/* * MSM 7k/8k High speed uart driver * * Copyright (c) 2007-2011, Code Aurora Forum. All rights reserved. * Copyright (c) 2008 Google Inc. * Modified: Nick Pelly <npelly@google.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * Has optional support for uart power management independent of linux * suspend/resume: * * RX wakeup. * UART wakeup can be triggered by RX activity (using a wakeup GPIO on the * UART RX pin). This should only be used if there is not a wakeup * GPIO on the UART CTS, and the first RX byte is known (for example, with the * Bluetooth Texas Instruments HCILL protocol), since the first RX byte will * always be lost. RTS will be asserted even while the UART is off in this mode * of operation. See msm_serial_hs_platform_data.rx_wakeup_irq. */ #include <linux/module.h> #include <linux/serial.h> #include <linux/serial_core.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/clk.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/wait.h> #include <linux/workqueue.h> #include <linux/atomic.h> #include <asm/irq.h> #include <asm/system.h> #include <mach/hardware.h> #include <mach/dma.h> #include <linux/platform_data/msm_serial_hs.h> /* HSUART Registers */ #define UARTDM_MR1_ADDR 0x0 #define UARTDM_MR2_ADDR 0x4 /* Data Mover result codes */ #define RSLT_FIFO_CNTR_BMSK (0xE << 28) #define RSLT_VLD BIT(1) /* write only register */ #define UARTDM_CSR_ADDR 0x8 #define UARTDM_CSR_115200 0xFF #define UARTDM_CSR_57600 0xEE #define UARTDM_CSR_38400 0xDD #define UARTDM_CSR_28800 0xCC #define UARTDM_CSR_19200 0xBB #define UARTDM_CSR_14400 0xAA #define UARTDM_CSR_9600 0x99 #define UARTDM_CSR_7200 0x88 #define UARTDM_CSR_4800 0x77 #define UARTDM_CSR_3600 0x66 #define UARTDM_CSR_2400 0x55 #define UARTDM_CSR_1200 0x44 #define UARTDM_CSR_600 0x33 #define UARTDM_CSR_300 0x22 #define UARTDM_CSR_150 0x11 #define UARTDM_CSR_75 0x00 /* write only register */ #define UARTDM_TF_ADDR 0x70 #define UARTDM_TF2_ADDR 0x74 #define UARTDM_TF3_ADDR 0x78 #define UARTDM_TF4_ADDR 0x7C /* write only register */ #define UARTDM_CR_ADDR 0x10 #define UARTDM_IMR_ADDR 0x14 #define UARTDM_IPR_ADDR 0x18 #define UARTDM_TFWR_ADDR 0x1c #define UARTDM_RFWR_ADDR 0x20 #define UARTDM_HCR_ADDR 0x24 #define UARTDM_DMRX_ADDR 0x34 #define UARTDM_IRDA_ADDR 0x38 #define UARTDM_DMEN_ADDR 0x3c /* UART_DM_NO_CHARS_FOR_TX */ #define UARTDM_NCF_TX_ADDR 0x40 #define UARTDM_BADR_ADDR 0x44 #define UARTDM_SIM_CFG_ADDR 0x80 /* Read Only register */ #define UARTDM_SR_ADDR 0x8 /* Read Only register */ #define UARTDM_RF_ADDR 0x70 #define UARTDM_RF2_ADDR 0x74 #define UARTDM_RF3_ADDR 0x78 #define UARTDM_RF4_ADDR 0x7C /* Read Only register */ #define UARTDM_MISR_ADDR 0x10 /* Read Only register */ #define UARTDM_ISR_ADDR 0x14 #define UARTDM_RX_TOTAL_SNAP_ADDR 0x38 #define UARTDM_RXFS_ADDR 0x50 /* Register field Mask Mapping */ #define UARTDM_SR_PAR_FRAME_BMSK BIT(5) #define UARTDM_SR_OVERRUN_BMSK BIT(4) #define UARTDM_SR_TXEMT_BMSK BIT(3) #define UARTDM_SR_TXRDY_BMSK BIT(2) #define UARTDM_SR_RXRDY_BMSK BIT(0) #define UARTDM_CR_TX_DISABLE_BMSK BIT(3) #define UARTDM_CR_RX_DISABLE_BMSK BIT(1) #define UARTDM_CR_TX_EN_BMSK BIT(2) #define UARTDM_CR_RX_EN_BMSK BIT(0) /* UARTDM_CR channel_comman bit value (register field is bits 8:4) */ #define RESET_RX 0x10 #define RESET_TX 0x20 #define RESET_ERROR_STATUS 0x30 #define RESET_BREAK_INT 0x40 #define START_BREAK 0x50 #define STOP_BREAK 0x60 #define RESET_CTS 0x70 #define RESET_STALE_INT 0x80 #define RFR_LOW 0xD0 #define RFR_HIGH 0xE0 #define CR_PROTECTION_EN 0x100 #define STALE_EVENT_ENABLE 0x500 #define STALE_EVENT_DISABLE 0x600 #define FORCE_STALE_EVENT 0x400 #define CLEAR_TX_READY 0x300 #define RESET_TX_ERROR 0x800 #define RESET_TX_DONE 0x810 #define UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK 0xffffff00 #define UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK 0x3f #define UARTDM_MR1_CTS_CTL_BMSK 0x40 #define UARTDM_MR1_RX_RDY_CTL_BMSK 0x80 #define UARTDM_MR2_ERROR_MODE_BMSK 0x40 #define UARTDM_MR2_BITS_PER_CHAR_BMSK 0x30 /* bits per character configuration */ #define FIVE_BPC (0 << 4) #define SIX_BPC (1 << 4) #define SEVEN_BPC (2 << 4) #define EIGHT_BPC (3 << 4) #define UARTDM_MR2_STOP_BIT_LEN_BMSK 0xc #define STOP_BIT_ONE (1 << 2) #define STOP_BIT_TWO (3 << 2) #define UARTDM_MR2_PARITY_MODE_BMSK 0x3 /* Parity configuration */ #define NO_PARITY 0x0 #define EVEN_PARITY 0x1 #define ODD_PARITY 0x2 #define SPACE_PARITY 0x3 #define UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK 0xffffff80 #define UARTDM_IPR_STALE_LSB_BMSK 0x1f /* These can be used for both ISR and IMR register */ #define UARTDM_ISR_TX_READY_BMSK BIT(7) #define UARTDM_ISR_CURRENT_CTS_BMSK BIT(6) #define UARTDM_ISR_DELTA_CTS_BMSK BIT(5) #define UARTDM_ISR_RXLEV_BMSK BIT(4) #define UARTDM_ISR_RXSTALE_BMSK BIT(3) #define UARTDM_ISR_RXBREAK_BMSK BIT(2) #define UARTDM_ISR_RXHUNT_BMSK BIT(1) #define UARTDM_ISR_TXLEV_BMSK BIT(0) /* Field definitions for UART_DM_DMEN*/ #define UARTDM_TX_DM_EN_BMSK 0x1 #define UARTDM_RX_DM_EN_BMSK 0x2 #define UART_FIFOSIZE 64 #define UARTCLK 7372800 /* Rx DMA request states */ enum flush_reason { FLUSH_NONE, FLUSH_DATA_READY, FLUSH_DATA_INVALID, /* values after this indicate invalid data */ FLUSH_IGNORE = FLUSH_DATA_INVALID, FLUSH_STOP, FLUSH_SHUTDOWN, }; /* UART clock states */ enum msm_hs_clk_states_e { MSM_HS_CLK_PORT_OFF, /* port not in use */ MSM_HS_CLK_OFF, /* clock disabled */ MSM_HS_CLK_REQUEST_OFF, /* disable after TX and RX flushed */ MSM_HS_CLK_ON, /* clock enabled */ }; /* Track the forced RXSTALE flush during clock off sequence. * These states are only valid during MSM_HS_CLK_REQUEST_OFF */ enum