/* * zcache.c * * Copyright (c) 2010,2011, Dan Magenheimer, Oracle Corp. * Copyright (c) 2010,2011, Nitin Gupta * * Zcache provides an in-kernel "host implementation" for transcendent memory * and, thus indirectly, for cleancache and frontswap. Zcache includes two * page-accessible memory [1] interfaces, both utilizing lzo1x compression: * 1) "compression buddies" ("zbud") is used for ephemeral pages * 2) xvmalloc is used for persistent pages. * Xvmalloc (based on the TLSF allocator) has very low fragmentation * so maximizes space efficiency, while zbud allows pairs (and potentially, * in the future, more than a pair of) compressed pages to be closely linked * so that reclaiming can be done via the kernel's physical-page-oriented * "shrinker" interface. * * [1] For a definition of page-accessible memory (aka PAM), see: * http://marc.info/?l=linux-mm&m=127811271605009 */ #include <linux/cpu.h> #include <linux/highmem.h> #include <linux/list.h> #include <linux/lzo.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/atomic.h> #include "tmem.h" #include "../zram/xvmalloc.h" /* if built in drivers/staging */ #if (!defined(CONFIG_CLEANCACHE) && !defined(CONFIG_FRONTSWAP)) #error "zcache is useless without CONFIG_CLEANCACHE or CONFIG_FRONTSWAP" #endif #ifdef CONFIG_CLEANCACHE #include <linux/cleancache.h> #endif #ifdef CONFIG_FRONTSWAP #include <linux/frontswap.h> #endif #if 0 /* this is more aggressive but may cause other problems? */ #define ZCACHE_GFP_MASK (GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN) #else #define ZCACHE_GFP_MASK \ (__GFP_FS | __GFP_NORETRY | __GFP_NOWARN | __GFP_NOMEMALLOC) #endif /********** * Compression buddies ("zbud") provides for packing two (or, possibly * in the future, more) compressed ephemeral pages into a single "raw" * (physical) page and tracking them with data structures so that * the raw pages can be easily reclaimed. * * A zbud page ("zbpg") is an aligned page containing a list_head, * a lock, and two "zbud headers". The remainder of the physical * page is divided up into aligned 64-byte "chunks" which contain * the compressed data for zero, one, or two zbuds. Each zbpg * resides on: (1) an "unused list" if it has no zbuds; (2) a * "buddied" list if it is fully populated with two zbuds; or * (3) one of PAGE_SIZE/64 "unbuddied" lists indexed by how many chunks * the one unbuddied zbud uses. The data inside a zbpg cannot be * read or written unless the zbpg's lock is held. */ #define ZBH_SENTINEL 0x43214321 #define ZBPG_SENTINEL 0xdeadbeef #define ZBUD_MAX_BUDS 2 struct zbud_hdr { uint32_t pool_id; struct tmem_oid oid; uint32_t index; uint16_t size; /* compressed size in bytes, zero means unused */ DECL_SENTINEL }; struct zbud_page { struct list_head bud_list; spinlock_t lock; struct zbud_hdr buddy[ZBUD_MAX_BUDS]; DECL_SENTINEL /* followed by NUM_CHUNK aligned CHUNK_SIZE-byte chunks */ }; #define CHUNK_SHIFT 6 #define CHUNK_SIZE (1 << CHUNK_SHIFT) #define CHUNK_MASK (~(CHUNK_SIZE-1)) #define NCHUNKS (((PAGE_SIZE - sizeof(struct zbud_page)) & \ CHUNK_MASK) >> CHUNK_SHIFT) #define MAX_CHUNK (NCHUNKS-1) static struct { struct list_head list; unsigned count; } zbud_unbuddied[NCHUNKS]; /* list N contains pages with N chunks USED and NCHUNKS-N unused */ /* element 0 is never used but optimizing that isn't worth it */ static unsigned long zbud_cumul_chunk_counts[NCHUNKS]; struct list_head zbud_buddied_list; static unsigned long zcache_zbud_buddied_count; /* protects the buddied list and all unbuddied lists */ static DEFINE_SPINLOCK(zbud_budlists_spinlock); static LIST_HEAD(zbpg_unused_list); static unsigned long zcache_zbpg_unused_list_count; /* protects the unused page list */ static DEFINE_SPINLOCK(zbpg_unused_list_spinlock); static atomic_t zcache_zbud_curr_raw_pages; static atomic_t zcache_zbud_curr_zpages; static unsigned long zcache_zbud_curr_zbytes; static unsigned long zcache_zbud_cumul_zpages; static unsigned long zcache_zbud_cumul_zbytes; static unsigned long zcache_compress_poor; /* forward references */ static void *zcache_get_free_page(void); static void zcache_free_page(void *p); /* * zbud helper functions */ static inline unsigned zbud_max_buddy_size(void) { return MAX_CHUNK << CHUNK_SHIFT; } static inline unsigned zbud_size_to_chunks(unsigned size) { BUG_ON(size == 0 || size > zbud_max_buddy_size()); return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; } static inline int zbud_budnum(struct zbud_hdr *zh) { unsigned offset = (unsigned long)zh & (PAGE_SIZE - 1); struct zbud_page *zbpg = NULL; unsigned budnum = -1U; int i; for (i = 0; i < ZBUD_MAX_BUDS; i++) if (offset == offsetof(typeof(*zbpg), buddy[i])) { budnum = i; break; } BUG_ON(budnum == -1U); return budnum; } static char *zbud_data(struct zbud_hdr *zh, unsigned size) { struct zbud_page *zbpg; char *p; unsigned budnum; ASSERT_SENTINEL(zh, ZBH); budnum = zbud_budnum(zh); BUG_ON(size == 0 || size > zbud_max_buddy_size()); zbpg = container_of(zh, struct zbud_page, buddy[budnum]); ASSERT_SPINLOCK(&zbpg->lock); p = (char *)zbpg; if (budnum == 0) p += ((sizeof(struct zbud_page) + CHUNK_SIZE - 1) & CHUNK_MASK); else if (budnum == 1) p += PAGE_SIZE - ((size + CHUNK_SIZE - 1) & CHUNK_MASK); return p; } /* * zbud raw page management */ static struct zbud_page *zbud_alloc_raw_page(void) { struct zbud_page *zbpg = NULL; struct zbud_hdr *zh0, *zh1; bool recycled = 0; /* if any pages on the zbpg list, use one */ spin_lock(&zbpg_unused_list_spinlock); if (!list_empty(&zbpg_unused_list)) { zbpg = list_first_entry(&zbpg_unused_list, struct zbud_page, bud_list); list_del_init(&zbpg->bud_list); zcache_zbpg_unused_list_count--; recycled = 1; } spin_unlock(&zbpg_unused_list_spinlock); if (zbpg == NULL) /* none on zbpg list, try to get a kernel page */ zbpg = zcache_get_free_page(); if (likely(zbpg != NULL)) { INIT_LIST_HEAD(&zbpg->bud_list); zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1]; spin_lock_init(&zbpg->lock); if (recycled) { ASSERT_INVERTED_SENTINEL(zbpg, ZBPG); SET_SENTINEL(zbpg, ZBPG); BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid)); BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid)); } else { atomic_inc(&zcache_zbud_curr_raw_pages); INIT_LIST_HEAD(&zbpg->bud_list); SET_SENTINEL(zbpg, ZBPG); zh0->size = 0; zh1->size = 0; tmem_oid_set_invalid(&zh0->oid); tmem_oid_set_invalid(&zh1->oid); } } return zbpg; } static void zbud_free_raw_page(struct zbud_page *zbpg) { struct zbud_hdr *zh0 = &zbpg->buddy[0], *zh1 = &zbpg->buddy[1]; ASSERT_SENTINEL(zbpg, ZBPG); BUG_ON(!list_empty(&zbpg->bud_list)); ASSERT_SPINLOCK(&zbpg->lock); BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid)); BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid)); INVERT_SENTINEL(zbpg, ZBPG); spin_unlock(&zbpg->lock); spin_lock(&zbpg_unused_list_spinlock); list_add(&zbpg->bud_list, &zbpg_unused_list); zcache_zbpg_unused_list_count++; spin_unlock(&zbpg_unused_list_spinlock); } /* * core zbud handling routines */ static unsigned zbud_free(struct zbud_hdr *zh) { unsigned size; ASSERT_SENTINEL(zh, ZBH); BUG_ON(!tmem_oid_valid(&zh->oid)); size = zh->size; BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size()); zh->size = 0; tmem_oid_set_invalid(&zh->oid); INVERT_SENTINEL(zh, ZBH); zcache_zbud_curr_zbytes -= size; atomic_dec(&zcache_zbud_curr_zpages); return size; } static void zbud_free_and_delist(struct zbud_hdr *zh) { unsigned chunks; struct zbud_hdr *zh_other; unsigned budnum = zbud_budnum(zh), size; struct zbud_page *zbpg = container_of(zh, struct zbud_page, buddy[budnum]); spin_lock(&zbpg->lock); if (list_empty(&zbpg->bud_list)) { /* ignore zombie page... see zbud_evict_pages() */ spin_unlock(&zbpg->lock); return; } size = zbud_free(zh); ASSERT_SPINLOCK(&zbpg->lock); zh_other = &zbpg->buddy[(budnum == 0) ? 1 : 0]; if (zh_other->size == 0) { /* was unbuddied: unlist and free */ chunks = zbud_size_to_chunks(size) ; spin_lock(&zbud_budlists_spinlock); BUG_ON(list_empty(&zbud_unbuddied[chunks].list)); list_del_init(&zbpg->bud_list); zbud_unbuddied[chunks].count--; spin_unlock(&zbud_budlists_spinlock); zbud_free_raw_page(zbpg); } else { /* was buddied: move remaining buddy to unbuddied list */ chunks = zbud_size_to_chunks(zh_other->size) ; spin_lock(&zbud_budlists_spinlock); list_del_init(&zbpg->bud_list); zcache_zbud_buddied_count--; list_add_tail(&zbpg->bud_list, &zbud_unbuddied[chunks].list); zbud_unbuddied[chunks].count++; spin_unlock(&zbud_budlists_spinlock); spin_unlock(&zbpg->lock); } } static struct zbud_hdr *zbud_create(uint32_t pool_id, struct tmem_oid *oid, uint32_t index, struct page *page, void *cdata, unsigned size) { struct zbud_hdr *zh0, *zh1, *zh = NULL; struct zbud_page *zbpg = NULL, *ztmp; unsigned nchunks; char *to; int i, found_good_buddy = 0; nchunks = zbud_size_to_chunks(size) ; for (i = MAX_CHUNK - nchunks + 1; i > 0; i--) { spin_lock(&zbud_budlists_spinlock); if (!list_empty(&zbud_unbuddied[i].list)) { list_for_each_entry_safe(zbpg, ztmp, &zbud_unbuddied[i].list, bud_list) { if (spin_trylock(&zbpg->lock)) { found_good_buddy = i; goto found_unbuddied; } } } spin_unlock(&zbud_budlists_spinlock); } /* didn't find a good buddy, try allocating a new page */ zbpg = zbud_alloc_raw_page(); if (unlikely(zbpg == NULL)) goto out; /* ok, have a page, now compress the data before taking locks */ spin_lock(&zbpg->lock); spin_lock(&zbud_budlists_spinlock); list_add_tail(&zbpg->bud_list, &zbud_unbuddied[nchunks].list); zbud_unbuddied[nchunks].count++; zh = &zbpg->buddy[0]; goto init_zh; found_unbuddied: ASSERT_SPINLOCK(&zbpg->lock); zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1]; BUG_ON(!((zh0->size == 0) ^ (zh1->size == 0))); if (zh0->size != 0) { /* buddy0 in use, buddy1 is vacant */ ASSERT_SENTINEL(zh0, ZBH); zh = zh1; } else if (zh1->size != 0) { /* buddy1 in use, buddy0 is vacant */ ASSERT_SENTINEL(zh1, ZBH); zh = zh0; } else BUG(); list_del_init(&zbpg->bud_list); zbud_unbuddied[found_good_buddy].count--; list_add_tail(&zbpg->bud_list, &zbud_buddied_list); zcache_zbud_buddied_count++; init_zh: SET_SENTINEL(zh, ZBH); zh->size = size; zh->index = index; zh->oid = *oid; zh->pool_id = pool_id; /* can wait to copy the data until the list locks are dropped */ spin_unlock(&zbud_budlists_spinlock); to = zbud_data(zh, size); memcpy(to, cdata, size); spin_unlock(&zbpg->lock); zbud_cumul_chunk_counts[nchunks]++; atomic_inc(&zcache_zbud_curr_zpages); zcache_zbud_cumul_zpages++; zcache_zbud_curr_zbytes += size; zcache_zbud_cumul_zbytes += size; out: return zh; } static int zbud_decompress(struct page *page, struct zbud_hdr *zh) { struct zbud_page *zbpg; unsigned budnum = zbud_budnum(zh); size_t out_len = PAGE_SIZE; char *to_va, *from_va; unsigned size; int ret = 0; zbpg = container_of(zh, struct zbud_page, buddy[budnum]); spin_lock(&zbpg->lock); if (list_empty(&zbpg->bud_list)) { /* ignore zombie page... see zbud_evict_pages() */ ret = -EINVAL; goto out; } ASSERT_SENTINEL(zh, ZBH); BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size()); to_va = kmap_atomic(page, KM_USER0); size = zh->size; from_va = zbud_data(zh, size); ret = lzo1x_decompress_safe(from_va, size, to_va, &out_len); BUG_ON(ret != LZO_E_OK); BUG_ON(out_len != PAGE_SIZE); kunmap_atomic(to_va, KM_USER0); out: spin_unlock(&zbpg->lock); return ret; } /* * The following routines handle shrinking of ephemeral pages by evicting * pages "least valuable" first. */ static unsigned long zcache_evicted_raw_pages; static unsigned long zcache_evicted_buddied_pages; static unsigned long zcache_evicted_unbuddied_pages; static struct tmem_pool *zcache_get_pool_by_id(uint32_t poolid); static void zcache_put_pool(struct tmem_pool *pool); /* * Flush and free all zbuds in a zbpg, then free the pageframe */ static void zbud_evict_zbpg(struct zbud_page *zbpg) { struct zbud_hdr *zh; int i, j; uint32_t pool_id[ZBUD_MAX_BUDS], index[ZBUD_MAX_BUDS]; struct tmem_oid oid[ZBUD_MAX_BUDS]; struct tmem_pool *pool; ASSERT_SPINLOCK(&zbpg->lock); BUG_ON(!list_empty(&zbpg->bud_list)); for (i = 0, j = 0; i < ZBUD_MAX_BUDS; i++) { zh = &zbpg->buddy[i]; if (zh->size) { pool_id[j] = zh->pool_id; oid[j] = zh->oid; index[j] = zh->index; j++; zbud_free(zh); } } spin_unlock(&zbpg->lock); for (i = 0; i < j; i++) { pool = zcache_get_pool_by_id(pool_id[i]); if (pool != NULL) { tmem_flush_page(pool, &oid[i], index[i]); zcache_put_pool(pool); } } ASSERT_SENTINEL(zbpg, ZBPG); spin_lock(&zbpg->lock); zbud_free_raw_page(zbpg); } /* * Free nr pages. This code is funky because we want to hold the locks * protecting various lists for as short a time as possible, and in some * circumstances the list may change asynchronously when the list lock is * not held. In some cases we also trylock not only to avoid waiting on a * page in use by another cpu, but also to avoid potential deadlock due to * lock inversion. */ static void zbud_evict_pages(int nr) { struct zbud_page *zbpg; int i; /* first try freeing any pages on unused list */ retry_unused_list: spin_lock_bh(&zbpg_unused_list_spinlock); if (!list_empty(&zbpg_unused_list)) { /* can't walk list here, since it may change when unlocked */ zbpg = list_first_entry(&zbpg_unused_list, struct zbud_page, bud_list); list_del_init(&zbpg->bud_list); zcache_zbpg_unused_list_count--; atomic_dec(&zcache_zbud_curr_raw_pages); spin_unlock_bh(&zbpg_unused_list_spinlock); zcache_free_page(zbpg); zcache_evicted_raw_pages++; if (--nr <= 0) goto out; goto retry_unused_list; } spin_unlock_bh(&zbpg_unused_list_spinlock); /* now try freeing unbuddied pages, starting with least space avail */ for (i = 0; i < MAX_CHUNK; i++) { retry_unbud_list_i: spin_lock_bh(&zbud_budlists_spinlock); if (list_empty(&zbud_unbuddied[i].list)) { spin_unlock_bh(&zbud_budlists_spinlock); continue; } list_for_each_entry(zbpg, &zbud_unbuddied[i].list, bud_list) { if (unlikely(!spin_trylock(&zbpg->lock))) continue; list_del_init(&zbpg->bud_list); zbud_unbuddied[i].count--; spin_unlock(&zbud_budlists_spinlock); zcache_evicted_unbuddied_pages++; /* want budlists unlocked when doing zbpg eviction */ zbud_evict_zbpg(zbpg); local_bh_enable(); if (--nr <= 0) goto out; goto retry_unbud_list_i; } spin_unlock_bh(&zbud_budlists_spinlock); } /* as a last resort, free buddied pages */ retry_bud_list: spin_lock_bh(&zbud_budlists_spinlock); if (list_empty(&zbud_buddied_list)) { spin_unlock_bh(&zbud_budlists_spinlock); goto out; } list_for_each_entry(zbpg, &zbud_buddied_list, bud_list) { if (unlikely(!spin_trylock(&zbpg->lock))) continue; list_del_init(&zbpg->bud_list); zcache_zbud_buddied_count--; spin_unlock(&zbud_budlists_spinlock); zcache_evicted_buddied_pages++; /* want budlists unlocked when doing zbpg eviction */ zbud_evict_zbpg(zbpg); local_bh_enable(); if (--nr <= 0) goto out; goto retry_bud_list; } spin_unlock_bh(&zbud_budlists_spinlock); out: return; } static void zbud_init(void) { int i; INIT_LIST_HEAD(&zbud_buddied_list); zcache_zbud_buddied_count = 0; for (i = 0; i < NCHUNKS; i++) { INIT_LIST_HEAD(&zbud_unbuddied[i].list); zbud_unbuddied[i].count = 0; } } #ifdef CONFIG_SYSFS /* * These sysfs routines show a nice distribution of how many zbpg's are * currently (and have ever been placed) in each unbuddied list. It's fun * to watch but can probably go away before final merge. */ static int zbud_show_unbuddied_list_counts(char *buf) { int i; char *p = buf; for (i = 0; i < NCHUNKS - 1; i++) p += sprintf(p, "%u ", zbud_unbuddied[i].count); p += sprintf(p, "%d\n", zbud_unbuddied[i].count); return p - buf; } static int zbud_show_cumul_chunk_counts(char *buf) { unsigned long i, chunks = 0, total_chunks = 0, sum_total_chunks = 0; unsigned long total_chunks_lte_21 = 0, total_chunks_lte_32 = 0; unsigned long total_chunks_lte_42 = 0; char *p = buf; for (i = 0; i < NCHUNKS; i++) { p += sprintf(p, "%lu ", zbud_cumul_chunk_counts[i]); chunks += zbud_cumul_chunk_counts[i]; total_chunks += zbud_cumul_chunk_counts[i]; sum_total_chunks += i * zbud_cumul_chunk_counts[i]; if (i == 21) total_chunks_lte_21 = total_chunks; if (i == 32) total_chunks_lte_32 = total_chunks; if (i == 42) total_chunks_lte_42 = total_chunks; } p += sprintf(p, "<=21:%lu <=32:%lu <=42:%lu, mean:%lu\n", total_chunks_lte_21, total_chunks_lte_32, total_chunks_lte_42, chunks == 0 ? 