/******************************************************************************* * Filename: target_core_rd.c * * This file contains the Storage Engine <-> Ramdisk transport * specific functions. * * Copyright (c) 2003, 2004, 2005 PyX Technologies, Inc. * Copyright (c) 2005, 2006, 2007 SBE, Inc. * Copyright (c) 2007-2010 Rising Tide Systems * Copyright (c) 2008-2010 Linux-iSCSI.org * * Nicholas A. Bellinger <nab@kernel.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ******************************************************************************/ #include <linux/version.h> #include <linux/string.h> #include <linux/parser.h> #include <linux/timer.h> #include <linux/blkdev.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <scsi/scsi.h> #include <scsi/scsi_host.h> #include <target/target_core_base.h> #include <target/target_core_device.h> #include <target/target_core_transport.h> #include <target/target_core_fabric_ops.h> #include "target_core_rd.h" static struct se_subsystem_api rd_dr_template; static struct se_subsystem_api rd_mcp_template; /* #define DEBUG_RAMDISK_MCP */ /* #define DEBUG_RAMDISK_DR */ /* rd_attach_hba(): (Part of se_subsystem_api_t template) * * */ static int rd_attach_hba(struct se_hba *hba, u32 host_id) { struct rd_host *rd_host; rd_host = kzalloc(sizeof(struct rd_host), GFP_KERNEL); if (!(rd_host)) { printk(KERN_ERR "Unable to allocate memory for struct rd_host\n"); return -ENOMEM; } rd_host->rd_host_id = host_id; atomic_set(&hba->left_queue_depth, RD_HBA_QUEUE_DEPTH); atomic_set(&hba->max_queue_depth, RD_HBA_QUEUE_DEPTH); hba->hba_ptr = (void *) rd_host; printk(KERN_INFO "CORE_HBA[%d] - TCM Ramdisk HBA Driver %s on" " Generic Target Core Stack %s\n", hba->hba_id, RD_HBA_VERSION, TARGET_CORE_MOD_VERSION); printk(KERN_INFO "CORE_HBA[%d] - Attached Ramdisk HBA: %u to Generic" " Target Core TCQ Depth: %d MaxSectors: %u\n", hba->hba_id, rd_host->rd_host_id, atomic_read(&hba->max_queue_depth), RD_MAX_SECTORS); return 0; } static void rd_detach_hba(struct se_hba *hba) { struct rd_host *rd_host = hba->hba_ptr; printk(KERN_INFO "CORE_HBA[%d] - Detached Ramdisk HBA: %u from" " Generic Target Core\n", hba->hba_id, rd_host->rd_host_id); kfree(rd_host); hba->hba_ptr = NULL; } /* rd_release_device_space(): * * */ static void rd_release_device_space(struct rd_dev *rd_dev) { u32 i, j, page_count = 0, sg_per_table; struct rd_dev_sg_table *sg_table; struct page *pg; struct scatterlist *sg; if (!rd_dev->sg_table_array || !rd_dev->sg_table_count) return; sg_table = rd_dev->sg_table_array; for (i = 0; i < rd_dev->sg_table_count; i++) { sg = sg_table[i].sg_table; sg_per_table = sg_table[i].rd_sg_count; for (j = 0; j < sg_per_table; j++) { pg = sg_page(&sg[j]); if ((pg)) { __free_page(pg); page_count++; } } kfree(sg); } printk(KERN_INFO "CORE_RD[%u] - Released device space for Ramdisk" " Device ID: %u, pages %u in %u tables total bytes %lu\n", rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count, rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE); kfree(sg_table); rd_dev->sg_table_array = NULL; rd_dev->sg_table_count = 0; } /* rd_build_device_space(): * * */ static int