msm_hs_clk_req_off_state_e { CLK_REQ_OFF_START, CLK_REQ_OFF_RXSTALE_ISSUED, CLK_REQ_OFF_FLUSH_ISSUED, CLK_REQ_OFF_RXSTALE_FLUSHED, }; /** * struct msm_hs_tx * @tx_ready_int_en: ok to dma more tx? * @dma_in_flight: tx dma in progress * @xfer: top level DMA command pointer structure * @command_ptr: third level command struct pointer * @command_ptr_ptr: second level command list struct pointer * @mapped_cmd_ptr: DMA view of third level command struct * @mapped_cmd_ptr_ptr: DMA view of second level command list struct * @tx_count: number of bytes to transfer in DMA transfer * @dma_base: DMA view of UART xmit buffer * * This structure describes a single Tx DMA transaction. MSM DMA * commands have two levels of indirection. The top level command * ptr points to a list of command ptr which in turn points to a * single DMA 'command'. In our case each Tx transaction consists * of a single second level pointer pointing to a 'box type' command. */ struct msm_hs_tx { unsigned int tx_ready_int_en; unsigned int dma_in_flight; struct msm_dmov_cmd xfer; dmov_box *command_ptr; u32 *command_ptr_ptr; dma_addr_t mapped_cmd_ptr; dma_addr_t mapped_cmd_ptr_ptr; int tx_count; dma_addr_t dma_base; }; /** * struct msm_hs_rx * @flush: Rx DMA request state * @xfer: top level DMA command pointer structure * @cmdptr_dmaaddr: DMA view of second level command structure * @command_ptr: third level DMA command pointer structure * @command_ptr_ptr: second level DMA command list pointer * @mapped_cmd_ptr: DMA view of the third level command structure * @wait: wait for DMA completion before shutdown * @buffer: destination buffer for RX DMA * @rbuffer: DMA view of buffer * @pool: dma pool out of which coherent rx buffer is allocated * @tty_work: private work-queue for tty flip buffer push task * * This structure describes a single Rx DMA transaction. Rx DMA * transactions use box mode DMA commands. */ struct msm_hs_rx { enum flush_reason flush; struct msm_dmov_cmd xfer; dma_addr_t cmdptr_dmaaddr; dmov_box *command_ptr; u32 *command_ptr_ptr; dma_addr_t mapped_cmd_ptr; wait_queue_head_t wait; dma_addr_t rbuffer; unsigned char *buffer; struct dma_pool *pool; struct work_struct tty_work; }; /** * struct msm_hs_rx_wakeup * @irq: IRQ line to be configured as interrupt source on Rx activity * @ignore: boolean value. 1 = ignore the wakeup interrupt * @rx_to_inject: extra character to be inserted to Rx tty on wakeup * @inject_rx: 1 = insert rx_to_inject. 0 = do not insert extra character * * This is an optional structure required for UART Rx GPIO IRQ based * wakeup from low power state. UART wakeup can be triggered by RX activity * (using a wakeup GPIO on the UART RX pin). This should only be used if * there is not a wakeup GPIO on the UART CTS, and the first RX byte is * known (eg., with the Bluetooth Texas Instruments HCILL protocol), * since the first RX byte will always be lost. RTS will be asserted even * while the UART is clocked off in this mode of operation. */ struct msm_hs_rx_wakeup { int irq; /* < 0 indicates low power wakeup disabled */ unsigned char ignore; unsigned char inject_rx; char rx_to_inject; }; /** * struct msm_hs_port * @uport: embedded uart port structure * @imr_reg: shadow value of UARTDM_IMR * @clk: uart input clock handle * @tx: Tx transaction related data structure * @rx: Rx transaction related data structure * @dma_tx_channel: Tx DMA command channel * @dma_rx_channel Rx DMA command channel * @dma_tx_crci: Tx channel rate control interface number * @dma_rx_crci: Rx channel rate control interface number * @clk_off_timer: Timer to poll DMA event completion before clock off * @clk_off_delay: clk_off_timer poll interval * @clk_state: overall clock state * @clk_req_off_state: post flush clock states * @rx_wakeup: optional rx_wakeup feature related data * @exit_lpm_cb: optional callback to exit low power mode * * Low level serial port structure. */ struct msm_hs_port { struct uart_port uport; unsigned long imr_reg; struct clk *clk; struct msm_hs_tx tx; struct msm_hs_rx rx; int dma_tx_channel; int dma_rx_channel; int dma_tx_crci; int dma_rx_crci; struct hrtimer clk_off_timer; ktime_t clk_off_delay; enum msm_hs_clk_states_e clk_state; enum msm_hs_clk_req_off_state_e clk_req_off_state; struct msm_hs_rx_wakeup rx_wakeup; void (*exit_lpm_cb)(struct uart_port *); }; #define MSM_UARTDM_BURST_SIZE 16 /* DM burst size (in bytes) */ #define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE #define UARTDM_RX_BUF_SIZE 512 #define UARTDM_NR 2 static struct msm_hs_port q_uart_port[UARTDM_NR]; static struct platform_driver msm_serial_hs_platform_driver; static struct uart_driver msm_hs_driver; static struct uart_ops msm_hs_ops; static struct workqueue_struct *msm_hs_workqueue; #define UARTDM_TO_MSM(uart_port) \ container_of((uart_port), struct msm_hs_port, uport) static unsigned int use_low_power_rx_wakeup(struct msm_hs_port *msm_uport) { return (msm_uport->rx_wakeup.irq >= 0); } static unsigned int msm_hs_read(struct uart_port *uport, unsigned int offset) { return ioread32(uport->membase + offset); } static void msm_hs_write(struct uart_port *uport, unsigned int offset, unsigned int value) { iowrite32(value, uport->membase + offset); } static void msm_hs_release_port(struct uart_port *port) { iounmap(port->membase); } static int msm_hs_request_port(struct uart_port *port) { port->membase = ioremap(port->mapbase, PAGE_SIZE); if (unlikely(!port->membase)) return -ENOMEM; /* configure the CR Protection to Enable */ msm_hs_write(port, UARTDM_CR_ADDR, CR_PROTECTION_EN); return 0; } static int __devexit msm_hs_remove(struct platform_device *pdev) { struct