0 : sum_total_chunks / chunks); return p - buf; } #endif /********** * This "zv" PAM implementation combines the TLSF-based xvMalloc * with lzo1x compression to maximize the amount of data that can * be packed into a physical page. * * Zv represents a PAM page with the index and object (plus a "size" value * necessary for decompression) immediately preceding the compressed data. */ #define ZVH_SENTINEL 0x43214321 struct zv_hdr { uint32_t pool_id; struct tmem_oid oid; uint32_t index; DECL_SENTINEL }; static const int zv_max_page_size = (PAGE_SIZE / 8) * 7; static struct zv_hdr *zv_create(struct xv_pool *xvpool, uint32_t pool_id, struct tmem_oid *oid, uint32_t index, void *cdata, unsigned clen) { struct page *page; struct zv_hdr *zv = NULL; uint32_t offset; int ret; BUG_ON(!irqs_disabled()); ret = xv_malloc(xvpool, clen + sizeof(struct zv_hdr), &page, &offset, ZCACHE_GFP_MASK); if (unlikely(ret)) goto out; zv = kmap_atomic(page, KM_USER0) + offset; zv->index = index; zv->oid = *oid; zv->pool_id = pool_id; SET_SENTINEL(zv, ZVH); memcpy((char *)zv + sizeof(struct zv_hdr), cdata, clen); kunmap_atomic(zv, KM_USER0); out: return zv; } static void zv_free(struct xv_pool *xvpool, struct zv_hdr *zv) { unsigned long flags; struct page *page; uint32_t offset; uint16_t size; ASSERT_SENTINEL(zv, ZVH); size = xv_get_object_size(zv) - sizeof(*zv); BUG_ON(size == 0 || size > zv_max_page_size); INVERT_SENTINEL(zv, ZVH); page = virt_to_page(zv); offset = (unsigned long)zv & ~PAGE_MASK; local_irq_save(flags); xv_free(xvpool, page, offset); local_irq_restore(flags); } static void zv_decompress(struct page *page, struct zv_hdr *zv) { size_t clen = PAGE_SIZE; char *to_va; unsigned size; int ret; ASSERT_SENTINEL(zv, ZVH); size = xv_get_object_size(zv) - sizeof(*zv); BUG_ON(size == 0 || size > zv_max_page_size); to_va = kmap_atomic(page, KM_USER0); ret = lzo1x_decompress_safe((char *)zv + sizeof(*zv), size, to_va, &clen); kunmap_atomic(to_va, KM_USER0); BUG_ON(ret != LZO_E_OK); BUG_ON(clen != PAGE_SIZE); } /* * zcache core code starts here */ /* useful stats not collected by cleancache or frontswap */ static unsigned long zcache_flush_total; static unsigned long zcache_flush_found; static unsigned long zcache_flobj_total; static unsigned long zcache_flobj_found; static unsigned long zcache_failed_eph_puts; static unsigned long zcache_failed_pers_puts; #define MAX_POOLS_PER_CLIENT 16 static struct { struct tmem_pool *tmem_pools[MAX_POOLS_PER_CLIENT]; struct xv_pool *xvpool; } zcache_client; /* * Tmem operations assume the poolid implies the invoking client. * Zcache only has one client (the kernel itself), so translate * the poolid into the tmem_pool allocated for it. A KVM version * of zcache would have one client per guest and each client might * have a poolid==N. */ static struct tmem_pool *zcache_get_pool_by_id(uint32_t poolid) { struct tmem_pool *pool = NULL; if (poolid >= 0) { pool = zcache_client.tmem_pools[poolid]; if (pool != NULL) atomic_inc(&pool->refcount); } return pool; } static void zcache_put_pool(struct tmem_pool *pool) { if (pool != NULL) atomic_dec(&pool->refcount); } /* counters for debugging */ static unsigned long zcache_failed_get_free_pages; static unsigned long zcache_failed_alloc; static unsigned long zcache_put_to_flush; static unsigned long zcache_aborted_preload; static unsigned long zcache_aborted_shrink; /* * Ensure that memory allocation requests in zcache don't result * in direct reclaim requests via the shrinker, which would cause * an infinite loop. Maybe a GFP flag would be better? */ static DEFINE_SPINLOCK(zcache_direct_reclaim_lock); /* * for now, used named slabs so can easily track usage; later can * either just use kmalloc, or perhaps add a slab-like allocator * to more carefully manage total memory utilization */ static struct kmem_cache *zcache_objnode_cache; static struct kmem_cache *zcache_obj_cache; static atomic_t zcache_curr_obj_count = ATOMIC_INIT(0); static unsigned long zcache_curr_obj_count_max; static atomic_t zcache_curr_objnode_count = ATOMIC_INIT(0); static unsigned long zcache_curr_objnode_count_max; /* * to avoid memory allocation recursion (e.g. due to direct reclaim), we * preload all necessary data structures so the hostops callbacks never * actually do a malloc */ struct zcache_preload { void *page; struct tmem_obj *obj; int nr; struct tmem_objnode *objnodes[OBJNODE_TREE_MAX_PATH]; }; static DEFINE_PER_CPU(struct zcache_preload, zcache_preloads) = { 0, }; static int zcache_do_preload(struct tmem_pool *pool) { struct zcache_preload *kp; struct tmem_objnode *objnode; struct tmem_obj *obj; void *page; int ret = -ENOMEM; if (unlikely(zcache_objnode_cache == NULL)) goto out; if (unlikely(zcache_obj_cache == NULL)) goto out; if (!spin_trylock(&zcache_direct_reclaim_lock)) { zcache_aborted_preload++; goto out; } preempt_disable(); kp = &__get_cpu_var(zcache_preloads); while (kp->nr < ARRAY_SIZE(kp->objnodes)) { preempt_enable_no_resched(); objnode = kmem_cache_alloc(zcache_objnode_cache, ZCACHE_GFP_MASK); if (unlikely(objnode == NULL)) { zcache_failed_alloc++; goto unlock_out; } preempt_disable(); kp = &__get_cpu_var(zcache_preloads); if (kp->nr < ARRAY_SIZE(kp->objnodes)) kp->objnodes[kp->nr++] = objnode; else kmem_cache_free(zcache_objnode_cache, objnode); } preempt_enable_no_resched(); obj = kmem_cache_alloc(zcache_obj_cache, ZCACHE_GFP_MASK); if (unlikely(obj == NULL)) { zcache_failed_alloc++; goto unlock_out; } page = (void *)__get_free_page(ZCACHE_GFP_MASK); if (unlikely(page == NULL)) { zcache_failed_get_free_pages++; kmem_cache_free(zcache_obj_cache, obj); goto unlock_out; } preempt_disable(); kp = &__get_cpu_var(zcache_preloads); if (kp->obj == NULL) kp->obj = obj; else kmem_cache_free(zcache_obj_cache, obj); if (kp->page == NULL) kp->page = page; else free_page((unsigned long)page); ret = 0; unlock_out: spin_unlock(&zcache_direct_reclaim_lock); out: return ret; } static void *zcache_get_free_page(void) { struct zcache_preload *kp; void *page; kp = &__get_cpu_var(zcache_preloads); page = kp->page; BUG_ON(page == NULL); kp->page = NULL; return page; } static void zcache_free_page(void *p) { free_page((unsigned long)p); } /* * zcache implementation for tmem host ops */ static struct tmem_objnode *zcache_objnode_alloc(struct tmem_pool *pool) { struct tmem_objnode *objnode = NULL; unsigned long count; struct zcache_preload *kp; kp = &__get_cpu_var(zcache_preloads); if (kp->nr <= 0) goto out; objnode = kp->objnodes[kp->nr - 1]; BUG_ON(objnode == NULL); kp->objnodes[kp->nr - 1] = NULL; kp->nr--; count = atomic_inc_return(&zcache_curr_objnode_count); if (count > zcache_curr_objnode_count_max) zcache_curr_objnode_count_max = count; out: return objnode; } static void zcache_objnode_free(struct tmem_objnode *objnode, struct tmem_pool *pool) { atomic_dec(&zcache_curr_objnode_count); BUG_ON(atomic_read(&zcache_curr_objnode_count) < 0); kmem_cache_free(zcache_objnode_cache, objnode); } static struct tmem_obj *zcache_obj_alloc(struct tmem_pool *pool) { struct tmem_obj *obj = NULL; unsigned long count; struct zcache_preload *kp; kp = &__get_cpu_var(zcache_preloads); obj = kp->obj; BUG_ON(obj == NULL); kp->obj = NULL; count = atomic_inc_return(&zcache_curr_obj_count); if (count > zcache_curr_obj_count_max) zcache_curr_obj_count_max = count; return obj; } static void zcache_obj_free(struct tmem_obj *obj, struct tmem_pool *pool) { atomic_dec(&zcache_curr_obj_count); BUG_ON(atomic_read(&zcache_curr_obj_count) < 0); kmem_cache_free(zcache_obj_cache, obj); } static struct tmem_hostops zcache_hostops = { .obj_alloc = zcache_obj_alloc, .obj_free = zcache_obj_free, .objnode_alloc = zcache_objnode_alloc, .objnode_free = zcache_objnode_free, }; /* * zcache implementations for PAM page descriptor ops */ static atomic_t zcache_curr_eph_pampd_count = ATOMIC_INIT(0); static unsigned long zcache_curr_eph_pampd_count_max; static atomic_t zcache_curr_pers_pampd_count = ATOMIC_INIT(0); static unsigned long zcache_curr_pers_pampd_count_max; /* forward reference */ static int zcache_compress(struct page *from, void **out_va, size_t *out_len); static void *zcache_pampd_create(struct tmem_pool *pool, struct tmem_oid *oid, uint32_t index, struct page *page) { void *pampd = NULL, *cdata; size_t clen; int ret; bool ephemeral = is_ephemeral(pool); unsigned long count; if (ephemeral) { ret = zcache_compress(page, &cdata, &clen); if (ret == 0) goto out; if (clen == 0 || clen > zbud_max_buddy_size()) { zcache_compress_poor++; goto out; } pampd = (void *)zbud_create(pool->pool_id, oid, index, page, cdata, clen); if (pampd != NULL) { count = atomic_inc_return(&zcache_curr_eph_pampd_count); if (count > zcache_curr_eph_pampd_count_max) zcache_curr_eph_pampd_count_max = count; } } else { /* * FIXME: This is all the "policy" there is for now. * 3/4 totpages should allow ~37% of RAM to be filled with * compressed frontswap pages */ if (atomic_read(&zcache_curr_pers_pampd_count) > 3 * totalram_pages / 4) goto out; ret = zcache_compress(page, &cdata, &clen); if (ret == 0) goto out; if (clen > zv_max_page_size) { zcache_compress_poor++; goto out; } pampd = (void *)zv_create(zcache_client.xvpool, pool->pool_id, oid, index, cdata, clen); if (pampd == NULL) goto out; count = atomic_inc_return(&zcache_curr_pers_pampd_count); if (count > zcache_curr_pers_pampd_count_max) zcache_curr_pers_pampd_count_max = count; } out: return pampd; } /* * fill the pageframe corresponding to the struct page with the data * from the passed pampd */ static int zcache_pampd_get_data(struct page *page, void *pampd, struct tmem_pool *pool) { int ret = 0; if (is_ephemeral(pool)) ret = zbud_decompress(page, pampd); else zv_decompress(page, pampd); return ret; } /* * free the pampd and remove it from any zcache lists * pampd must no longer be pointed to from any tmem data structures! */ static void zcache_pampd_free(void *pampd, struct tmem_pool *pool) { if (is_ephemeral(pool)) { zbud_free_and_delist((struct zbud_hdr *)pampd); atomic_dec(&zcache_curr_eph_pampd_count); BUG_ON(atomic_read(&zcache_curr_eph_pampd_count) < 0); } else { zv_free(zcache_client.xvpool, (struct zv_hdr *)pampd); atomic_dec(&zcache_curr_pers_pampd_count); BUG_ON(atomic_read(&zcache_curr_pers_pampd_count) < 0); } } static struct tmem_pamops zcache_pamops = { .create = zcache_pampd_create, .get_data = zcache_pampd_get_data, .free = zcache_pampd_free, }; /* * zcache compression/decompression and related per-cpu stuff */ #define LZO_WORKMEM_BYTES LZO1X_1_MEM_COMPRESS #define LZO_DSTMEM_PAGE_ORDER 1 static DEFINE_PER_CPU(unsigned char *, zcache_workmem); static DEFINE_PER_CPU(unsigned char *, zcache_dstmem); static int zcache_compress(struct page *from, void **out_va, size_t *out_len) { int ret = 0; unsigned char *dmem = __get_cpu_var(zcache_dstmem); unsigned char *wmem = __get_cpu_var(zcache_workmem); char *from_va; BUG_ON(!irqs_disabled()); if (unlikely(dmem == NULL || wmem == NULL)) goto out; /* no buffer, so can't