rd_build_device_space(struct rd_dev *rd_dev) { u32 i = 0, j, page_offset = 0, sg_per_table, sg_tables, total_sg_needed; u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE / sizeof(struct scatterlist)); struct rd_dev_sg_table *sg_table; struct page *pg; struct scatterlist *sg; if (rd_dev->rd_page_count <= 0) { printk(KERN_ERR "Illegal page count: %u for Ramdisk device\n", rd_dev->rd_page_count); return -EINVAL; } total_sg_needed = rd_dev->rd_page_count; sg_tables = (total_sg_needed / max_sg_per_table) + 1; sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL); if (!(sg_table)) { printk(KERN_ERR "Unable to allocate memory for Ramdisk" " scatterlist tables\n"); return -ENOMEM; } rd_dev->sg_table_array = sg_table; rd_dev->sg_table_count = sg_tables; while (total_sg_needed) { sg_per_table = (total_sg_needed > max_sg_per_table) ? max_sg_per_table : total_sg_needed; sg = kzalloc(sg_per_table * sizeof(struct scatterlist), GFP_KERNEL); if (!(sg)) { printk(KERN_ERR "Unable to allocate scatterlist array" " for struct rd_dev\n"); return -ENOMEM; } sg_init_table((struct scatterlist *)&sg[0], sg_per_table); sg_table[i].sg_table = sg; sg_table[i].rd_sg_count = sg_per_table; sg_table[i].page_start_offset = page_offset; sg_table[i++].page_end_offset = (page_offset + sg_per_table) - 1; for (j = 0; j < sg_per_table; j++) { pg = alloc_pages(GFP_KERNEL, 0); if (!(pg)) { printk(KERN_ERR "Unable to allocate scatterlist" " pages for struct rd_dev_sg_table\n"); return -ENOMEM; } sg_assign_page(&sg[j], pg); sg[j].length = PAGE_SIZE; } page_offset += sg_per_table; total_sg_needed -= sg_per_table; } printk(KERN_INFO "CORE_RD[%u] - Built Ramdisk Device ID: %u space of" " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, rd_dev->rd_page_count, rd_dev->sg_table_count); return 0; } static void *rd_allocate_virtdevice( struct se_hba *hba, const char *name, int rd_direct) { struct rd_dev *rd_dev; struct rd_host *rd_host = hba->hba_ptr; rd_dev = kzalloc(sizeof(struct rd_dev), GFP_KERNEL); if (!(rd_dev)) { printk(KERN_ERR "Unable to allocate memory for struct rd_dev\n"); return NULL; } rd_dev->rd_host = rd_host; rd_dev->rd_direct = rd_direct; return rd_dev; } static void *rd_DIRECT_allocate_virtdevice(struct se_hba *hba, const char *name) { return rd_allocate_virtdevice(hba, name, 1); } static void *rd_MEMCPY_allocate_virtdevice(struct se_hba *hba, const char *name) { return rd_allocate_virtdevice(hba, name, 0); } /* rd_create_virtdevice(): * * */ static struct se_device *rd_create_virtdevice( struct se_hba *hba, struct se_subsystem_dev *se_dev, void *p, int rd_direct) { struct se_device *dev; struct se_dev_limits dev_limits; struct rd_dev *rd_dev = p; struct rd_host *rd_host = hba->hba_ptr; int dev_flags = 0, ret; char prod[16], rev[4]; memset(&dev_limits, 0, sizeof(struct se_dev_limits)); ret = rd_build_device_space(rd_dev); if (ret < 0) goto fail; snprintf(prod, 16, "RAMDISK-%s", (rd_dev->rd_direct) ? "DR" : "MCP"); snprintf(rev, 4, "%s", (rd_dev->rd_direct) ? RD_DR_VERSION : RD_MCP_VERSION); dev_limits.limits.logical_block_size = RD_BLOCKSIZE; dev_limits.limits.max_hw_sectors = RD_MAX_SECTORS; dev_limits.limits.max_sectors = RD_MAX_SECTORS; dev_limits.hw_queue_depth = RD_MAX_DEVICE_QUEUE_DEPTH; dev_limits.queue_depth = RD_DEVICE_QUEUE_DEPTH; dev = transport_add_device_to_core_hba(hba, (rd_dev->rd_direct) ? &rd_dr_template : &rd_mcp_template, se_dev, dev_flags, (void *)rd_dev, &dev_limits, prod, rev); if (!