msm_hs_port *msm_uport; struct device *dev; if (pdev->id < 0 || pdev->id >= UARTDM_NR) { printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id); return -EINVAL; } msm_uport = &q_uart_port[pdev->id]; dev = msm_uport->uport.dev; dma_unmap_single(dev, msm_uport->rx.mapped_cmd_ptr, sizeof(dmov_box), DMA_TO_DEVICE); dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer, msm_uport->rx.rbuffer); dma_pool_destroy(msm_uport->rx.pool); dma_unmap_single(dev, msm_uport->rx.cmdptr_dmaaddr, sizeof(u32 *), DMA_TO_DEVICE); dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32 *), DMA_TO_DEVICE); dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box), DMA_TO_DEVICE); uart_remove_one_port(&msm_hs_driver, &msm_uport->uport); clk_put(msm_uport->clk); /* Free the tx resources */ kfree(msm_uport->tx.command_ptr); kfree(msm_uport->tx.command_ptr_ptr); /* Free the rx resources */ kfree(msm_uport->rx.command_ptr); kfree(msm_uport->rx.command_ptr_ptr); iounmap(msm_uport->uport.membase); return 0; } static int msm_hs_init_clk_locked(struct uart_port *uport) { int ret; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); ret = clk_enable(msm_uport->clk); if (ret) { printk(KERN_ERR "Error could not turn on UART clk\n"); return ret; } /* Set up the MREG/NREG/DREG/MNDREG */ ret = clk_set_rate(msm_uport->clk, uport->uartclk); if (ret) { printk(KERN_WARNING "Error setting clock rate on UART\n"); clk_disable(msm_uport->clk); return ret; } msm_uport->clk_state = MSM_HS_CLK_ON; return 0; } /* Enable and Disable clocks (Used for power management) */ static void msm_hs_pm(struct uart_port *uport, unsigned int state, unsigned int oldstate) { struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); if (use_low_power_rx_wakeup(msm_uport) || msm_uport->exit_lpm_cb) return; /* ignore linux PM states, use msm_hs_request_clock API */ switch (state) { case 0: clk_enable(msm_uport->clk); break; case 3: clk_disable(msm_uport->clk); break; default: dev_err(uport->dev, "msm_serial: Unknown PM state %d\n", state); } } /* * programs the UARTDM_CSR register with correct bit rates * * Interrupts should be disabled before we are called, as * we modify Set Baud rate * Set receive stale interrupt level, dependent on Bit Rate * Goal is to have around 8 ms before indicate stale. * roundup (((Bit Rate * .008) / 10) + 1 */ static void msm_hs_set_bps_locked(struct uart_port *uport, unsigned int bps) { unsigned long rxstale; unsigned long data; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); switch (bps) { case 300: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_75); rxstale = 1; break; case 600: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_150); rxstale = 1; break; case 1200: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_300); rxstale = 1; break; case 2400: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_600); rxstale = 1; break; case 4800: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_1200); rxstale = 1; break; case 9600: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400); rxstale = 2; break; case 14400: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_3600); rxstale = 3; break; case 19200: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_4800); rxstale = 4; break; case 28800: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_7200); rxstale = 6; break; case 38400: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_9600); rxstale = 8; break; case 57600: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_14400); rxstale = 16; break; case 76800: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_19200); rxstale = 16; break; case 115200: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_28800); rxstale = 31; break; case 230400: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_57600); rxstale = 31; break; case 460800: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200); rxstale = 31; break; case 4000000: case 3686400: case 3200000: case 3500000: case 3000000: case 2500000: case 1500000: case 1152000: case 1000000: case 921600: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_115200); rxstale = 31; break; default: msm_hs_write(uport, UARTDM_CSR_ADDR, UARTDM_CSR_2400); /* default to 9600 */ bps = 9600; rxstale = 2; break; } if (bps > 460800) uport->uartclk = bps * 16; else uport->uartclk = UARTCLK; if (clk_set_rate(msm_uport->clk, uport->uartclk)) { printk(KERN_WARNING "Error setting clock rate on UART\n"); return; } data = rxstale & UARTDM_IPR_STALE_LSB_BMSK; data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2); msm_hs_write(uport, UARTDM_IPR_ADDR, data); } /* * termios : new ktermios * oldtermios: old ktermios previous setting * * Configure the serial port */ static void msm_hs_set_termios(struct uart_port *uport, struct ktermios *termios, struct ktermios *oldtermios) { unsigned int bps; unsigned long data; unsigned long flags; unsigned int c_cflag = termios->c_cflag; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); spin_lock_irqsave(&uport->lock, flags); clk_enable(msm_uport->clk); /* 300 is the minimum baud support by the driver */ bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000); /* Temporary remapping 200 BAUD to 3.2 mbps */ if (bps == 200) bps = 3200000; msm_hs_set_bps_locked(uport, bps); data = msm_hs_read(uport, UARTDM_MR2_ADDR); data &= ~UARTDM_MR2_PARITY_MODE_BMSK; /* set parity */ if (PARENB == (c_cflag & PARENB)) { if (PARODD == (c_cflag & PARODD)) data |= ODD_PARITY; else if (CMSPAR == (c_cflag & CMSPAR)) data |= SPACE_PARITY; else data |= EVEN_PARITY; } /* Set bits per char */ data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK; switch (c_cflag & CSIZE) { case CS5: data |= FIVE_BPC; break; case CS6: data |= SIX_BPC; break; case CS7: data |= SEVEN_BPC; break; default: data |= EIGHT_BPC; break; } /* stop bits */ if (c_cflag & CSTOPB) { data |= STOP_BIT_TWO; } else { /* otherwise 1 stop bit */ data |= STOP_BIT_ONE; } data |= UARTDM_MR2_ERROR_MODE_BMSK; /* write parity/bits per char/stop bit configuration */ msm_hs_write(uport, UARTDM_MR2_ADDR, data); /* Configure HW flow control */ data = msm_hs_read(uport, UARTDM_MR1_ADDR); data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK); if (c_cflag & CRTSCTS) { data |= UARTDM_MR1_CTS_CTL_BMSK; data |= UARTDM_MR1_RX_RDY_CTL_BMSK; } msm_hs_write(uport, UARTDM_MR1_ADDR, data); uport->ignore_status_mask = termios->c_iflag & INPCK; uport->ignore_status_mask |= termios->c_iflag & IGNPAR; uport->read_status_mask = (termios->c_cflag & CREAD); msm_hs_write(uport, UARTDM_IMR_ADDR, 0); /* Set Transmit software time out */ uart_update_timeout(uport, c_cflag, bps); msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX); msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX); if (msm_uport->rx.flush == FLUSH_NONE) { msm_uport->rx.flush = FLUSH_IGNORE; msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1); } msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); clk_disable(msm_uport->clk); spin_unlock_irqrestore(&uport->lock, flags); } /* * Standard API, Transmitter * Any character in the transmit shift register is sent */ static unsigned int msm_hs_tx_empty(struct uart_port *uport) { unsigned int data; unsigned int ret = 0; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); clk_enable(msm_uport->clk); data = msm_hs_read(uport, UARTDM_SR_ADDR); if (data & UARTDM_SR_TXEMT_BMSK) ret = TIOCSER_TEMT; clk_disable(msm_uport->clk); return ret; } /* * Standard API, Stop transmitter. * Any character in the transmit shift register is sent as * well as the current data mover transfer . */ static void msm_hs_stop_tx_locked(struct uart_port *uport) { struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); msm_uport->tx.tx_ready_int_en = 0; } /* * Standard API, Stop receiver as soon as possible. * * Function immediately terminates the operation of the * channel receiver and any incoming characters are lost. None * of the receiver status bits are affected by this command and * characters that are already in the receive FIFO there. */ static void msm_hs_stop_rx_locked(struct uart_port *uport) { struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); unsigned int data; clk_enable(msm_uport->clk); /* disable dlink */ data = msm_hs_read(uport, UARTDM_DMEN_ADDR); data &= ~UARTDM_RX_DM_EN_BMSK; msm_hs_write(uport, UARTDM_DMEN_ADDR, data); /* Disable the receiver */ if (msm_uport->rx.flush == FLUSH_NONE) msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1); if (msm_uport->rx.flush != FLUSH_SHUTDOWN) msm_uport->rx.flush = FLUSH_STOP; clk_disable(msm_uport->clk); } /* Transmit the next chunk of data */ static void msm_hs_submit_tx_locked(struct uart_port *uport) { int left; int tx_count; dma_addr_t src_addr; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); struct msm_hs_tx *tx = &msm_uport->tx; struct circ_buf *tx_buf = &msm_uport->uport.state->xmit; if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) { msm_hs_stop_tx_locked(uport); return; } tx->dma_in_flight = 1; tx_count = uart_circ_chars_pending(tx_buf); if (UARTDM_TX_BUF_SIZE < tx_count) tx_count = UARTDM_TX_BUF_SIZE; left = UART_XMIT_SIZE - tx_buf->tail; if (tx_count > left) tx_count = left; src_addr = tx->dma_base + tx_buf->tail; dma_sync_single_for_device(uport->dev, src_addr, tx_count, DMA_TO_DEVICE); tx->command_ptr->num_rows = (((tx_count + 15) >> 4) << 16) | ((tx_count + 15) >> 4); tx->command_ptr->src_row_addr = src_addr; dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr, sizeof(dmov_box), DMA_TO_DEVICE); *tx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(tx->mapped_cmd_ptr); dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr_ptr, sizeof(u32 *), DMA_TO_DEVICE); /* Save tx_count to use in Callback */ tx->tx_count = tx_count; msm_hs_write(uport, UARTDM_NCF_TX_ADDR, tx_count); /* Disable the tx_ready interrupt */ msm_uport->imr_reg &= ~UARTDM_ISR_TX_READY_BMSK; msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); msm_dmov_enqueue_cmd(msm_uport->dma_tx_channel, &tx->xfer); } /* Start to receive the next chunk of data */ static void msm_hs_start_rx_locked(struct uart_port *uport) { struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT); msm_hs_write(uport, UARTDM_DMRX_ADDR, UARTDM_RX_BUF_SIZE); msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_ENABLE); msm_uport->imr_reg |= UARTDM_ISR_RXLEV_BMSK; msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); msm_uport->rx.flush = FLUSH_NONE; msm_dmov_enqueue_cmd(msm_uport->dma_rx_channel, &msm_uport->rx.xfer); /* might have finished RX and be ready to clock off */ hrtimer_start(&msm_uport->clk_off_timer, msm_uport->clk_off_delay, HRTIMER_MODE_REL); } /* Enable the transmitter Interrupt */ static void msm_hs_start_tx_locked(struct uart_port *uport) { struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); clk_enable(msm_uport->clk); if (msm_uport->exit_lpm_cb) msm_uport->exit_lpm_cb(uport); if (msm_uport->tx.tx_ready_int_en == 0) { msm_uport->tx.tx_ready_int_en = 1; msm_hs_submit_tx_locked(uport); } clk_disable(msm_uport->clk); } /* * This routine is called when we are done with a DMA transfer * * This routine is registered with Data mover when we set * up a Data Mover transfer. It is called from Data mover ISR * when the DMA transfer is done. */ static void msm_hs_dmov_tx_callback(struct msm_dmov_cmd *cmd_ptr, unsigned int result, struct msm_dmov_errdata *err) { unsigned long flags; struct msm_hs_port *msm_uport; /* DMA did not finish properly */ WARN_ON((((result & RSLT_FIFO_CNTR_BMSK) >> 28) == 1) && !