloc failed!\n")); return NULL; } if (si_doattach(sii, devid, regs, bustype, sdh, vars, varsz) == NULL) { kfree(sii); return NULL; } sii->vars = vars ? *vars : NULL; sii->varsz = varsz ? *varsz : 0; return (si_t *) sii; } /* global kernel resource */ static si_info_t ksii; static bool si_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh) { #ifndef BRCM_FULLMAC /* kludge to enable the clock on the 4306 which lacks a slowclock */ if (bustype == PCI_BUS && !si_ispcie(sii)) si_clkctl_xtal(&sii->pub, XTAL | PLL, ON); #endif #if defined(BCMSDIO) if (bustype == SDIO_BUS) { int err; u8 clkset; /* Try forcing SDIO core to do ALPAvail request only */ clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err); if (!err) { u8 clkval; /* If register supported, wait for ALPAvail and then force ALP */ clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL); if ((clkval & ~SBSDIO_AVBITS) == clkset) { SPINWAIT(((clkval = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, NULL)), !SBSDIO_ALPAV(clkval)), PMU_MAX_TRANSITION_DLY); if (!SBSDIO_ALPAV(clkval)) { SI_ERROR(("timeout on ALPAV wait, clkval 0x%02x\n", clkval)); return false; } clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP; bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err); udelay(65); } } /* Also, disable the extra SDIO pull-ups */ bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL); } #endif /* defined(BCMSDIO) */ return true; } static bool si_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, u32 savewin, uint *origidx, void *regs) { bool pci, pcie; uint i; uint pciidx, pcieidx, pcirev, pcierev; cc = si_setcoreidx(&sii->pub, SI_CC_IDX); ASSERT(cc); /* get chipcommon rev */ sii->pub.ccrev = (int)si_corerev(&sii->pub); /* get chipcommon chipstatus */ if (sii->pub.ccrev >= 11) sii->pub.chipst = R_REG(&cc->chipstatus); /* get chipcommon capabilites */ sii->pub.cccaps = R_REG(&cc->capabilities); /* get chipcommon extended capabilities */ #ifndef BRCM_FULLMAC if (sii->pub.ccrev >= 35) sii->pub.cccaps_ext = R_REG(&cc->capabilities_ext); #endif /* get pmu rev and caps */ if (sii->pub.cccaps & CC_CAP_PMU) { sii->pub.pmucaps = R_REG(&cc->pmucapabilities); sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK; } /* SI_MSG(("Chipc: rev %d, caps 0x%x, chipst 0x%x pmurev %d, pmucaps 0x%x\n", sii->pub.ccrev, sii->pub.cccaps, sii->pub.chipst, sii->pub.pmurev, sii->pub.pmucaps)); */ /* figure out bus/orignal core idx */ sii->pub.buscoretype = NODEV_CORE_ID; sii->pub.buscorerev = NOREV; sii->pub.buscoreidx = BADIDX; pci = pcie = false; pcirev = pcierev = NOREV; pciidx = pcieidx = BADIDX; for (i = 0; i < sii->numcores; i++) { uint cid, crev; si_setcoreidx(&sii->pub, i); cid = si_coreid(&sii->pub); crev = si_corerev(&sii->pub); /* Display cores found */ SI_VMSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n", i, cid, crev, sii->coresba[i], sii->regs[i])); if (bustype == PCI_BUS) { if (cid == PCI_CORE_ID) { pciidx = i; pcirev = crev; pci = true; } else if (cid == PCIE_CORE_ID) { pcieidx = i; pcierev = crev; pcie = true; } } #ifdef BCMSDIO else if (((bustype == SDIO_BUS) || (bustype == SPI_BUS)) && ((cid == PCMCIA_CORE_ID) || (cid == SDIOD_CORE_ID))) { sii->pub.buscorerev = crev; sii->pub.buscoretype = cid; sii->pub.buscoreidx = i; } #endif /* BCMSDIO */ /* find the core idx before entering this func. */ if ((savewin && (savewin == sii->coresba[i])) || (regs == sii->regs[i])) *origidx = i; } #ifdef BRCM_FULLMAC SI_MSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx, sii->pub.buscoretype, sii->pub.buscorerev)); /* Make sure any on-chip ARM is off (in case strapping is wrong), * or downloaded code was * already running. */ if ((bustype == SDIO_BUS) || (bustype == SPI_BUS)) { if (si_setcore(&sii->pub, ARM7S_CORE_ID, 0) || si_setcore(&sii->pub, ARMCM3_CORE_ID, 0)) si_core_disable(&sii->pub, 0); } #else if (pci && pcie) { if (si_ispcie(sii)) pci = false; else pcie = false; } if (pci) { sii->pub.buscoretype = PCI_CORE_ID; sii->pub.buscorerev = pcirev; sii->pub.buscoreidx = pciidx; } else if (pcie) { sii->pub.buscoretype = PCIE_CORE_ID; sii->pub.buscorerev = pcierev; sii->pub.buscoreidx = pcieidx; } SI_VMSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx, sii->pub.buscoretype, sii->pub.buscorerev)); /* fixup necessary chip/core configurations */ if (sii->pub.bustype == PCI_BUS) { if (SI_FAST(sii)) { if (!sii->pch) { sii->pch = (void *)pcicore_init( &sii->pub, sii->pbus, (void *)PCIEREGS(sii)); if (sii->pch == NULL) return false; } } if (si_pci_fixcfg(&sii->pub)) { SI_ERROR(("si_doattach: sb_pci_fixcfg failed\n")); return false; } } #endif /* return to the original core */ si_setcoreidx(&sii->pub, *origidx); return true; } static __used void si_nvram_process(si_info_t *sii, char *pvars) { uint w = 0; /* get boardtype and boardrev */ switch (sii->pub.bustype) { case PCI_BUS: /* do a pci config read to get subsystem id and subvendor id */ pci_read_config_dword(sii->pbus, PCI_CFG_SVID, &w); /* Let nvram variables override subsystem Vend/ID */ sii->pub.boardvendor = (u16)si_getdevpathintvar(&sii->pub, "boardvendor"); if (sii->pub.boardvendor == 0) sii->pub.boardvendor = w & 0xffff; else SI_ERROR(("Overriding boardvendor: 0x%x instead of 0x%x\n", sii->pub.boardvendor, w & 0xffff)); sii->pub.boardtype = (u16)si_getdevpathintvar(&sii->pub, "boardtype"); if (sii->pub.boardtype == 0) sii->pub.boardtype = (w >> 16) & 0xffff; else SI_ERROR(("Overriding boardtype: 0x%x instead of 0x%x\n", sii->pub.boardtype, (w >> 16) & 0xffff)); break; #ifdef BCMSDIO case SDIO_BUS: #endif sii->pub.boardvendor = getintvar(pvars, "manfid"); sii->pub.boardtype = getintvar(pvars, "prodid"); break; #ifdef BCMSDIO case SPI_BUS: sii->pub.boardvendor = VENDOR_BROADCOM; sii->pub.boardtype = SPI_BOARD; break; #endif case SI_BUS: case JTAG_BUS: sii->pub.boardvendor = VENDOR_BROADCOM; sii->pub.boardtype = getintvar(pvars, "prodid"); if (pvars == NULL || (sii->pub.boardtype == 0)) { sii->pub.boardtype = getintvar(NULL, "boardtype"); if (sii->pub.boardtype == 0) sii->pub.boardtype = 0xffff; } break; } if (sii->pub.boardtype == 0) { SI_ERROR(("si_doattach: unknown board type\n")); ASSERT(sii->pub.boardtype); } sii->pub.boardflags = getintvar(pvars, "boardflags"); } /* this is will make Sonics calls directly, since Sonics is no longer supported in the Si abstraction */ /* this has been customized for the bcm 4329 ONLY */ #ifdef BCMSDIO static si_info_t *si_doattach(si_info_t *sii, uint devid, void *regs, uint bustype, void *pbus, char **vars, uint *varsz) { struct si_pub *sih = &sii->pub; u32 w, savewin; chipcregs_t *cc; char *pvars = NULL; uint origidx; ASSERT(GOODREGS(regs)); memset((unsigned char *) sii, 0, sizeof(si_info_t)); savewin = 0; sih->buscoreidx = BADIDX; sii->curmap = regs; sii->pbus = pbus; /* find Chipcommon address */ cc = (chipcregs_t *) sii->curmap; sih->bustype = bustype; /* bus/core/clk setup for register access */ if (!si_buscore_prep(sii, bustype, devid, pbus)) { SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n", bustype)); return NULL; } /* ChipID recognition. * We assume we can read chipid at offset 0 from the regs arg. * If we add other chiptypes (or if we need to support old sdio hosts w/o chipcommon), * some way of recognizing them needs to be added here. */ w = R_REG(&cc->chipid); sih->socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT; /* Might as wll fill in chip id rev & pkg */ sih->chip = w & CID_ID_MASK; sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT; sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT; if ((sih->chip == BCM4329_CHIP_ID) && (sih->chippkg != BCM4329_289PIN_PKG_ID)) sih->chippkg = BCM4329_182PIN_PKG_ID; sih->issim = IS_SIM(sih->chippkg); /* scan for cores */ /* SI_MSG(("Found chip type SB (0x%08x)\n", w)); */ sb_scan(&sii->pub, regs, devid); /* no cores found, bail out */ if (sii->numcores == 0) { SI_ERROR(("si_doattach: could not find any cores\n")); return NULL; } /* bus/core/clk setup */ origidx = SI_CC_IDX; if (!si_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) { SI_ERROR(("si_doattach: si_buscore_setup failed\n")); goto exit; } #ifdef BRCM_FULLMAC pvars = NULL; #else /* Init nvram from flash if it exists */ nvram_init((void *)&(sii->pub)); /* Init nvram from sprom/otp if they exist */ if (srom_var_init (&sii->pub, bustype, regs, sii->osh, vars, varsz)) { SI_ERROR(("si_doattach: srom_var_init failed: bad srom\n")); goto exit; } pvars = vars ? *vars : NULL; si_nvram_process(sii, pvars); #endif /* === NVRAM, clock is ready === */ #ifdef BRCM_FULLMAC if (sii->pub.ccrev >= 20) { #endif cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0); W_REG(&cc->gpiopullup, 0); W_REG(&cc->gpiopulldown, 0); sb_setcoreidx(sih, origidx); #ifdef BRCM_FULLMAC } #endif #ifndef BRCM_FULLMAC /* PMU specific initializations */ if (PMUCTL_ENAB(sih)) { u32 xtalfreq; si_pmu_init(sih); si_pmu_chip_init(sih); xtalfreq = getintvar(pvars, "xtalfreq"); /* If xtalfreq var not available, try to measure it */ if (xtalfreq == 0) xtalfreq = si_pmu_measure_alpclk(sih); si_pmu_pll_init(sih, xtalfreq); si_pmu_res_init(sih); si_pmu_swreg_init(sih); } /* setup the GPIO based LED powersave register */ w = getintvar(pvars, "leddc"); if (w == 0) w = DEFAULT_GPIOTIMERVAL; sb_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, gpiotimerval), ~0, w); #ifdef BCMDBG /* clear any previous epidiag-induced target abort */ sb_taclear(sih, false); #endif /* BCMDBG */ #endif return sii; exit: return NULL; } #else /* BCMSDIO */ static si_info_t *si_doattach(si_info_t *sii, uint devid, void *regs, uint bustype, void *pbus, char **vars, uint *varsz) { struct si_pub *sih = &sii->pub; u32 w, savewin; chipcregs_t *cc; char *pvars = NULL; uint origidx; ASSERT(GOODREGS(regs)); memset((unsigned char *) sii, 0, sizeof(si_info_t)); savewin = 0; sih->buscoreidx = BADIDX; sii->curmap = regs; sii->pbus = pbus; /* check to see if we are a si core mimic'ing a pci core */ if (bustype == PCI_BUS) { pci_read_config_dword(sii->pbus, PCI_SPROM_CONTROL, &w); if (w == 0xffffffff) { SI_ERROR(("%s: incoming bus is PCI but it's a lie, " " switching to SI devid:0x%x\n", __func__, devid)); bustype = SI_BUS; } } /* find Chipcommon address */ if (bustype == PCI_BUS) { pci_read_config_dword(sii->pbus, PCI_BAR0_WIN, &savewin); if (!GOODCOREADDR(savewin, SI_ENUM_BASE)) savewin = SI_ENUM_BASE; pci_write_config_dword(sii->pbus, PCI_BAR0_WIN, SI_ENUM_BASE); cc = (chipcregs_t *) regs; } else { cc = (chipcregs_t *) REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE); } sih->bustype = bustype; /* bus/core/clk setup for register access */ if (!si_buscore_prep(sii, bustype, devid, pbus)) { SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n", bustype)); return NULL; } /* ChipID recognition. * We assume we can read chipid at offset 0 from the regs arg. * If we add other chiptypes (or if we need to support old sdio hosts w/o chipcommon), * some way of recognizing them needs to be added here. */ w = R_REG(&cc->chipid); sih->socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT; /* Might as wll fill in chip id rev & pkg */ sih->chip = w & CID_ID_MASK; sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT; sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT; sih->issim = IS_SIM(sih->chippkg); /* scan for cores */ if (sii->pub.socitype == SOCI_AI) { SI_MSG(("Found chip type AI (0x%08x)\n", w)); /* pass chipc address instead of original core base */ ai_scan(&sii->pub, (void *)cc, devid); } else { SI_ERROR(("Found chip of unknown type (0x%08x)\n", w)); return NULL; } /* no cores found, bail out */ if (sii->numcores == 0) { SI_ERROR(("si_doattach: could not find any cores\n")); return NULL; } /* bus/core/clk setup */ origidx = SI_CC_IDX; if (!si_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) { SI_ERROR(("si_doattach: si_buscore_setup failed\n")); goto exit; } /* assume current core is CC */ if ((sii->pub.ccrev == 0x25) && ((sih->chip == BCM43236_CHIP_ID || sih->chip == BCM43235_CHIP_ID || sih->chip == BCM43238_CHIP_ID) && (sii->pub.chiprev <= 2))) { if ((cc->chipstatus & CST43236_BP_CLK) != 0) { uint clkdiv; clkdiv = R_REG(&cc->clkdiv); /* otp_clk_div is even number, 120/14 < 9mhz */ clkdiv = (clkdiv & ~CLKD_OTP) | (14 << CLKD_OTP_SHIFT); W_REG(&cc->clkdiv, clkdiv); SI_ERROR(("%s: set clkdiv to %x\n", __func__, clkdiv)); } udelay(10); } /* Init nvram from flash if it exists */ nvram_init((void *)&(sii->pub)); /* Init nvram from sprom/otp if they exist */ if (srom_var_init (&sii->pub, bustype, regs, vars, varsz)) { SI_ERROR(("si_doattach: srom_var_init failed: bad srom\n")); goto exit; } pvars = vars ? *vars : NULL; si_nvram_process(sii, pvars); /* === NVRAM, clock is ready === */ cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0); W_REG(&cc->gpiopullup, 0); W_REG(&cc->gpiopulldown, 0); si_setcoreidx(sih, origidx); /* PMU specific initializations */ if (PMUCTL_ENAB(sih)) { u32 xtalfreq; si_pmu_init(sih); si_pmu_chip_init(sih); xtalfreq = getintvar(pvars, "xtalfreq"); /* If xtalfreq var not available, try to measure it */ if (xtalfreq == 0) xtalfreq = si_pmu_measure_alpclk(sih); si_pmu_pll_init(sih, xtalfreq); si_pmu_res_init(sih); si_pmu_swreg_init(sih); } /* setup the GPIO based LED powersave register */ w = getintvar(pvars, "leddc"); if (w == 0) w = DEFAULT_GPIOTIMERVAL; si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, gpiotimerval), ~0, w); if (PCIE(sii)) { ASSERT(sii->pch != NULL); pcicore_attach(sii->pch, pvars, SI_DOATTACH); } if ((sih->chip == BCM43224_CHIP_ID) || (sih->chip == BCM43421_CHIP_ID)) { /* enable 12 mA drive strenth for 43224 and set chipControl register bit 15 */ if (sih->chiprev == 0) { SI_MSG(("Applying 43224A0 WARs\n")); si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, chipcontrol), CCTRL43224_GPIO_TOGGLE, CCTRL43224_GPIO_TOGGLE); si_pmu_chipcontrol(sih, 0, CCTRL_43224A0_12MA_LED_DRIVE, CCTRL_43224A0_12MA_LED_DRIVE); } if (sih->chiprev >= 1) { SI_MSG(("Applying 43224B0+ WARs\n")); si_pmu_chipcontrol(sih, 0, CCTRL_43224B0_12MA_LED_DRIVE, CCTRL_43224B0_12MA_LED_DRIVE); } } if (sih->chip == BCM4313_CHIP_ID) { /* enable 12 mA drive strenth for 4313 and set chipControl register bit 1 */ SI_MSG(("Applying 4313 WARs\n")); si_pmu_chipcontrol(sih, 0, CCTRL_4313_12MA_LED_DRIVE, CCTRL_4313_12MA_LED_DRIVE); } if (sih->chip == BCM4331_CHIP_ID) { /* Enable Ext PA lines depending on chip package option */ si_chipcontrl_epa4331(sih, true); } return sii; exit: if (sih->bustype == PCI_BUS) { if (sii->pch) pcicore_deinit(sii->pch); sii->pch = NULL; } return NULL; } #endif /* BCMSDIO */ /* may be called with core in reset */ void si_detach(si_t *sih) { si_info_t *sii; uint idx; struct si_pub *si_local = NULL; memcpy(&si_local, &sih, sizeof(si_t **)); sii = SI_INFO(sih); if (sii == NULL) return; if (sih->bustype == SI_BUS) for (idx = 0; idx < SI_MAXCORES; idx++) if (sii->regs[idx]) { iounmap(sii->regs[idx]); sii->regs[idx] = NULL; } #ifndef BRCM_FULLMAC nvram_exit((void *)si_local); /* free up nvram buffers */ if (sih->bustype == PCI_BUS) { if (sii->pch) pcicore_deinit(sii->pch); sii->pch = NULL; } #endif #if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SI_BUS) if (sii != &ksii) #endif /* !BCMBUSTYPE || (BCMBUSTYPE == SI_BUS) */ kfree(sii); } /* register driver interrupt disabling and restoring callback functions */ void si_register_intr_callback(si_t *sih, void *intrsoff_fn, void *intrsrestore_fn, void *intrsenabled_fn, void *intr_arg) { si_info_t *sii; sii = SI_INFO(sih); sii->intr_arg = intr_arg; sii->intrsoff_fn = (si_intrsoff_t) intrsoff_fn; sii->intrsrestore_fn = (si_intrsrestore_t) intrsrestore_fn; sii->intrsenabled_fn = (si_intrsenabled_t) intrsenabled_fn; /* save current core id. when this function called, the current core * must be the core which provides driver functions(il, et, wl, etc.) */ sii->dev_coreid = sii->coreid[sii->curidx]; } void si_deregister_intr_callback(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); sii->intrsoff_fn = NULL; } uint si_flag(si_t *sih) { if (sih->socitype == SOCI_AI) return ai_flag(sih); else { ASSERT(0); return 0; } } void si_setint(si_t *sih, int siflag) { if (sih->socitype == SOCI_AI) ai_setint(sih, siflag); else ASSERT(0); } #ifndef BCMSDIO uint si_coreid(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); return sii->coreid[sii->curidx]; } #endif uint si_coreidx(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); return sii->curidx; } bool si_backplane64(si_t *sih) { return (sih->cccaps & CC_CAP_BKPLN64) != 0; } #ifndef BCMSDIO uint si_corerev(si_t *sih) { if (sih->socitype == SOCI_AI) return ai_corerev(sih); else { ASSERT(0); return 0; } } #endif /* return index of coreid or BADIDX if not found */ uint si_findcoreidx(si_t *sih, uint coreid, uint coreunit) { si_info_t *sii; uint found; uint i; sii = SI_INFO(sih); found = 0; for (i = 0; i < sii->numcores; i++) if (sii->coreid[i] == coreid) { if (found == coreunit) return i; found++; } return BADIDX; } /* * This function changes logical "focus" to the indicated core; * must be called with interrupts off. * Moreover, callers should keep interrupts off during switching out of and back to d11 core */ void *si_setcore(si_t *sih, uint coreid, uint coreunit) { uint idx; idx = si_findcoreidx(sih, coreid, coreunit); if (!GOODIDX(idx)) return NULL; if (sih->socitype == SOCI_AI) return ai_setcoreidx(sih, idx); else { #ifdef BCMSDIO return sb_setcoreidx(sih, idx); #else ASSERT(0); return NULL; #endif } } #ifndef BCMSDIO void *si_setcoreidx(si_t *sih, uint coreidx) { if (sih->socitype == SOCI_AI) return ai_setcoreidx(sih, coreidx); else { ASSERT(0); return NULL; } } #endif /* Turn off interrupt as required by sb_setcore, before switch core */ void *si_switch_core(si_t *sih, uint coreid, uint *origidx, uint *intr_val) { void *cc; si_info_t *sii; sii = SI_INFO(sih); if (SI_FAST(sii)) { /* Overloading the origidx variable to remember the coreid, * this works because the core ids cannot be confused with * core indices. */ *origidx = coreid; if (coreid == CC_CORE_ID) return (void *)CCREGS_FAST(sii); else if (coreid == sih->buscoretype) return (void *)PCIEREGS(sii); } INTR_OFF(sii, *intr_val); *origidx = sii->curidx; cc = si_setcore(sih, coreid, 0); ASSERT(cc != NULL); return cc; } /* restore coreidx and restore interrupt */ void si_restore_core(si_t *sih, uint coreid, uint intr_val) { si_info_t *sii; sii = SI_INFO(sih); if (SI_FAST(sii) && ((coreid == CC_CORE_ID) || (coreid == sih->buscoretype))) return; si_setcoreidx(sih, coreid); INTR_RESTORE(sii, intr_val); } u32 si_core_cflags(si_t *sih, u32 mask, u32 val) { if (sih->socitype == SOCI_AI) return ai_core_cflags(sih, mask, val); else { ASSERT(0); return 0; } } u32 si_core_sflags(si_t *sih, u32 mask, u32 val) { if (sih->socitype == SOCI_AI) return ai_core_sflags(sih, mask, val); else { ASSERT(0); return 0; } } bool si_iscoreup(si_t *sih) { if (sih->socitype == SOCI_AI) return ai_iscoreup(sih); else { #ifdef BCMSDIO return sb_iscoreup(sih); #else ASSERT(0); return false; #endif } } void si_write_wrapperreg(si_t *sih, u32 offset, u32 val) { /* only for 4319, no requirement for SOCI_SB */ if (sih->socitype == SOCI_AI) { ai_write_wrap_reg(sih, offset, val); } } uint si_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) { if (sih->socitype == SOCI_AI) return ai_corereg(sih, coreidx, regoff, mask, val); else { #ifdef BCMSDIO return sb_corereg(sih, coreidx, regoff, mask, val); #else ASSERT(0); return 0; #endif } } void si_core_disable(si_t *sih, u32 bits) { if (sih->socitype == SOCI_AI) ai_core_disable(sih, bits); #ifdef BCMSDIO else sb_core_disable(sih, bits); #endif } void si_core_reset(si_t *sih, u32 bits, u32 resetbits) { if (sih->socitype == SOCI_AI) ai_core_reset(sih, bits, resetbits); #ifdef BCMSDIO else sb_core_reset(sih, bits, resetbits); #endif } u32 si_alp_clock(si_t *sih) { if (PMUCTL_ENAB(sih)) return si_pmu_alp_clock(sih); return ALP_CLOCK; } u32 si_ilp_clock(si_t *sih) { if (PMUCTL_ENAB(sih)) return si_pmu_ilp_clock(sih); return ILP_CLOCK; } /* set chip watchdog reset timer to fire in 'ticks' */ #ifdef BRCM_FULLMAC void si_watchdog(si_t *sih, uint ticks) { if (PMUCTL_ENAB(sih)) { if ((sih->chip == BCM4319_CHIP_ID) && (sih->chiprev == 0) && (ticks != 0)) { si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, clk_ctl_st), ~0, 0x2); si_setcore(sih, USB20D_CORE_ID, 0); si_core_disable(sih, 1); si_setcore(sih, CC_CORE_ID, 0); } if (ticks == 1) ticks = 2; si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pmuwatchdog), ~0, ticks); } else { /* instant NMI */ si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, watchdog), ~0, ticks); } } #else void si_watchdog(si_t *sih, uint ticks) { uint nb, maxt; if (PMUCTL_ENAB(sih)) { if ((sih->chip == BCM4319_CHIP_ID) && (sih->chiprev == 0) && (ticks != 0)) { si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, clk_ctl_st), ~0, 0x2); si_setcore(sih, USB20D_CORE_ID, 0); si_core_disable(sih, 1); si_setcore(sih, CC_CORE_ID, 0); } nb = (sih->ccrev < 26) ? 16 : ((sih->ccrev >= 37) ? 