(dev)) goto fail; rd_dev->rd_dev_id = rd_host->rd_host_dev_id_count++; rd_dev->rd_queue_depth = dev->queue_depth; printk(KERN_INFO "CORE_RD[%u] - Added TCM %s Ramdisk Device ID: %u of" " %u pages in %u tables, %lu total bytes\n", rd_host->rd_host_id, (!rd_dev->rd_direct) ? "MEMCPY" : "DIRECT", rd_dev->rd_dev_id, rd_dev->rd_page_count, rd_dev->sg_table_count, (unsigned long)(rd_dev->rd_page_count * PAGE_SIZE)); return dev; fail: rd_release_device_space(rd_dev); return ERR_PTR(ret); } static struct se_device *rd_DIRECT_create_virtdevice( struct se_hba *hba, struct se_subsystem_dev *se_dev, void *p) { return rd_create_virtdevice(hba, se_dev, p, 1); } static struct se_device *rd_MEMCPY_create_virtdevice( struct se_hba *hba, struct se_subsystem_dev *se_dev, void *p) { return rd_create_virtdevice(hba, se_dev, p, 0); } /* rd_free_device(): (Part of se_subsystem_api_t template) * * */ static void rd_free_device(void *p) { struct rd_dev *rd_dev = p; rd_release_device_space(rd_dev); kfree(rd_dev); } static inline struct rd_request *RD_REQ(struct se_task *task) { return container_of(task, struct rd_request, rd_task); } static struct se_task * rd_alloc_task(struct se_cmd *cmd) { struct rd_request *rd_req; rd_req = kzalloc(sizeof(struct rd_request), GFP_KERNEL); if (!rd_req) { printk(KERN_ERR "Unable to allocate struct rd_request\n"); return NULL; } rd_req->rd_dev = SE_DEV(cmd)->dev_ptr; return &rd_req->rd_task; } /* rd_get_sg_table(): * * */ static struct rd_dev_sg_table *rd_get_sg_table(struct rd_dev *rd_dev, u32 page) { u32 i; struct rd_dev_sg_table *sg_table; for (i = 0; i < rd_dev->sg_table_count; i++) { sg_table = &rd_dev->sg_table_array[i]; if ((sg_table->page_start_offset <= page) && (sg_table->page_end_offset >= page)) return sg_table; } printk(KERN_ERR "Unable to locate struct rd_dev_sg_table for page: %u\n", page); return NULL; } /* rd_MEMCPY_read(): * * */ static int rd_MEMCPY_read(struct rd_request *req) { struct se_task *task = &req->rd_task; struct rd_dev *dev = req->rd_dev; struct rd_dev_sg_table *table; struct scatterlist *sg_d, *sg_s; void *dst, *src; u32 i = 0, j = 0, dst_offset = 0, src_offset = 0; u32 length, page_end = 0, table_sg_end; u32 rd_offset = req->rd_offset; table = rd_get_sg_table(dev, req->rd_page); if (!(table)) return -1; table_sg_end = (table->page_end_offset - req->rd_page); sg_d = task->task_sg; sg_s = &table->sg_table[req->rd_page - table->page_start_offset]; #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "RD[%u]: Read LBA: %llu, Size: %u Page: %u, Offset:" " %u\n", dev->rd_dev_id, task->task_lba, req->rd_size, req->rd_page, req->rd_offset); #endif src_offset = rd_offset; while (req->rd_size) { if ((sg_d[i].length - dst_offset) < (sg_s[j].length - src_offset)) { length = (sg_d[i].length - dst_offset); #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "Step 1 - sg_d[%d]: %p length: %d" " offset: %u sg_s[%d].length: %u\n", i, &sg_d[i], sg_d[i].length, sg_d[i].offset, j, sg_s[j].length); printk(KERN_INFO "Step 1 - length: %u dst_offset: %u" " src_offset: %u\n", length, dst_offset, src_offset); #endif if (length > req->rd_size) length = req->rd_size; dst = sg_virt(&sg_d[i++]) + dst_offset; if (!dst) BUG(); src = sg_virt(&sg_s[j]) + src_offset; if (!src) BUG(); dst_offset = 0; src_offset = length; page_end = 0; } else { length = (sg_s[j].length - src_offset); #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "Step 2 - sg_d[%d]: %p length: %d" " offset: %u sg_s[%d].length: %u\n", i, &sg_d[i], sg_d[i].length, sg_d[i].offset, j, sg_s[j].length); printk(KERN_INFO "Step 2 - length: %u dst_offset: %u" " src_offset: %u\n", length, dst_offset, src_offset); #endif if (length > req->rd_size) length = req->rd_size; dst = sg_virt(&sg_d[i]) + dst_offset; if (!dst) BUG(); if (sg_d[i].length == length) { i++; dst_offset = 0; } else dst_offset = length; src = sg_virt(&sg_s[j++]) + src_offset; if (!src) BUG(); src_offset = 0; page_end = 1; } memcpy(dst, src, length); #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "page: %u, remaining size: %u, length: %u," " i: %u, j: %u\n", req->rd_page, (req->rd_size - length), length, i, j); #endif req->rd_size -= length; if (!(req->rd_size)) return 0; if (!page_end) continue; if (++req->rd_page <= table->page_end_offset) { #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "page: %u in same page table\n", req->rd_page); #endif continue; } #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "getting new page table for page: %u\n", req->rd_page); #endif table = rd_get_sg_table(dev, req->rd_page); if (!(table)) return -1; sg_s = &table->sg_table[j = 0]; } return 0; } /* rd_MEMCPY_write(): * * */ static int rd_MEMCPY_write(struct rd_request *req) { struct se_task *task = &req->rd_task; struct rd_dev *dev = req->rd_dev; struct rd_dev_sg_table *table; struct scatterlist *sg_d, *sg_s; void *dst, *src; u32 i = 0, j = 0, dst_offset = 0, src_offset = 0; u32 length, page_end = 0, table_sg_end; u32 rd_offset = req->rd_offset; table = rd_get_sg_table(dev, req->rd_page); if (!(table)) return -1; table_sg_end = (table->page_end_offset - req->rd_page); sg_d = &table->sg_table[req->rd_page - table->page_start_offset]; sg_s = task->task_sg; #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "RD[%d] Write LBA: %llu, Size: %u, Page: %u," " Offset: %u\n", dev->rd_dev_id, task->task_lba, req->rd_size, req->rd_page, req->rd_offset); #endif dst_offset = rd_offset; while (req->rd_size) { if ((sg_s[i].length - src_offset) < (sg_d[j].length - dst_offset)) { length = (sg_s[i].length - src_offset); #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "Step 1 - sg_s[%d]: %p length: %d" " offset: %d sg_d[%d].length: %u\n", i, &sg_s[i], sg_s[i].length, sg_s[i].offset, j, sg_d[j].length); printk(KERN_INFO "Step 1 - length: %u src_offset: %u" " dst_offset: %u\n", length, src_offset, dst_offset); #endif if (length > req->rd_size) length = req->rd_size; src = sg_virt(&sg_s[i++]) + src_offset; if (!src) BUG(); dst = sg_virt(&sg_d[j]) + dst_offset; if (!dst) BUG(); src_offset = 0; dst_offset = length; page_end = 0; } else { length = (sg_d[j].length - dst_offset); #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "Step 2 - sg_s[%d]: %p length: %d" " offset: %d sg_d[%d].length: %u\n", i, &sg_s[i], sg_s[i].length, sg_s[i].offset, j, sg_d[j].length); printk(KERN_INFO "Step 2 - length: %u src_offset: %u" " dst_offset: %u\n", length, src_offset, dst_offset); #endif if (length > req->rd_size) length = req->rd_size; src = sg_virt(&sg_s[i]) + src_offset; if (!src) BUG(); if (sg_s[i].length == length) { i++; src_offset = 0; } else src_offset = length; dst = sg_virt(&sg_d[j++]) + dst_offset; if (!dst) BUG(); dst_offset = 0; page_end = 1; } memcpy(dst, src, length); #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "page: %u, remaining size: %u, length: %u," " i: %u, j: %u\n", req->rd_page, (req->rd_size - length), length, i, j); #endif req->rd_size -= length; if (!(req->rd_size)) return 0; if (!page_end) continue; if (++req->rd_page <= table->page_end_offset) { #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "page: %u in same page table\n", req->rd_page); #endif continue; } #ifdef DEBUG_RAMDISK_MCP printk(KERN_INFO "getting new page table for page: %u\n", req->rd_page); #endif table = rd_get_sg_table(dev, req->rd_page); if (!(table)) return -1; sg_d = &table->sg_table[j = 0]; } return 0; } /* rd_MEMCPY_do_task(): (Part of se_subsystem_api_t template) * * */ static int rd_MEMCPY_do_task(struct se_task *task) { struct se_device *dev = task->se_dev; struct rd_request *req = RD_REQ(task); unsigned long long lba; int ret; req->rd_page = (task->task_lba * DEV_ATTRIB(dev)->block_size) / PAGE_SIZE; lba = task->task_lba; req->rd_offset = (do_div(lba, (PAGE_SIZE / DEV_ATTRIB(dev)->block_size))) * DEV_ATTRIB(dev)->block_size; req->rd_size = task->task_size; if (task->task_data_direction == DMA_FROM_DEVICE) ret = rd_MEMCPY_read(req); else ret = rd_MEMCPY_write(req); if (ret != 0) return ret; task->task_scsi_status = GOOD; transport_complete_task(task, 1); return PYX_TRANSPORT_SENT_TO_TRANSPORT; } /* rd_DIRECT_with_offset(): * * */ static int rd_DIRECT_with_offset( struct se_task *task, struct list_head *se_mem_list, u32 *se_mem_cnt, u32 *task_offset) { struct rd_request *req = RD_REQ(task); struct rd_dev *dev = req->rd_dev; struct rd_dev_sg_table *table; struct se_mem *se_mem; struct scatterlist *sg_s; u32 j = 0, set_offset = 1; u32 get_next_table = 0, offset_length, table_sg_end; table = rd_get_sg_table(dev, req->rd_page); if (!(table)) return -1; table_sg_end = (table->page_end_offset - req->rd_page); sg_s = &table->sg_table[req->rd_page - table->page_start_offset]; #ifdef DEBUG_RAMDISK_DR printk(KERN_INFO "%s DIRECT LBA: %llu, Size: %u Page: %u, Offset: %u\n", (task->task_data_direction == DMA_TO_DEVICE) ? "Write" : "Read", task->task_lba, req->rd_size, req->rd_page, req->rd_offset); #endif while (req->rd_size) { se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL); if (!