(result & RSLT_VLD)); msm_uport = container_of(cmd_ptr, struct msm_hs_port, tx.xfer); spin_lock_irqsave(&msm_uport->uport.lock, flags); clk_enable(msm_uport->clk); msm_uport->imr_reg |= UARTDM_ISR_TX_READY_BMSK; msm_hs_write(&msm_uport->uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); clk_disable(msm_uport->clk); spin_unlock_irqrestore(&msm_uport->uport.lock, flags); } /* * This routine is called when we are done with a DMA transfer or the * a flush has been sent to the data mover driver. * * This routine is registered with Data mover when we set up a Data Mover * transfer. It is called from Data mover ISR when the DMA transfer is done. */ static void msm_hs_dmov_rx_callback(struct msm_dmov_cmd *cmd_ptr, unsigned int result, struct msm_dmov_errdata *err) { int retval; int rx_count; unsigned long status; unsigned int error_f = 0; unsigned long flags; unsigned int flush; struct tty_struct *tty; struct uart_port *uport; struct msm_hs_port *msm_uport; msm_uport = container_of(cmd_ptr, struct msm_hs_port, rx.xfer); uport = &msm_uport->uport; spin_lock_irqsave(&uport->lock, flags); clk_enable(msm_uport->clk); tty = uport->state->port.tty; msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE); status = msm_hs_read(uport, UARTDM_SR_ADDR); /* overflow is not connect to data in a FIFO */ if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) && (uport->read_status_mask & CREAD))) { tty_insert_flip_char(tty, 0, TTY_OVERRUN); uport->icount.buf_overrun++; error_f = 1; } if (!(uport->ignore_status_mask & INPCK)) status = status & ~(UARTDM_SR_PAR_FRAME_BMSK); if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) { /* Can not tell difference between parity & frame error */ uport->icount.parity++; error_f = 1; if (uport->ignore_status_mask & IGNPAR) tty_insert_flip_char(tty, 0, TTY_PARITY); } if (error_f) msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS); if (msm_uport->clk_req_off_state == CLK_REQ_OFF_FLUSH_ISSUED) msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_FLUSHED; flush = msm_uport->rx.flush; if (flush == FLUSH_IGNORE) msm_hs_start_rx_locked(uport); if (flush == FLUSH_STOP) msm_uport->rx.flush = FLUSH_SHUTDOWN; if (flush >= FLUSH_DATA_INVALID) goto out; rx_count = msm_hs_read(uport, UARTDM_RX_TOTAL_SNAP_ADDR); if (0 != (uport->read_status_mask & CREAD)) { retval = tty_insert_flip_string(tty, msm_uport->rx.buffer, rx_count); BUG_ON(retval != rx_count); } msm_hs_start_rx_locked(uport); out: clk_disable(msm_uport->clk); spin_unlock_irqrestore(&uport->lock, flags); if (flush < FLUSH_DATA_INVALID) queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work); } static void msm_hs_tty_flip_buffer_work(struct work_struct *work) { struct msm_hs_port *msm_uport = container_of(work, struct msm_hs_port, rx.tty_work); struct tty_struct *tty = msm_uport->uport.state->port.tty; tty_flip_buffer_push(tty); } /* * Standard API, Current states of modem control inputs * * Since CTS can be handled entirely by HARDWARE we always * indicate clear to send and count on the TX FIFO to block when * it fills up. * * - TIOCM_DCD * - TIOCM_CTS * - TIOCM_DSR * - TIOCM_RI * (Unsupported) DCD and DSR will return them high. RI will return low. */ static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport) { return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS; } /* * True enables UART auto RFR, which indicates we are ready for data if the RX * buffer is not full. False disables auto RFR, and deasserts RFR to indicate * we are not ready for data. Must be called with UART clock on. */ static void set_rfr_locked(struct uart_port *uport, int auto_rfr) { unsigned int data; data = msm_hs_read(uport, UARTDM_MR1_ADDR); if (auto_rfr) { /* enable auto ready-for-receiving */ data |= UARTDM_MR1_RX_RDY_CTL_BMSK; msm_hs_write(uport, UARTDM_MR1_ADDR, data); } else { /* disable auto ready-for-receiving */ data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK; msm_hs_write(uport, UARTDM_MR1_ADDR, data); /* RFR is active low, set high */ msm_hs_write(uport, UARTDM_CR_ADDR, RFR_HIGH); } } /* * Standard API, used to set or clear RFR */ static void msm_hs_set_mctrl_locked(struct uart_port *uport, unsigned int mctrl) { unsigned int auto_rfr; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); clk_enable(msm_uport->clk); auto_rfr = TIOCM_RTS & mctrl ? 1 : 0; set_rfr_locked(uport, auto_rfr); clk_disable(msm_uport->clk); } /* Standard API, Enable modem status (CTS) interrupt */ static void msm_hs_enable_ms_locked(struct uart_port *uport) { struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); clk_enable(msm_uport->clk); /* Enable DELTA_CTS Interrupt */ msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK; msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); clk_disable(msm_uport->clk); } /* * Standard API, Break Signal * * Control the transmission of a break signal. ctl eq 0 => break * signal terminate ctl ne 0 => start break signal */ static void msm_hs_break_ctl(struct uart_port *uport, int ctl) { struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); clk_enable(msm_uport->clk); msm_hs_write(uport, UARTDM_CR_ADDR, ctl ? START_BREAK : STOP_BREAK); clk_disable(msm_uport->clk); } static void msm_hs_config_port(struct uart_port *uport, int cfg_flags) { unsigned long flags; spin_lock_irqsave(&uport->lock, flags); if (cfg_flags & UART_CONFIG_TYPE) { uport->type = PORT_MSM; msm_hs_request_port(uport); } spin_unlock_irqrestore(&uport->lock, flags); } /* Handle CTS changes (Called from interrupt handler) */ static void msm_hs_handle_delta_cts(struct uart_port *uport) { unsigned long flags; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); spin_lock_irqsave(&uport->lock, flags); clk_enable(msm_uport->clk); /* clear interrupt */ msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS); uport->icount.cts++; clk_disable(msm_uport->clk); spin_unlock_irqrestore(&uport->lock, flags); /* clear the IOCTL TIOCMIWAIT if called */ wake_up_interruptible(&uport->state->port.delta_msr_wait); } /* check if the TX path is flushed, and if so clock off * returns 0 did not clock off, need to retry (still sending final byte) * -1 did not clock off, do not retry * 1 if we clocked off */ static int msm_hs_check_clock_off_locked(struct uart_port *uport) { unsigned long sr_status; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); struct circ_buf *tx_buf = &uport->state->xmit; /* Cancel if tx tty buffer is not empty, dma is in flight, * or tx fifo is not empty, or rx fifo is not empty */ if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF || !uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight || (msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) || !(msm_uport->imr_reg & UARTDM_ISR_RXLEV_BMSK)) { return -1; } /* Make sure the uart is finished with the last byte */ sr_status = msm_hs_read(uport, UARTDM_SR_ADDR); if (!(sr_status & UARTDM_SR_TXEMT_BMSK)) return 0; /* retry */ /* Make sure forced RXSTALE flush complete */ switch (msm_uport->clk_req_off_state) { case CLK_REQ_OFF_START: msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_ISSUED; msm_hs_write(uport, UARTDM_CR_ADDR, FORCE_STALE_EVENT); return 0; /* RXSTALE flush not complete - retry */ case CLK_REQ_OFF_RXSTALE_ISSUED: case CLK_REQ_OFF_FLUSH_ISSUED: return 0; /* RXSTALE flush not complete - retry */ case CLK_REQ_OFF_RXSTALE_FLUSHED: break; /* continue */ } if (msm_uport->rx.flush != FLUSH_SHUTDOWN) { if (msm_uport->rx.flush == FLUSH_NONE) msm_hs_stop_rx_locked(uport); return 0; /* come back later to really clock off */ } /* we really want to clock off */ clk_disable(msm_uport->clk); msm_uport->clk_state = MSM_HS_CLK_OFF; if (use_low_power_rx_wakeup(msm_uport)) { msm_uport->rx_wakeup.ignore = 1; enable_irq(msm_uport->rx_wakeup.irq); } return 1; } static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer) { unsigned long flags; int ret = HRTIMER_NORESTART; struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port, clk_off_timer); struct uart_port *uport = &msm_uport->uport; spin_lock_irqsave(&uport->lock, flags); if (!msm_hs_check_clock_off_locked(uport)) { hrtimer_forward_now(timer, msm_uport->clk_off_delay); ret = HRTIMER_RESTART; } spin_unlock_irqrestore(&uport->lock, flags); return ret; } static irqreturn_t msm_hs_isr(int irq, void *dev) { unsigned long flags; unsigned long isr_status; struct msm_hs_port *msm_uport = dev; struct uart_port *uport = &msm_uport->uport; struct circ_buf *tx_buf = &uport->state->xmit; struct msm_hs_tx *tx = &msm_uport->tx; struct msm_hs_rx *rx = &msm_uport->rx; spin_lock_irqsave(&uport->lock, flags); isr_status = msm_hs_read(uport, UARTDM_MISR_ADDR); /* Uart RX starting */ if (isr_status & UARTDM_ISR_RXLEV_BMSK) { msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK; msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); } /* Stale rx interrupt */ if (isr_status & UARTDM_ISR_RXSTALE_BMSK) { msm_hs_write(uport, UARTDM_CR_ADDR, STALE_EVENT_DISABLE); msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT); if (msm_uport->clk_req_off_state == CLK_REQ_OFF_RXSTALE_ISSUED) msm_uport->clk_req_off_state = CLK_REQ_OFF_FLUSH_ISSUED; if (rx->flush == FLUSH_NONE) { rx->flush = FLUSH_DATA_READY; msm_dmov_stop_cmd(msm_uport->dma_rx_channel, NULL, 1); } } /* tx ready interrupt */ if (isr_status & UARTDM_ISR_TX_READY_BMSK) { /* Clear TX Ready */ msm_hs_write(uport, UARTDM_CR_ADDR, CLEAR_TX_READY); if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) { msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK; msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); } /* Complete DMA TX transactions and submit new transactions */ tx_buf->tail = (tx_buf->tail + tx->tx_count) & ~UART_XMIT_SIZE; tx->dma_in_flight = 0; uport->icount.tx += tx->tx_count; if (tx->tx_ready_int_en) msm_hs_submit_tx_locked(uport); if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS) uart_write_wakeup(uport); } if (isr_status & UARTDM_ISR_TXLEV_BMSK) { /* TX FIFO is empty */ msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK; msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); if (!msm_hs_check_clock_off_locked(uport)) hrtimer_start(&msm_uport->clk_off_timer, msm_uport->clk_off_delay, HRTIMER_MODE_REL); } /* Change in CTS interrupt */ if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK) msm_hs_handle_delta_cts(uport); spin_unlock_irqrestore(&uport->lock, flags); return IRQ_HANDLED; } void msm_hs_request_clock_off_locked(struct uart_port *uport) { struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); if (msm_uport->clk_state == MSM_HS_CLK_ON) { msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF; msm_uport->clk_req_off_state = CLK_REQ_OFF_START; if (!use_low_power_rx_wakeup(msm_uport)) set_rfr_locked(uport, 0); msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK; msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); } } /** * msm_hs_request_clock_off - request to (i.e. asynchronously) turn off uart * clock once pending TX is flushed and Rx