compress */ from_va = kmap_atomic(from, KM_USER0); mb(); ret = lzo1x_1_compress(from_va, PAGE_SIZE, dmem, out_len, wmem); BUG_ON(ret != LZO_E_OK); *out_va = dmem; kunmap_atomic(from_va, KM_USER0); ret = 1; out: return ret; } static int zcache_cpu_notifier(struct notifier_block *nb, unsigned long action, void *pcpu) { int cpu = (long)pcpu; struct zcache_preload *kp; switch (action) { case CPU_UP_PREPARE: per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages( GFP_KERNEL | __GFP_REPEAT, LZO_DSTMEM_PAGE_ORDER), per_cpu(zcache_workmem, cpu) = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL | __GFP_REPEAT); break; case CPU_DEAD: case CPU_UP_CANCELED: free_pages((unsigned long)per_cpu(zcache_dstmem, cpu), LZO_DSTMEM_PAGE_ORDER); per_cpu(zcache_dstmem, cpu) = NULL; kfree(per_cpu(zcache_workmem, cpu)); per_cpu(zcache_workmem, cpu) = NULL; kp = &per_cpu(zcache_preloads, cpu); while (kp->nr) { kmem_cache_free(zcache_objnode_cache, kp->objnodes[kp->nr - 1]); kp->objnodes[kp->nr - 1] = NULL; kp->nr--; } kmem_cache_free(zcache_obj_cache, kp->obj); free_page((unsigned long)kp->page); break; default: break; } return NOTIFY_OK; } static struct notifier_block zcache_cpu_notifier_block = { .notifier_call = zcache_cpu_notifier }; #ifdef CONFIG_SYSFS #define ZCACHE_SYSFS_RO(_name) \ static ssize_t zcache_##_name##_show(struct kobject *kobj, \ struct kobj_attribute *attr, char *buf) \ { \ return sprintf(buf, "%lu\n", zcache_##_name); \ } \ static struct kobj_attribute zcache_##_name##_attr = { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .show = zcache_##_name##_show, \ } #define ZCACHE_SYSFS_RO_ATOMIC(_name) \ static ssize_t zcache_##_name##_show(struct kobject *kobj, \ struct kobj_attribute *attr, char *buf) \ { \ return sprintf(buf, "%d\n", atomic_read(&zcache_##_name)); \ } \ static struct kobj_attribute zcache_##_name##_attr = { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .show = zcache_##_name##_show, \ } #define ZCACHE_SYSFS_RO_CUSTOM(_name, _func) \ static ssize_t zcache_##_name##_show(struct kobject *kobj, \ struct kobj_attribute *attr, char *buf) \ { \ return _func(buf); \ } \ static struct kobj_attribute zcache_##_name##_attr = { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .show = zcache_##_name##_show, \ } ZCACHE_SYSFS_RO(curr_obj_count_max); ZCACHE_SYSFS_RO(curr_objnode_count_max); ZCACHE_SYSFS_RO(flush_total); ZCACHE_SYSFS_RO(flush_found); ZCACHE_SYSFS_RO(flobj_total); ZCACHE_SYSFS_RO(flobj_found); ZCACHE_SYSFS_RO(failed_eph_puts); ZCACHE_SYSFS_RO(failed_pers_puts); ZCACHE_SYSFS_RO(zbud_curr_zbytes); ZCACHE_SYSFS_RO(zbud_cumul_zpages); ZCACHE_SYSFS_RO(zbud_cumul_zbytes); ZCACHE_SYSFS_RO(zbud_buddied_count); ZCACHE_SYSFS_RO(zbpg_unused_list_count); ZCACHE_SYSFS_RO(evicted_raw_pages); ZCACHE_SYSFS_RO(evicted_unbuddied_pages); ZCACHE_SYSFS_RO(evicted_buddied_pages); ZCACHE_SYSFS_RO(failed_get_free_pages); ZCACHE_SYSFS_RO(failed_alloc); ZCACHE_SYSFS_RO(put_to_flush); ZCACHE_SYSFS_RO(aborted_preload); ZCACHE_SYSFS_RO(aborted_shrink); ZCACHE_SYSFS_RO(compress_poor); ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_raw_pages); ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_zpages); ZCACHE_SYSFS_RO_ATOMIC(curr_obj_count); ZCACHE_SYSFS_RO_ATOMIC(curr_objnode_count); ZCACHE_SYSFS_RO_CUSTOM(zbud_unbuddied_list_counts, zbud_show_unbuddied_list_counts); ZCACHE_SYSFS_RO_CUSTOM(zbud_cumul_chunk_counts, zbud_show_cumul_chunk_counts); static struct attribute *zcache_attrs[] = { &zcache_curr_obj_count_attr.attr, &zcache_curr_obj_count_max_attr.attr, &zcache_curr_objnode_count_attr.attr, &zcache_curr_objnode_count_max_attr.attr, &zcache_flush_total_attr.attr, &zcache_flobj_total_attr.attr, &zcache_flush_found_attr.attr, &zcache_flobj_found_attr.attr, &zcache_failed_eph_puts_attr.attr, &zcache_failed_pers_puts_attr.attr, &zcache_compress_poor_attr.attr, &zcache_zbud_curr_raw_pages_attr.attr, &zcache_zbud_curr_zpages_attr.attr, &zcache_zbud_curr_zbytes_attr.attr, &zcache_zbud_cumul_zpages_attr.attr, &zcache_zbud_cumul_zbytes_attr.attr, &zcache_zbud_buddied_count_attr.attr, &zcache_zbpg_unused_list_count_attr.attr, &zcache_evicted_raw_pages_attr.attr, &zcache_evicted_unbuddied_pages_attr.attr, &zcache_evicted_buddied_pages_attr.attr, &zcache_failed_get_free_pages_attr.attr, &zcache_failed_alloc_attr.attr, &zcache_put_to_flush_attr.attr, &zcache_aborted_preload_attr.attr, &zcache_aborted_shrink_attr.attr, &zcache_zbud_unbuddied_list_counts_attr.attr, &zcache_zbud_cumul_chunk_counts_attr.attr, NULL, }; static struct attribute_group zcache_attr_group = { .attrs = zcache_attrs, .name = "zcache", }; #endif /* CONFIG_SYSFS */ /* * When zcache is disabled ("frozen"), pools can be created and destroyed, * but all puts (and thus all other operations that require memory allocation) * must fail. If zcache is unfrozen, accepts puts, then frozen again, * data consistency requires all puts while frozen to be converted into * flushes. */ static bool zcache_freeze; /* * zcache shrinker interface (only useful for ephemeral pages, so zbud only) */ static int shrink_zcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask) { int ret = -1; if (nr >= 0) { if (!