(se_mem)) { printk(KERN_ERR "Unable to allocate struct se_mem\n"); return -1; } INIT_LIST_HEAD(&se_mem->se_list); if (set_offset) { offset_length = sg_s[j].length - req->rd_offset; if (offset_length > req->rd_size) offset_length = req->rd_size; se_mem->se_page = sg_page(&sg_s[j++]); se_mem->se_off = req->rd_offset; se_mem->se_len = offset_length; set_offset = 0; get_next_table = (j > table_sg_end); goto check_eot; } offset_length = (req->rd_size < req->rd_offset) ? req->rd_size : req->rd_offset; se_mem->se_page = sg_page(&sg_s[j]); se_mem->se_len = offset_length; set_offset = 1; check_eot: #ifdef DEBUG_RAMDISK_DR printk(KERN_INFO "page: %u, size: %u, offset_length: %u, j: %u" " se_mem: %p, se_page: %p se_off: %u se_len: %u\n", req->rd_page, req->rd_size, offset_length, j, se_mem, se_mem->se_page, se_mem->se_off, se_mem->se_len); #endif list_add_tail(&se_mem->se_list, se_mem_list); (*se_mem_cnt)++; req->rd_size -= offset_length; if (!(req->rd_size)) goto out; if (!set_offset && !get_next_table) continue; if (++req->rd_page <= table->page_end_offset) { #ifdef DEBUG_RAMDISK_DR printk(KERN_INFO "page: %u in same page table\n", req->rd_page); #endif continue; } #ifdef DEBUG_RAMDISK_DR printk(KERN_INFO "getting new page table for page: %u\n", req->rd_page); #endif table = rd_get_sg_table(dev, req->rd_page); if (!(table)) return -1; sg_s = &table->sg_table[j = 0]; } out: T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt; #ifdef DEBUG_RAMDISK_DR printk(KERN_INFO "RD_DR - Allocated %u struct se_mem segments for task\n", *se_mem_cnt); #endif return 0; } /* rd_DIRECT_without_offset(): * * */ static int rd_DIRECT_without_offset( struct se_task *task, struct list_head *se_mem_list, u32 *se_mem_cnt, u32 *task_offset) { struct rd_request *req = RD_REQ(task); struct rd_dev *dev = req->rd_dev; struct rd_dev_sg_table *table; struct se_mem *se_mem; struct scatterlist *sg_s; u32 length, j = 0; table = rd_get_sg_table(dev, req->rd_page); if (!(table)) return -1; sg_s = &table->sg_table[req->rd_page - table->page_start_offset]; #ifdef DEBUG_RAMDISK_DR printk(KERN_INFO "%s DIRECT LBA: %llu, Size: %u, Page: %u\n", (task->task_data_direction == DMA_TO_DEVICE) ? "Write" : "Read", task->task_lba, req->rd_size, req->rd_page); #endif while (req->rd_size) { se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL); if (!(se_mem)) { printk(KERN_ERR "Unable to allocate struct se_mem\n"); return -1; } INIT_LIST_HEAD(&se_mem->se_list); length = (req->rd_size < sg_s[j].length) ? req->rd_size : sg_s[j].length; se_mem->se_page = sg_page(&sg_s[j++]); se_mem->se_len = length; #ifdef DEBUG_RAMDISK_DR printk(KERN_INFO "page: %u, size: %u, j: %u se_mem: %p," " se_page: %p se_off: %u se_len: %u\n", req->rd_page, req->rd_size, j, se_mem, se_mem->se_page, se_mem->se_off, se_mem->se_len); #endif list_add_tail(&se_mem->se_list, se_mem_list); (*se_mem_cnt)++; req->rd_size -= length; if (!(req->rd_size)) goto out; if (++req->rd_page <= table->page_end_offset) { #ifdef DEBUG_RAMDISK_DR printk("page: %u in same page table\n", req->rd_page); #endif continue; } #ifdef DEBUG_RAMDISK_DR printk(KERN_INFO "getting new page table for page: %u\n", req->rd_page); #endif table = rd_get_sg_table(dev, req->rd_page); if (!