32 : 24); /* The mips compiler uses the sllv instruction, * so we specially handle the 32-bit case. */ if (nb == 32) maxt = 0xffffffff; else maxt = ((1 << nb) - 1); if (ticks == 1) ticks = 2; else if (ticks > maxt) ticks = maxt; si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pmuwatchdog), ~0, ticks); } else { /* make sure we come up in fast clock mode; or if clearing, clear clock */ si_clkctl_cc(sih, ticks ? CLK_FAST : CLK_DYNAMIC); maxt = (1 << 28) - 1; if (ticks > maxt) ticks = maxt; si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, watchdog), ~0, ticks); } } #endif /* return the slow clock source - LPO, XTAL, or PCI */ static uint si_slowclk_src(si_info_t *sii) { chipcregs_t *cc; u32 val; ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID); if (sii->pub.ccrev < 6) { if (sii->pub.bustype == PCI_BUS) { pci_read_config_dword(sii->pbus, PCI_GPIO_OUT, &val); if (val & PCI_CFG_GPIO_SCS) return SCC_SS_PCI; } return SCC_SS_XTAL; } else if (sii->pub.ccrev < 10) { cc = (chipcregs_t *) si_setcoreidx(&sii->pub, sii->curidx); return R_REG(&cc->slow_clk_ctl) & SCC_SS_MASK; } else /* Insta-clock */ return SCC_SS_XTAL; } /* return the ILP (slowclock) min or max frequency */ static uint si_slowclk_freq(si_info_t *sii, bool max_freq, chipcregs_t *cc) { u32 slowclk; uint div; ASSERT(SI_FAST(sii) || si_coreid(&sii->pub) == CC_CORE_ID); /* shouldn't be here unless we've established the chip has dynamic clk control */ ASSERT(R_REG(&cc->capabilities) & CC_CAP_PWR_CTL); slowclk = si_slowclk_src(sii); if (sii->pub.ccrev < 6) { if (slowclk == SCC_SS_PCI) return max_freq ? (PCIMAXFREQ / 64) : (PCIMINFREQ / 64); else return max_freq ? (XTALMAXFREQ / 32) : (XTALMINFREQ / 32); } else if (sii->pub.ccrev < 10) { div = 4 * (((R_REG(&cc->slow_clk_ctl) & SCC_CD_MASK) >> SCC_CD_SHIFT) + 1); if (slowclk == SCC_SS_LPO) return max_freq ? LPOMAXFREQ : LPOMINFREQ; else if (slowclk == SCC_SS_XTAL) return max_freq ? (XTALMAXFREQ / div) : (XTALMINFREQ / div); else if (slowclk == SCC_SS_PCI) return max_freq ? (PCIMAXFREQ / div) : (PCIMINFREQ / div); else ASSERT(0); } else { /* Chipc rev 10 is InstaClock */ div = R_REG(&cc->system_clk_ctl) >> SYCC_CD_SHIFT; div = 4 * (div + 1); return max_freq ? XTALMAXFREQ : (XTALMINFREQ / div); } return 0; } static void si_clkctl_setdelay(si_info_t *sii, void *chipcregs) { chipcregs_t *cc = (chipcregs_t *) chipcregs; uint slowmaxfreq, pll_delay, slowclk; uint pll_on_delay, fref_sel_delay; pll_delay = PLL_DELAY; /* If the slow clock is not sourced by the xtal then add the xtal_on_delay * since the xtal will also be powered down by dynamic clk control logic. */ slowclk = si_slowclk_src(sii); if (slowclk != SCC_SS_XTAL) pll_delay += XTAL_ON_DELAY; /* Starting with 4318 it is ILP that is used for the delays */ slowmaxfreq = si_slowclk_freq(sii, (sii->pub.ccrev >= 10) ? false : true, cc); pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000; fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000; W_REG(&cc->pll_on_delay, pll_on_delay); W_REG(&cc->fref_sel_delay, fref_sel_delay); } /* initialize power control delay registers */ void si_clkctl_init(si_t *sih) { si_info_t *sii; uint origidx = 0; chipcregs_t *cc; bool fast; if (!CCCTL_ENAB(sih)) return; sii = SI_INFO(sih); fast = SI_FAST(sii); if (!fast) { origidx = sii->curidx; cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0); if (cc == NULL) return; } else { cc = (chipcregs_t *) CCREGS_FAST(sii); if (cc == NULL) return; } ASSERT(cc != NULL); /* set all Instaclk chip ILP to 1 MHz */ if (sih->ccrev >= 10) SET_REG(&cc->system_clk_ctl, SYCC_CD_MASK, (ILP_DIV_1MHZ << SYCC_CD_SHIFT)); si_clkctl_setdelay(sii, (void *)cc); if (!fast) si_setcoreidx(sih, origidx); } /* return the value suitable for writing to the dot11 core FAST_PWRUP_DELAY register */ u16 si_clkctl_fast_pwrup_delay(si_t *sih) { si_info_t *sii; uint origidx = 0; chipcregs_t *cc; uint slowminfreq; u16 fpdelay; uint intr_val = 0; bool fast; sii = SI_INFO(sih); if (PMUCTL_ENAB(sih)) { INTR_OFF(sii, intr_val); fpdelay = si_pmu_fast_pwrup_delay(sih); INTR_RESTORE(sii, intr_val); return fpdelay; } if (!CCCTL_ENAB(sih)) return 0; fast = SI_FAST(sii); fpdelay = 0; if (!fast) { origidx = sii->curidx; INTR_OFF(sii, intr_val); cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0); if (cc == NULL) goto done; } else { cc = (chipcregs_t *) CCREGS_FAST(sii); if (cc == NULL) goto done; } ASSERT(cc != NULL); slowminfreq = si_slowclk_freq(sii, false, cc); fpdelay = (((R_REG(&cc->pll_on_delay) + 2) * 1000000) + (slowminfreq - 1)) / slowminfreq; done: if (!fast) { si_setcoreidx(sih, origidx); INTR_RESTORE(sii, intr_val); } return fpdelay; } /* turn primary xtal and/or pll off/on */ int si_clkctl_xtal(si_t *sih, uint what, bool on) { si_info_t *sii; u32 in, out, outen; sii = SI_INFO(sih); switch (sih->bustype) { #ifdef BCMSDIO case SDIO_BUS: return -1; #endif /* BCMSDIO */ case PCI_BUS: /* pcie core doesn't have any mapping to control the xtal pu */ if (PCIE(sii)) return -1; pci_read_config_dword(sii->pbus, PCI_GPIO_IN, &in); pci_read_config_dword(sii->pbus, PCI_GPIO_OUT, &out); pci_read_config_dword(sii->pbus, PCI_GPIO_OUTEN, &outen); /* * Avoid glitching the clock if GPRS is already using it. * We can't actually read the state of the PLLPD so we infer it * by the value of XTAL_PU which *is* readable via gpioin. */ if (on && (in & PCI_CFG_GPIO_XTAL)) return 0; if (what & XTAL) outen |= PCI_CFG_GPIO_XTAL; if (what & PLL) outen |= PCI_CFG_GPIO_PLL; if (on) { /* turn primary xtal on */ if (what & XTAL) { out |= PCI_CFG_GPIO_XTAL; if (what & PLL) out |= PCI_CFG_GPIO_PLL; pci_write_config_dword(sii->pbus, PCI_GPIO_OUT, out); pci_write_config_dword(sii->pbus, PCI_GPIO_OUTEN, outen); udelay(XTAL_ON_DELAY); } /* turn pll on */ if (what & PLL) { out &= ~PCI_CFG_GPIO_PLL; pci_write_config_dword(sii->pbus, PCI_GPIO_OUT, out); mdelay(2); } } else { if (what & XTAL) out &= ~PCI_CFG_GPIO_XTAL; if (what & PLL) out |= PCI_CFG_GPIO_PLL; pci_write_config_dword(sii->pbus, PCI_GPIO_OUT, out); pci_write_config_dword(sii->pbus, PCI_GPIO_OUTEN, outen); } default: return -1; } return 0; } /* * clock control policy function through chipcommon * * set dynamic clk control mode (forceslow, forcefast, dynamic) * returns true if we are forcing fast clock * this is a wrapper over the next internal function * to allow flexible policy settings for outside caller */ bool si_clkctl_cc(si_t *sih, uint mode) { si_info_t *sii; sii = SI_INFO(sih); /* chipcommon cores prior to rev6 don't support dynamic clock control */ if (sih->ccrev < 6) return false; if (PCI_FORCEHT(sii)) return mode == CLK_FAST; return _si_clkctl_cc(sii, mode); } /* clk control mechanism through chipcommon, no policy checking */ static bool _si_clkctl_cc(si_info_t *sii, uint mode) { uint origidx = 0; chipcregs_t *cc; u32 scc; uint intr_val = 0; bool fast = SI_FAST(sii); /* chipcommon cores prior to rev6 don't support dynamic clock control */ if (sii->pub.ccrev < 6) return false; /* Chips with ccrev 10 are EOL and they don't have SYCC_HR which we use below */ ASSERT(sii->pub.ccrev != 10); if (!fast) { INTR_OFF(sii, intr_val); origidx = sii->curidx; if ((sii->pub.bustype == SI_BUS) && si_setcore(&sii->pub, MIPS33_CORE_ID, 0) && (si_corerev(&sii->pub) <= 7) && (sii->pub.ccrev >= 10)) goto done; cc = (chipcregs_t *) si_setcore(&sii->pub, CC_CORE_ID, 0); } else { cc = (chipcregs_t *) CCREGS_FAST(sii); if (cc == NULL) goto done; } ASSERT(cc != NULL); if (!CCCTL_ENAB(&sii->pub) && (sii->pub.ccrev < 20)) goto done; switch (mode) { case CLK_FAST: /* FORCEHT, fast (pll) clock */ if (sii->pub.ccrev < 10) { /* don't forget to force xtal back on before we clear SCC_DYN_XTAL.. */ si_clkctl_xtal(&sii->pub, XTAL, ON); SET_REG(&cc->slow_clk_ctl, (SCC_XC | SCC_FS | SCC_IP), SCC_IP); } else if (sii->pub.ccrev < 20) { OR_REG(&cc->system_clk_ctl, SYCC_HR); } else { OR_REG(&cc->clk_ctl_st, CCS_FORCEHT); } /* wait for the PLL */ if (PMUCTL_ENAB(&sii->pub)) { u32 htavail = CCS_HTAVAIL; SPINWAIT(((R_REG(&cc->clk_ctl_st) & htavail) == 0), PMU_MAX_TRANSITION_DLY); ASSERT(R_REG(&cc->clk_ctl_st) & htavail); } else { udelay(PLL_DELAY); } break; case CLK_DYNAMIC: /* enable dynamic clock control */ if (sii->pub.ccrev < 10) { scc = R_REG(&cc->slow_clk_ctl); scc &= ~(SCC_FS | SCC_IP | SCC_XC); if ((scc & SCC_SS_MASK) != SCC_SS_XTAL) scc |= SCC_XC; W_REG(&cc->slow_clk_ctl, scc); /* for dynamic control, we have to release our xtal_pu "force on" */ if (scc & SCC_XC) si_clkctl_xtal(&sii->pub, XTAL, OFF); } else if (sii->pub.ccrev < 20) { /* Instaclock */ AND_REG(&cc->system_clk_ctl, ~SYCC_HR); } else { AND_REG(&cc->clk_ctl_st, ~CCS_FORCEHT); } break; default: ASSERT(0); } done: if (!fast) { si_setcoreidx(&sii->pub, origidx); INTR_RESTORE(sii, intr_val); } return mode == CLK_FAST; } /* Build device path. Support SI, PCI, and JTAG for now. */ int si_devpath(si_t *sih, char *path, int size) { int slen; ASSERT(path != NULL); ASSERT(size >= SI_DEVPATH_BUFSZ); if (!path || size <= 0) return -1; switch (sih->bustype) { case SI_BUS: case JTAG_BUS: slen = snprintf(path, (size_t) size, "sb/%u/", si_coreidx(sih)); break; case PCI_BUS: ASSERT((SI_INFO(sih))->pbus != NULL); slen = snprintf(path, (size_t) size, "pci/%u/%u/", ((struct pci_dev *)((SI_INFO(sih))->pbus))->bus->number, PCI_SLOT( ((struct pci_dev *)((SI_INFO(sih))->pbus))->devfn)); break; #ifdef BCMSDIO case SDIO_BUS: SI_ERROR(("si_devpath: device 0 assumed\n")); slen = snprintf(path, (size_t) size, "sd/%u/", si_coreidx(sih)); break; #endif default: slen = -1; ASSERT(0); break; } if (slen < 0 || slen >= size) { path[0] = '\0'; return -1; } return 0; } /* Get a variable, but only if it has a devpath prefix */ char *si_getdevpathvar(si_t *sih, const char *name) { char varname[SI_DEVPATH_BUFSZ + 32]; si_devpathvar(sih, varname, sizeof(varname), name); return getvar(NULL, varname); } /* Get a variable, but only if it has a devpath prefix */ int si_getdevpathintvar(si_t *sih, const char *name) { #if defined(BCMBUSTYPE) && (BCMBUSTYPE == SI_BUS) return getintvar(NULL, name); #else char varname[SI_DEVPATH_BUFSZ + 32]; si_devpathvar(sih, varname, sizeof(varname), name); return getintvar(NULL, varname); #endif } char *si_getnvramflvar(si_t *sih, const char *name) { return getvar(NULL, name); } /* Concatenate the dev path with a varname into the given 'var' buffer * and return the 'var' pointer. * Nothing is done to the arguments if len == 0 or var is NULL, var is still returned. * On overflow, the first char will be set to '\0'. */ static char *si_devpathvar(si_t *sih, char *var, int len, const char *name) { uint path_len; if (!var || len <= 0) return var; if (si_devpath(sih, var, len) == 0) { path_len = strlen(var); if (strlen(name) + 1 > (uint) (len - path_len)) var[0] = '\0'; else strncpy(var + path_len, name, len - path_len - 1); } return var; } /* return true if PCIE capability exists in the pci config space */ static __used bool si_ispcie(si_info_t *sii) { u8 cap_ptr; if (sii->pub.bustype != PCI_BUS) return false; cap_ptr = pcicore_find_pci_capability(sii->pbus, PCI_CAP_PCIECAP_ID, NULL, NULL); if (!cap_ptr) return false; return true; } #ifdef BCMSDIO /* initialize the sdio core */ void si_sdio_init(si_t *sih) { si_info_t *sii = SI_INFO(sih); if (((sih->buscoretype == PCMCIA_CORE_ID) && (sih->buscorerev >= 8)) || (sih->buscoretype == SDIOD_CORE_ID)) { uint idx; sdpcmd_regs_t *sdpregs; /* get the current core index */ idx = sii->curidx; ASSERT(idx == si_findcoreidx(sih, D11_CORE_ID, 0)); /* switch to sdio core */ sdpregs = (sdpcmd_regs_t *) si_setcore(sih, PCMCIA_CORE_ID, 0); if (!sdpregs) sdpregs = (sdpcmd_regs_t *) si_setcore(sih, SDIOD_CORE_ID, 0); ASSERT(sdpregs); SI_MSG(("si_sdio_init: For PCMCIA/SDIO Corerev %d, enable ints from core %d " "through SD core %d (%p)\n", sih->buscorerev, idx, sii->curidx, sdpregs)); /* enable backplane error and core interrupts */ W_REG(&sdpregs->hostintmask, I_SBINT); W_REG(&sdpregs->sbintmask, (I_SB_SERR | I_SB_RESPERR | (1 << idx))); /* switch back to previous core */ si_setcoreidx(sih, idx); } /* enable interrupts */ bcmsdh_intr_enable(sii->pbus); } #endif /* BCMSDIO */ bool si_pci_war16165(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); return PCI(sii) && (sih->buscorerev <= 10); } void si_pci_up(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); /* if not pci bus, we're done */ if (sih->bustype != PCI_BUS) return; if (PCI_FORCEHT(sii)) _si_clkctl_cc(sii, CLK_FAST); if (PCIE(sii)) pcicore_up(sii->pch, SI_PCIUP); } /* Unconfigure and/or apply various WARs when system is going to sleep mode */ void si_pci_sleep(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); pcicore_sleep(sii->pch); } /* Unconfigure and/or apply various WARs when going down */ void si_pci_down(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); /* if not pci bus, we're done */ if (sih->bustype != PCI_BUS) return; /* release FORCEHT since chip is going to "down" state */ if (PCI_FORCEHT(sii)) _si_clkctl_cc(sii, CLK_DYNAMIC); pcicore_down(sii->pch, SI_PCIDOWN); } /* * Configure the pci core for pci client (NIC) action * coremask is the bitvec of cores by index to be enabled. */ void si_pci_setup(si_t *sih, uint coremask) { si_info_t *sii; struct sbpciregs *pciregs = NULL; u32 siflag = 0, w; uint idx = 0; sii = SI_INFO(sih); if (sii->pub.bustype != PCI_BUS) return; ASSERT(PCI(sii) || PCIE(sii)); ASSERT(sii->pub.buscoreidx != BADIDX); if (PCI(sii)) { /* get current core index */ idx = sii->curidx; /* we interrupt on this backplane flag number */ siflag = si_flag(sih); /* switch over to pci core */ pciregs = (struct sbpciregs *)si_setcoreidx(sih, sii->pub.buscoreidx); } /* * Enable sb->pci interrupts. Assume * PCI rev 2.3 support was added in pci core rev 6 and things changed.. */ if (PCIE(sii) || (PCI(sii) && ((sii->pub.buscorerev) >= 6))) { /* pci config write to set this core bit in PCIIntMask */ pci_read_config_dword(sii->pbus, PCI_INT_MASK, &w); w |= (coremask << PCI_SBIM_SHIFT); pci_write_config_dword(sii->pbus, PCI_INT_MASK, w); } else { /* set sbintvec bit for our flag number */ si_setint(sih, siflag); } if (PCI(sii)) { OR_REG(&pciregs->sbtopci2, (SBTOPCI_PREF | SBTOPCI_BURST)); if (sii->pub.buscorerev >= 11) { OR_REG(&pciregs->sbtopci2, SBTOPCI_RC_READMULTI); w = R_REG(&pciregs->clkrun); W_REG(&pciregs->clkrun, (w | PCI_CLKRUN_DSBL)); w = R_REG(&pciregs->clkrun); } /* switch back to previous core */ si_setcoreidx(sih, idx); } } /* * Fixup SROMless PCI device's configuration. * The current core may be changed upon return. */ int si_pci_fixcfg(si_t *sih) { uint origidx, pciidx; struct sbpciregs *pciregs = NULL; sbpcieregs_t *pcieregs = NULL; void *regs = NULL; u16 val16, *reg16 = NULL; si_info_t *sii = SI_INFO(sih); ASSERT(sii->pub.bustype == PCI_BUS); /* Fixup PI in SROM shadow area to enable the correct PCI core access */ /* save the current index */ origidx = si_coreidx(&sii->pub); /* check 'pi' is correct and fix it if not */ if (sii->pub.buscoretype == PCIE_CORE_ID) { pcieregs = (sbpcieregs_t *) si_setcore(&sii->pub, PCIE_CORE_ID, 0); regs = pcieregs; ASSERT(pcieregs != NULL); reg16 = &pcieregs->sprom[SRSH_PI_OFFSET]; } else if (sii->pub.buscoretype == PCI_CORE_ID) { pciregs = (struct sbpciregs *)si_setcore(&sii->pub, PCI_CORE_ID, 0); regs = pciregs; ASSERT(pciregs != NULL); reg16 = &pciregs->sprom[SRSH_PI_OFFSET]; } pciidx = si_coreidx(&sii->pub); val16 = R_REG(reg16); if (((val16 & SRSH_PI_MASK) >> SRSH_PI_SHIFT) != (u16) pciidx) { val16 = (u16) (pciidx << SRSH_PI_SHIFT) | (val16 & ~SRSH_PI_MASK); W_REG(reg16, val16); } /* restore the original index */ si_setcoreidx(&sii->pub, origidx); pcicore_hwup(sii->pch); return 0; } /* mask&set gpiocontrol bits */ u32 si_gpiocontrol(si_t *sih, u32 mask, u32 val, u8 priority) { uint regoff; regoff = 0; /* gpios could be shared on router platforms * ignore reservation if it's high priority (e.g., test apps) */ if ((priority != GPIO_HI_PRIORITY) && (sih->bustype == SI_BUS) && (val || mask)) { mask = priority ? (si_gpioreservation & mask) : ((si_gpioreservation | mask) & ~(si_gpioreservation)); val &= mask; } regoff = offsetof(chipcregs_t, gpiocontrol); return si_corereg(sih, SI_CC_IDX, regoff, mask, val); } /* Return the size of the specified SOCRAM bank */ static uint socram_banksize(si_info_t *sii, sbsocramregs_t *regs, u8 index, u8 mem_type) { uint banksize, bankinfo; uint bankidx = index | (mem_type << SOCRAM_BANKIDX_MEMTYPE_SHIFT); ASSERT(mem_type <= SOCRAM_MEMTYPE_DEVRAM); W_REG(®s->bankidx, bankidx); bankinfo = R_REG(®s->bankinfo); banksize = SOCRAM_BANKINFO_SZBASE * ((bankinfo & SOCRAM_BANKINFO_SZMASK) + 1); return banksize; } /* Return the RAM size of the SOCRAM core */ u32 si_socram_size(si_t *sih) { si_info_t *sii; uint origidx; uint intr_val = 0; sbsocramregs_t *regs; bool wasup; uint corerev; u32 coreinfo; uint memsize = 0; sii = SI_INFO(sih); /* Block ints and save current core */ INTR_OFF(sii, intr_val); origidx = si_coreidx(sih); /* Switch to SOCRAM core */ regs = si_setcore(sih, SOCRAM_CORE_ID, 0); if (!regs) goto done; /* Get info for determining size */ wasup = si_iscoreup(sih); if (!wasup) si_core_reset(sih, 0, 0); corerev = si_corerev(sih); coreinfo = R_REG(®s->coreinfo); /* Calculate size from coreinfo based on rev */ if (corerev == 0) memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK)); else if (corerev < 3) { memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK)); memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; } else if ((corerev <= 7) || (corerev == 12)) { uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; uint bsz = (coreinfo & SRCI_SRBSZ_MASK); uint lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT; if (lss != 0) nb--; memsize = nb * (1 << (bsz + SR_BSZ_BASE)); if (lss != 0) memsize += (1 << ((lss - 1) + SR_BSZ_BASE)); } else { u8 i; uint nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT; for (i = 0; i < nb; i++) memsize += socram_banksize(sii, regs, i, SOCRAM_MEMTYPE_RAM); } /* Return to previous state and core */ if (!wasup) si_core_disable(sih, 0); si_setcoreidx(sih, origidx); done: INTR_RESTORE(sii, intr_val); return memsize; } void si_chipcontrl_epa4331(si_t *sih, bool on) { si_info_t *sii; chipcregs_t *cc; uint origidx; u32 val; sii = SI_INFO(sih); origidx = si_coreidx(sih); cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0); val = R_REG(&cc->chipcontrol); if (on) { if (sih->chippkg == 9 || sih->chippkg == 0xb) { /* Ext PA Controls for 4331 12x9 Package */ W_REG(&cc->chipcontrol, val | (CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5)); } else { /* Ext PA Controls for 4331 12x12 Package */ W_REG(&cc->chipcontrol, val | (CCTRL4331_EXTPA_EN)); } } else { val &= ~(CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5); W_REG(&cc->chipcontrol, val); } si_setcoreidx(sih, origidx); } /* Enable BT-COEX & Ex-PA for 4313 */ void si_epa_4313war(si_t *sih) { si_info_t *sii; chipcregs_t *cc; uint origidx; sii = SI_INFO(sih); origidx = si_coreidx(sih); cc = (chipcregs_t *) si_setcore(sih, CC_CORE_ID, 0); /* EPA Fix */ W_REG(&cc->gpiocontrol, R_REG(&cc->gpiocontrol) | GPIO_CTRL_EPA_EN_MASK); si_setcoreidx(sih, origidx); } /* check if the device is removed */ bool si_deviceremoved(si_t *sih) { u32 w; si_info_t *sii; sii = SI_INFO(sih); switch (sih->bustype) { case PCI_BUS: ASSERT(sii->pbus != NULL); pci_read_config_dword(sii->pbus, PCI_CFG_VID, &w); if ((w & 0xFFFF) != VENDOR_BROADCOM) return true; break; } return false; } bool si_is_sprom_available(si_t *sih) { if (sih->ccrev >= 31) { si_info_t *sii; uint origidx; chipcregs_t *cc; u32 sromctrl; if ((sih->cccaps & CC_CAP_SROM) == 0) return false; sii = SI_INFO(sih); origidx = sii->curidx; cc = si_setcoreidx(sih, SI_CC_IDX); sromctrl = R_REG(&cc->sromcontrol); si_setcoreidx(sih, origidx); return sromctrl & SRC_PRESENT; } switch (sih->chip) { case BCM4329_CHIP_ID: return (sih->chipst & CST4329_SPROM_SEL) != 0; case BCM4319_CHIP_ID: return (sih->chipst & CST4319_SPROM_SEL) != 0; case BCM4336_CHIP_ID: return (sih->chipst & CST4336_SPROM_PRESENT) != 0; case BCM4330_CHIP_ID: return (sih->chipst & CST4330_SPROM_PRESENT) != 0; case BCM4313_CHIP_ID: return (sih->chipst & CST4313_SPROM_PRESENT) != 0; case BCM4331_CHIP_ID: return (sih->chipst & CST4331_SPROM_PRESENT) != 0; default: return true; } } bool si_is_otp_disabled(si_t *sih) { switch (sih->chip) { case BCM4329_CHIP_ID: return (sih->chipst & CST4329_SPROM_OTP_SEL_MASK) == CST4329_OTP_PWRDN; case BCM4319_CHIP_ID: return (sih->chipst & CST4319_SPROM_OTP_SEL_MASK) == CST4319_OTP_PWRDN; case BCM4336_CHIP_ID: return (sih->chipst & CST4336_OTP_PRESENT) == 0; case BCM4330_CHIP_ID: return (sih->chipst & CST4330_OTP_PRESENT) == 0; case BCM4313_CHIP_ID: return (sih->chipst & CST4313_OTP_PRESENT) == 0; /* These chips always have their OTP on */ case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: case BCM43421_CHIP_ID: case BCM43235_CHIP_ID: case BCM43236_CHIP_ID: case BCM43238_CHIP_ID: case BCM4331_CHIP_ID: default: return false; } } bool si_is_otp_powered(si_t *sih) { if (PMUCTL_ENAB(sih)) return si_pmu_is_otp_powered(sih); return true; } void si_otp_power(si_t *sih, bool on) { if (PMUCTL_ENAB(sih)) si_pmu_otp_power(sih, on); udelay(1000); }