(gfp_mask & __GFP_FS)) /* does this case really need to be skipped? */ goto out; if (spin_trylock(&zcache_direct_reclaim_lock)) { zbud_evict_pages(nr); spin_unlock(&zcache_direct_reclaim_lock); } else zcache_aborted_shrink++; } ret = (int)atomic_read(&zcache_zbud_curr_raw_pages); out: return ret; } static struct shrinker zcache_shrinker = { .shrink = shrink_zcache_memory, .seeks = DEFAULT_SEEKS, }; /* * zcache shims between cleancache/frontswap ops and tmem */ static int zcache_put_page(int pool_id, struct tmem_oid *oidp, uint32_t index, struct page *page) { struct tmem_pool *pool; int ret = -1; BUG_ON(!irqs_disabled()); pool = zcache_get_pool_by_id(pool_id); if (unlikely(pool == NULL)) goto out; if (!zcache_freeze && zcache_do_preload(pool) == 0) { /* preload does preempt_disable on success */ ret = tmem_put(pool, oidp, index, page); if (ret < 0) { if (is_ephemeral(pool)) zcache_failed_eph_puts++; else zcache_failed_pers_puts++; } zcache_put_pool(pool); preempt_enable_no_resched(); } else { zcache_put_to_flush++; if (atomic_read(&pool->obj_count) > 0) /* the put fails whether the flush succeeds or not */ (void)tmem_flush_page(pool, oidp, index); zcache_put_pool(pool); } out: return ret; } static int zcache_get_page(int pool_id, struct tmem_oid *oidp, uint32_t index, struct page *page) { struct tmem_pool *pool; int ret = -1; unsigned long flags; local_irq_save(flags); pool = zcache_get_pool_by_id(pool_id); if (likely(pool != NULL)) { if (atomic_read(&pool->obj_count) > 0) ret = tmem_get(pool, oidp, index, page); zcache_put_pool(pool); } local_irq_restore(flags); return ret; } static int zcache_flush_page(int pool_id, struct tmem_oid *oidp, uint32_t index) { struct tmem_pool *pool; int ret = -1; unsigned long flags; local_irq_save(flags); zcache_flush_total++; pool = zcache_get_pool_by_id(pool_id); if (likely(pool != NULL)) { if (atomic_read(&pool->obj_count) > 0) ret = tmem_flush_page(pool, oidp, index); zcache_put_pool(pool); } if (ret >= 0) zcache_flush_found++; local_irq_restore(flags); return ret; } static int zcache_flush_object(int pool_id, struct tmem_oid *oidp) { struct tmem_pool *pool; int ret = -1; unsigned long flags; local_irq_save(flags); zcache_flobj_total++; pool = zcache_get_pool_by_id(pool_id); if (likely(pool != NULL)) { if (atomic_read(&pool->obj_count) > 0) ret = tmem_flush_object(pool, oidp); zcache_put_pool(pool); } if (ret >= 0) zcache_flobj_found++; local_irq_restore(flags); return ret; } static int zcache_destroy_pool(int pool_id) { struct tmem_pool *pool = NULL; int ret = -1; if (pool_id < 0) goto out; pool = zcache_client.tmem_pools[pool_id]; if (pool == NULL) goto out; zcache_client.tmem_pools[pool_id] = NULL; /* wait for pool activity on other cpus to quiesce */ while (atomic_read(&pool->refcount) != 0) ; local_bh_disable(); ret = tmem_destroy_pool(pool); local_bh_enable(); kfree(pool); pr_info("zcache: destroyed pool id=%d\n", pool_id); out: return ret; } static int zcache_new_pool(uint32_t flags) { int poolid = -1; struct tmem_pool *pool; pool = kmalloc(sizeof(struct tmem_pool), GFP_KERNEL); if (pool == NULL) { pr_info("zcache: pool creation failed: out of memory\n"); goto out; } for (poolid = 0; poolid < MAX_POOLS_PER_CLIENT; poolid++) if (zcache_client.tmem_pools[poolid] == NULL) break; if (poolid >= MAX_POOLS_PER_CLIENT) { pr_info("zcache: pool creation failed: max exceeded\n"); kfree(pool); poolid = -1; goto out; } atomic_set(&pool->refcount, 0); pool->client = &zcache_client; pool->pool_id = poolid; tmem_new_pool(pool, flags); zcache_client.tmem_pools[poolid] = pool; pr_info("zcache: created %s tmem pool, id=%d\n", flags & TMEM_POOL_PERSIST ? "persistent" : "ephemeral", poolid); out: return poolid; } /********** * Two kernel functionalities currently can be layered on top of tmem. * These are "cleancache" which is used as a second-chance cache for clean * page cache pages; and "frontswap" which is used for swap pages * to avoid writes to disk. A generic "shim" is provided here for each * to translate in-kernel semantics to zcache semantics. */ #ifdef CONFIG_CLEANCACHE static void zcache_cleancache_put_page(int pool_id, struct cleancache_filekey key, pgoff_t index, struct page *page) { u32 ind = (u32) index; struct tmem_oid oid = *(struct tmem_oid *)&key; if (likely(ind == index)) (void)zcache_put_page(pool_id, &oid, index, page); } static int zcache_cleancache_get_page(int pool_id, struct cleancache_filekey key, pgoff_t index, struct page *page) { u32 ind = (u32) index; struct tmem_oid oid = *(struct tmem_oid *)&key; int ret = -1; if (likely(ind == index)) ret = zcache_get_page(pool_id, &oid, index, page); return ret; } static void zcache_cleancache_flush_page(int pool_id, struct cleancache_filekey key, pgoff_t index) { u32 ind = (u32) index; struct tmem_oid oid = *(struct tmem_oid *)&key; if (likely(ind == index)) (void)zcache_flush_page(pool_id, &oid, ind); } static void zcache_cleancache_flush_inode(int pool_id, struct cleancache_filekey key) { struct tmem_oid oid = *(struct tmem_oid *)&key; (void)zcache_flush_object(pool_id, &oid); } static void zcache_cleancache_flush_fs(int pool_id) { if (pool_id >= 0) (void)zcache_destroy_pool(pool_id); } static int zcache_cleancache_init_fs(size_t pagesize) { BUG_ON(sizeof(struct cleancache_filekey) != sizeof(struct tmem_oid)); BUG_ON(pagesize != PAGE_SIZE); return zcache_new_pool(0); } static int zcache_cleancache_init_shared_fs(char *uuid, size_t pagesize) { /* shared pools are unsupported and map to private */ BUG_ON(sizeof(struct cleancache_filekey) != sizeof(struct tmem_oid)); BUG_ON(pagesize != PAGE_SIZE); return zcache_new_pool(0); } static struct cleancache_ops zcache_cleancache_ops = { .put_page = zcache_cleancache_put_page, .get_page = zcache_cleancache_get_page, .flush_page = zcache_cleancache_flush_page, .flush_inode = zcache_cleancache_flush_inode, .flush_fs = zcache_cleancache_flush_fs, .init_shared_fs = zcache_cleancache_init_shared_fs, .init_fs = zcache_cleancache_init_fs }; struct cleancache_ops zcache_cleancache_register_ops(void) { struct cleancache_ops old_ops = cleancache_register_ops(&zcache_cleancache_ops); return old_ops; } #endif #ifdef CONFIG_FRONTSWAP /* a single tmem poolid is used for all frontswap "types" (swapfiles) */ static int zcache_frontswap_poolid = -1; /* * Swizzling increases objects per swaptype, increasing tmem concurrency * for heavy swaploads. Later, larger nr_cpus -> larger SWIZ_BITS */ #define SWIZ_BITS 4 #define SWIZ_MASK ((1 << SWIZ_BITS) - 1) #define _oswiz(_type, _ind) ((_type << SWIZ_BITS) | (_ind & SWIZ_MASK)) #define iswiz(_ind) (_ind >> SWIZ_BITS) static inline struct tmem_oid oswiz(unsigned type, u32 ind) { struct tmem_oid oid = { .oid = { 0 } }; oid.oid[0] = _oswiz(type, ind); return oid; } static int zcache_frontswap_put_page(unsigned type, pgoff_t offset, struct page *page) { u64 ind64 = (u64)offset; u32 ind = (u32)offset; struct tmem_oid oid = oswiz(type, ind); int ret = -1; unsigned long flags; BUG_ON(!PageLocked(page)); if (likely(ind64 == ind)) { local_irq_save(flags); ret = zcache_put_page(zcache_frontswap_poolid, &oid, iswiz(ind), page); local_irq_restore(flags); } return ret; } /* returns 0 if the page was successfully gotten from frontswap, -1 if * was not present (should never happen!) */ static int zcache_frontswap_get_page(unsigned type, pgoff_t offset, struct page *page) { u64 ind64 = (u64)offset; u32 ind = (u32)offset; struct tmem_oid oid = oswiz(type, ind); int ret = -1; BUG_ON(!PageLocked(page)); if (likely(ind64 == ind)) ret = zcache_get_page(zcache_frontswap_poolid, &oid, iswiz(ind), page); return ret; } /* flush a single page from frontswap */ static void zcache_frontswap_flush_page(unsigned type, pgoff_t offset) { u64 ind64 = (u64)offset; u32 ind = (u32)offset; struct tmem_oid oid = oswiz(type, ind); if (likely(ind64 == ind)) (void)zcache_flush_page(zcache_frontswap_poolid, &oid, iswiz(ind)); } /* flush all pages from the passed swaptype */ static void zcache_frontswap_flush_area(unsigned type) { struct tmem_oid oid; int ind; for (ind = SWIZ_MASK; ind >= 0; ind--) { oid = oswiz(type, ind); (void)zcache_flush_object(zcache_frontswap_poolid, &oid); } } static void zcache_frontswap_init(unsigned ignored) { /* a single tmem poolid is used for all frontswap "types" (swapfiles) */ if (zcache_frontswap_poolid < 0) zcache_frontswap_poolid = zcache_new_pool(TMEM_POOL_PERSIST); } static struct frontswap_ops zcache_frontswap_ops = { .put_page = zcache_frontswap_put_page, .get_page = zcache_frontswap_get_page, .flush_page = zcache_frontswap_flush_page, .flush_area = zcache_frontswap_flush_area, .init = zcache_frontswap_init }; struct frontswap_ops zcache_frontswap_register_ops(void) { struct frontswap_ops old_ops = frontswap_register_ops(&zcache_frontswap_ops); return old_ops; } #endif /* * zcache initialization * NOTE FOR NOW zcache MUST BE PROVIDED AS A KERNEL BOOT PARAMETER OR * NOTHING HAPPENS! */ static int zcache_enabled; static int __init enable_zcache(char *s) { zcache_enabled = 1; return 1; } __setup("zcache", enable_zcache); /* allow independent dynamic disabling of cleancache and frontswap */ static int use_cleancache = 1; static int __init no_cleancache(char *s) { use_cleancache = 0; return 1; } __setup("nocleancache", no_cleancache); static int use_frontswap = 1; static int __init no_frontswap(char *s) { use_frontswap = 0; return 1; } __setup("nofrontswap", no_frontswap); static int __init zcache_init(void) { #ifdef CONFIG_SYSFS int ret = 0; ret = sysfs_create_group(mm_kobj, &zcache_attr_group); if (ret) { pr_err("zcache: can't create sysfs\n"); goto out; } #endif /* CONFIG_SYSFS */ #if defined(CONFIG_CLEANCACHE) || defined(CONFIG_FRONTSWAP) if (zcache_enabled) { unsigned int cpu; tmem_register_hostops(&zcache_hostops); tmem_register_pamops(&zcache_pamops); ret = register_cpu_notifier(&zcache_cpu_notifier_block); if (ret) { pr_err("zcache: can't register cpu notifier\n"); goto out; } for_each_online_cpu(cpu) { void *pcpu = (void *)(long)cpu; zcache_cpu_notifier(&zcache_cpu_notifier_block, CPU_UP_PREPARE, pcpu); } } zcache_objnode_cache = kmem_cache_create("zcache_objnode", sizeof(struct tmem_objnode), 0, 0, NULL); zcache_obj_cache = kmem_cache_create("zcache_obj", sizeof(struct tmem_obj), 0, 0, NULL); #endif #ifdef CONFIG_CLEANCACHE if (zcache_enabled && use_cleancache) { struct cleancache_ops old_ops; zbud_init(); register_shrinker(&zcache_shrinker); old_ops = zcache_cleancache_register_ops(); pr_info("zcache: cleancache enabled using kernel " "transcendent memory and compression buddies\n"); if (old_ops.init_fs != NULL) pr_warning("zcache: cleancache_ops overridden"); } #endif #ifdef CONFIG_FRONTSWAP if (zcache_enabled && use_frontswap) { struct frontswap_ops old_ops; zcache_client.xvpool = xv_create_pool(); if (zcache_client.xvpool == NULL) { pr_err("zcache: can't create xvpool\n"); goto out; } old_ops = zcache_frontswap_register_ops(); pr_info("zcache: frontswap enabled using kernel " "transcendent memory and xvmalloc\n"); if (old_ops.init != NULL) pr_warning("ktmem: frontswap_ops overridden"); } #endif out: return ret; } module_init(zcache_init)