(table)) return -1; sg_s = &table->sg_table[j = 0]; } out: T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt; #ifdef DEBUG_RAMDISK_DR printk(KERN_INFO "RD_DR - Allocated %u struct se_mem segments for task\n", *se_mem_cnt); #endif return 0; } /* rd_DIRECT_do_se_mem_map(): * * */ static int rd_DIRECT_do_se_mem_map( struct se_task *task, struct list_head *se_mem_list, void *in_mem, struct se_mem *in_se_mem, struct se_mem **out_se_mem, u32 *se_mem_cnt, u32 *task_offset_in) { struct se_cmd *cmd = task->task_se_cmd; struct rd_request *req = RD_REQ(task); u32 task_offset = *task_offset_in; unsigned long long lba; int ret; req->rd_page = ((task->task_lba * DEV_ATTRIB(task->se_dev)->block_size) / PAGE_SIZE); lba = task->task_lba; req->rd_offset = (do_div(lba, (PAGE_SIZE / DEV_ATTRIB(task->se_dev)->block_size))) * DEV_ATTRIB(task->se_dev)->block_size; req->rd_size = task->task_size; if (req->rd_offset) ret = rd_DIRECT_with_offset(task, se_mem_list, se_mem_cnt, task_offset_in); else ret = rd_DIRECT_without_offset(task, se_mem_list, se_mem_cnt, task_offset_in); if (ret < 0) return ret; if (CMD_TFO(cmd)->task_sg_chaining == 0) return 0; /* * Currently prevent writers from multiple HW fabrics doing * pci_map_sg() to RD_DR's internal scatterlist memory. */ if (cmd->data_direction == DMA_TO_DEVICE) { printk(KERN_ERR "DMA_TO_DEVICE not supported for" " RAMDISK_DR with task_sg_chaining=1\n"); return -1; } /* * Special case for if task_sg_chaining is enabled, then * we setup struct se_task->task_sg[], as it will be used by * transport_do_task_sg_chain() for creating chainged SGLs * across multiple struct se_task->task_sg[]. */ if (!(transport_calc_sg_num(task, list_entry(T_TASK(cmd)->t_mem_list->next, struct se_mem, se_list), task_offset))) return -1; return transport_map_mem_to_sg(task, se_mem_list, task->task_sg, list_entry(T_TASK(cmd)->t_mem_list->next, struct se_mem, se_list), out_se_mem, se_mem_cnt, task_offset_in); } /* rd_DIRECT_do_task(): (Part of se_subsystem_api_t template) * * */ static int rd_DIRECT_do_task(struct se_task *task) { /* * At this point the locally allocated RD tables have been mapped * to struct se_mem elements in rd_DIRECT_do_se_mem_map(). */ task->task_scsi_status = GOOD; transport_complete_task(task, 1); return PYX_TRANSPORT_SENT_TO_TRANSPORT; } /* rd_free_task(): (Part of se_subsystem_api_t template) * * */ static void rd_free_task(struct se_task *task) { kfree(RD_REQ(task)); } enum { Opt_rd_pages, Opt_err }; static match_table_t tokens = { {Opt_rd_pages, "rd_pages=%d"}, {Opt_err, NULL} }; static ssize_t rd_set_configfs_dev_params( struct se_hba *hba, struct se_subsystem_dev *se_dev, const char *page, ssize_t count) { struct rd_dev *rd_dev = se_dev->se_dev_su_ptr; char *orig, *ptr, *opts; substring_t args[MAX_OPT_ARGS]; int ret = 0, arg, token; opts = kstrdup(page, GFP_KERNEL); if (!opts) return -ENOMEM; orig = opts; while ((ptr = strsep(&opts, ",")) != NULL) { if (!*ptr) continue; token = match_token(ptr, tokens, args); switch (token) { case Opt_rd_pages: match_int(args, &arg); rd_dev->rd_page_count = arg; printk(KERN_INFO "RAMDISK: Referencing Page" " Count: %u\n", rd_dev->rd_page_count); rd_dev->rd_flags |= RDF_HAS_PAGE_COUNT; break; default: break; } } kfree(orig); return (!ret) ? count : ret; } static ssize_t rd_check_configfs_dev_params(struct se_hba *hba, struct se_subsystem_dev *se_dev) { struct rd_dev *rd_dev = se_dev->se_dev_su_ptr; if (!(rd_dev->rd_flags & RDF_HAS_PAGE_COUNT)) { printk(KERN_INFO "Missing rd_pages= parameter\n"); return -1; } return 0; } static ssize_t rd_show_configfs_dev_params( struct se_hba *hba, struct se_subsystem_dev *se_dev, char *b) { struct rd_dev *rd_dev = se_dev->se_dev_su_ptr; ssize_t bl = sprintf(b, "TCM RamDisk ID: %u RamDisk Makeup: %s\n", rd_dev->rd_dev_id, (rd_dev->rd_direct) ? "rd_direct" : "rd_mcp"); bl += sprintf(b + bl, " PAGES/PAGE_SIZE: %u*%lu" " SG_table_count: %u\n", rd_dev->rd_page_count, PAGE_SIZE, rd_dev->sg_table_count); return bl; } /* rd_get_cdb(): (Part of se_subsystem_api_t template) * * */ static unsigned char *rd_get_cdb(struct se_task *task) { struct rd_request *req = RD_REQ(task); return req->rd_scsi_cdb; } static u32 rd_get_device_rev(struct se_device *dev) { return SCSI_SPC_2; /* Returns SPC-3 in Initiator Data */ } static u32 rd_get_device_type(struct se_device *dev) { return TYPE_DISK; } static sector_t rd_get_blocks(struct se_device *dev) { struct rd_dev *rd_dev = dev->dev_ptr; unsigned long long blocks_long = ((rd_dev->rd_page_count * PAGE_SIZE) / DEV_ATTRIB(dev)->block_size) - 1; return blocks_long; } static struct se_subsystem_api rd_dr_template = { .name = "rd_dr", .transport_type = TRANSPORT_PLUGIN_VHBA_VDEV, .attach_hba = rd_attach_hba, .detach_hba = rd_detach_hba, .allocate_virtdevice = rd_DIRECT_allocate_virtdevice, .create_virtdevice = rd_DIRECT_create_virtdevice, .free_device = rd_free_device, .alloc_task = rd_alloc_task, .do_task = rd_DIRECT_do_task, .free_task = rd_free_task, .check_configfs_dev_params = rd_check_configfs_dev_params, .set_configfs_dev_params = rd_set_configfs_dev_params, .show_configfs_dev_params = rd_show_configfs_dev_params, .get_cdb = rd_get_cdb, .get_device_rev = rd_get_device_rev, .get_device_type = rd_get_device_type, .get_blocks = rd_get_blocks, .do_se_mem_map = rd_DIRECT_do_se_mem_map, }; static struct se_subsystem_api rd_mcp_template = { .name = "rd_mcp", .transport_type = TRANSPORT_PLUGIN_VHBA_VDEV, .attach_hba = rd_attach_hba, .detach_hba = rd_detach_hba, .allocate_virtdevice = rd_MEMCPY_allocate_virtdevice, .create_virtdevice = rd_MEMCPY_create_virtdevice, .free_device = rd_free_device, .alloc_task = rd_alloc_task, .do_task = rd_MEMCPY_do_task, .free_task = rd_free_task, .check_configfs_dev_params = rd_check_configfs_dev_params, .set_configfs_dev_params = rd_set_configfs_dev_params, .show_configfs_dev_params = rd_show_configfs_dev_params, .get_cdb = rd_get_cdb, .get_device_rev = rd_get_device_rev, .get_device_type = rd_get_device_type, .get_blocks = rd_get_blocks, }; int __init rd_module_init(void) { int ret; ret = transport_subsystem_register(&rd_dr_template); if (ret < 0) return ret; ret = transport_subsystem_register(&rd_mcp_template); if (ret < 0) { transport_subsystem_release(&rd_dr_template); return ret; } return 0; } void rd_module_exit(void) { transport_subsystem_release(&rd_dr_template); transport_subsystem_release(&rd_mcp_template); }