DMA command is terminated. * @uport: uart_port structure for the device instance. * * This functions puts the device into a partially active low power mode. It * waits to complete all pending tx transactions, flushes ongoing Rx DMA * command and terminates UART side Rx transaction, puts UART HW in non DMA * mode and then clocks off the device. A client calls this when no UART * data is expected. msm_request_clock_on() must be called before any further * UART can be sent or received. */ void msm_hs_request_clock_off(struct uart_port *uport) { unsigned long flags; spin_lock_irqsave(&uport->lock, flags); msm_hs_request_clock_off_locked(uport); spin_unlock_irqrestore(&uport->lock, flags); } void msm_hs_request_clock_on_locked(struct uart_port *uport) { struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); unsigned int data; switch (msm_uport->clk_state) { case MSM_HS_CLK_OFF: clk_enable(msm_uport->clk); disable_irq_nosync(msm_uport->rx_wakeup.irq); /* fall-through */ case MSM_HS_CLK_REQUEST_OFF: if (msm_uport->rx.flush == FLUSH_STOP || msm_uport->rx.flush == FLUSH_SHUTDOWN) { msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX); data = msm_hs_read(uport, UARTDM_DMEN_ADDR); data |= UARTDM_RX_DM_EN_BMSK; msm_hs_write(uport, UARTDM_DMEN_ADDR, data); } hrtimer_try_to_cancel(&msm_uport->clk_off_timer); if (msm_uport->rx.flush == FLUSH_SHUTDOWN) msm_hs_start_rx_locked(uport); if (!use_low_power_rx_wakeup(msm_uport)) set_rfr_locked(uport, 1); if (msm_uport->rx.flush == FLUSH_STOP) msm_uport->rx.flush = FLUSH_IGNORE; msm_uport->clk_state = MSM_HS_CLK_ON; break; case MSM_HS_CLK_ON: break; case MSM_HS_CLK_PORT_OFF: break; } } /** * msm_hs_request_clock_on - Switch the device from partially active low * power mode to fully active (i.e. clock on) mode. * @uport: uart_port structure for the device. * * This function switches on the input clock, puts UART HW into DMA mode * and enqueues an Rx DMA command if the device was in partially active * mode. It has no effect if called with the device in inactive state. */ void msm_hs_request_clock_on(struct uart_port *uport) { unsigned long flags; spin_lock_irqsave(&uport->lock, flags); msm_hs_request_clock_on_locked(uport); spin_unlock_irqrestore(&uport->lock, flags); } static irqreturn_t msm_hs_rx_wakeup_isr(int irq, void *dev) { unsigned int wakeup = 0; unsigned long flags; struct msm_hs_port *msm_uport = dev; struct uart_port *uport = &msm_uport->uport; struct tty_struct *tty = NULL; spin_lock_irqsave(&uport->lock, flags); if (msm_uport->clk_state == MSM_HS_CLK_OFF) { /* ignore the first irq - it is a pending irq that occurred * before enable_irq() */ if (msm_uport->rx_wakeup.ignore) msm_uport->rx_wakeup.ignore = 0; else wakeup = 1; } if (wakeup) { /* the uart was clocked off during an rx, wake up and * optionally inject char into tty rx */ msm_hs_request_clock_on_locked(uport); if (msm_uport->rx_wakeup.inject_rx) { tty = uport->state->port.tty; tty_insert_flip_char(tty, msm_uport->rx_wakeup.rx_to_inject, TTY_NORMAL); queue_work(msm_hs_workqueue, &msm_uport->rx.tty_work); } } spin_unlock_irqrestore(&uport->lock, flags); return IRQ_HANDLED; } static const char *msm_hs_type(struct uart_port *port) { return (port->type == PORT_MSM) ? "MSM_HS_UART" : NULL; } /* Called when port is opened */ static int msm_hs_startup(struct uart_port *uport) { int ret; int rfr_level; unsigned long flags; unsigned int data; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); struct circ_buf *tx_buf = &uport->state->xmit; struct msm_hs_tx *tx = &msm_uport->tx; struct msm_hs_rx *rx = &msm_uport->rx; rfr_level = uport->fifosize; if (rfr_level > 16) rfr_level -= 16; tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE, DMA_TO_DEVICE); /* do not let tty layer execute RX in global workqueue, use a * dedicated workqueue managed by this driver */ uport->state->port.tty->low_latency = 1; /* turn on uart clk */ ret = msm_hs_init_clk_locked(uport); if (unlikely(ret)) { printk(KERN_ERR "Turning uartclk failed!\n"); goto err_msm_hs_init_clk; } /* Set auto RFR Level */ data = msm_hs_read(uport, UARTDM_MR1_ADDR); data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK; data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK; data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2)); data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level); msm_hs_write(uport, UARTDM_MR1_ADDR, data); /* Make sure RXSTALE count is non-zero */ data = msm_hs_read(uport, UARTDM_IPR_ADDR); if (!data) { data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK; msm_hs_write(uport, UARTDM_IPR_ADDR, data); } /* Enable Data Mover Mode */ data = UARTDM_TX_DM_EN_BMSK | UARTDM_RX_DM_EN_BMSK; msm_hs_write(uport, UARTDM_DMEN_ADDR, data); /* Reset TX */ msm_hs_write(uport, UARTDM_CR_ADDR, RESET_TX); msm_hs_write(uport, UARTDM_CR_ADDR, RESET_RX); msm_hs_write(uport, UARTDM_CR_ADDR, RESET_ERROR_STATUS); msm_hs_write(uport, UARTDM_CR_ADDR, RESET_BREAK_INT); msm_hs_write(uport, UARTDM_CR_ADDR, RESET_STALE_INT); msm_hs_write(uport, UARTDM_CR_ADDR, RESET_CTS); msm_hs_write(uport, UARTDM_CR_ADDR, RFR_LOW); /* Turn on Uart Receiver */ msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_EN_BMSK); /* Turn on Uart Transmitter */ msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_EN_BMSK); /* Initialize the tx */ tx->tx_ready_int_en = 0; tx->dma_in_flight = 0; tx->xfer.complete_func = msm_hs_dmov_tx_callback; tx->xfer.execute_func = NULL; tx->command_ptr->cmd = CMD_LC | CMD_DST_CRCI(msm_uport->dma_tx_crci) | CMD_MODE_BOX; tx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16) | (MSM_UARTDM_BURST_SIZE); tx->command_ptr->row_offset = (MSM_UARTDM_BURST_SIZE << 16); tx->command_ptr->dst_row_addr = msm_uport->uport.mapbase + UARTDM_TF_ADDR; /* Turn on Uart Receive */ rx->xfer.complete_func = msm_hs_dmov_rx_callback; rx->xfer.execute_func = NULL; rx->command_ptr->cmd = CMD_LC | CMD_SRC_CRCI(msm_uport->dma_rx_crci) | CMD_MODE_BOX; rx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16) | (MSM_UARTDM_BURST_SIZE); rx->command_ptr->row_offset = MSM_UARTDM_BURST_SIZE; rx->command_ptr->src_row_addr = uport->mapbase + UARTDM_RF_ADDR; msm_uport->imr_reg |= UARTDM_ISR_RXSTALE_BMSK; /* Enable reading the current CTS, no harm even if CTS is ignored */ msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK; msm_hs_write(uport, UARTDM_TFWR_ADDR, 0); /* TXLEV on empty TX fifo */ ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH, "msm_hs_uart", msm_uport); if (unlikely(ret)) { printk(KERN_ERR "Request msm_hs_uart IRQ failed!\n"); goto err_request_irq; } if (use_low_power_rx_wakeup(msm_uport)) { ret = request_irq(msm_uport->rx_wakeup.irq, msm_hs_rx_wakeup_isr, IRQF_TRIGGER_FALLING, "msm_hs_rx_wakeup", msm_uport); if (unlikely(ret)) { printk(KERN_ERR "Request msm_hs_rx_wakeup IRQ failed!\n"); free_irq(uport->irq, msm_uport); goto err_request_irq; } disable_irq(msm_uport->rx_wakeup.irq); } spin_lock_irqsave(&uport->lock, flags); msm_hs_write(uport, UARTDM_RFWR_ADDR, 0); msm_hs_start_rx_locked(uport); spin_unlock_irqrestore(&uport->lock, flags); ret = pm_runtime_set_active(uport->dev); if (ret) dev_err(uport->dev, "set active error:%d\n", ret); pm_runtime_enable(uport->dev); return 0; err_request_irq: err_msm_hs_init_clk: dma_unmap_single(uport->dev, tx->dma_base, UART_XMIT_SIZE, DMA_TO_DEVICE); return ret; } /* Initialize tx and rx data structures */ static int __devinit uartdm_init_port(struct uart_port *uport) { int ret = 0; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); struct msm_hs_tx *tx = &msm_uport->tx; struct msm_hs_rx *rx = &msm_uport->rx; /* Allocate the command pointer. Needs to be 64 bit aligned */ tx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA); if (!tx->command_ptr) return -ENOMEM; tx->command_ptr_ptr = kmalloc(sizeof(u32 *), GFP_KERNEL | __GFP_DMA); if (!tx->command_ptr_ptr) { ret = -ENOMEM; goto err_tx_command_ptr_ptr; } tx->mapped_cmd_ptr = dma_map_single(uport->dev, tx->command_ptr, sizeof(dmov_box), DMA_TO_DEVICE); tx->mapped_cmd_ptr_ptr = dma_map_single(uport->dev, tx->command_ptr_ptr, sizeof(u32 *), DMA_TO_DEVICE); tx->xfer.cmdptr = DMOV_CMD_ADDR(tx->mapped_cmd_ptr_ptr); init_waitqueue_head(&rx->wait); rx->pool = dma_pool_create("rx_buffer_pool", uport->dev, UARTDM_RX_BUF_SIZE, 16, 0); if (!rx->pool) { pr_err("%s(): cannot allocate rx_buffer_pool", __func__); ret = -ENOMEM; goto err_dma_pool_create; } rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer); if (!rx->buffer) { pr_err("%s(): cannot allocate rx->buffer", __func__); ret = -ENOMEM; goto err_dma_pool_alloc; } /* Allocate the command pointer. Needs to be 64 bit aligned */ rx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA); if (!rx->command_ptr) { pr_err("%s(): cannot allocate rx->command_ptr", __func__); ret = -ENOMEM; goto err_rx_command_ptr; } rx->command_ptr_ptr = kmalloc(sizeof(u32 *), GFP_KERNEL | __GFP_DMA); if (!rx->command_ptr_ptr) { pr_err("%s(): cannot allocate rx->command_ptr_ptr", __func__); ret = -ENOMEM; goto err_rx_command_ptr_ptr; } rx->command_ptr->num_rows = ((UARTDM_RX_BUF_SIZE >> 4) << 16) | (UARTDM_RX_BUF_SIZE >> 4); rx->command_ptr->dst_row_addr = rx->rbuffer; rx->mapped_cmd_ptr = dma_map_single(uport->dev, rx->command_ptr, sizeof(dmov_box), DMA_TO_DEVICE); *rx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(rx->mapped_cmd_ptr); rx->cmdptr_dmaaddr = dma_map_single(uport->dev, rx->command_ptr_ptr, sizeof(u32 *), DMA_TO_DEVICE); rx->xfer.cmdptr = DMOV_CMD_ADDR(rx->cmdptr_dmaaddr); INIT_WORK(&rx->tty_work, msm_hs_tty_flip_buffer_work); return ret; err_rx_command_ptr_ptr: kfree(rx->command_ptr); err_rx_command_ptr: dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer, msm_uport->rx.rbuffer); err_dma_pool_alloc: dma_pool_destroy(msm_uport->rx.pool); err_dma_pool_create: dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32 *), DMA_TO_DEVICE); dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box), DMA_TO_DEVICE); kfree(msm_uport->tx.command_ptr_ptr); err_tx_command_ptr_ptr: kfree(msm_uport->tx.command_ptr); return ret; } static int __devinit msm_hs_probe(struct platform_device *pdev) { int ret; struct uart_port *uport; struct msm_hs_port *msm_uport; struct resource *resource; const struct msm_serial_hs_platform_data *pdata = pdev->dev.platform_data; if (pdev->id < 0 || pdev->id >= UARTDM_NR) { printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id); return -EINVAL; } msm_uport = &q_uart_port[pdev->id]; uport = &msm_uport->uport; uport->dev = &pdev->dev; resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (unlikely(!resource)) return -ENXIO; uport->mapbase = resource->start; uport->irq = platform_get_irq(pdev, 0); if (unlikely(uport->irq < 0)) return -ENXIO; if (unlikely(irq_set_irq_wake(uport->irq, 1))) return -ENXIO; if (pdata == NULL || pdata->rx_wakeup_irq < 0) msm_uport->rx_wakeup.irq = -1; else { msm_uport->rx_wakeup.irq = pdata->rx_wakeup_irq; msm_uport->rx_wakeup.ignore = 1; msm_uport->rx_wakeup.inject_rx = pdata->inject_rx_on_wakeup; msm_uport->rx_wakeup.rx_to_inject = pdata->rx_to_inject; if (unlikely(msm_uport->rx_wakeup.irq < 0)) return -ENXIO; if (unlikely(irq_set_irq_wake(msm_uport->rx_wakeup.irq, 1))) return -ENXIO; } if (pdata == NULL) msm_uport->exit_lpm_cb = NULL; else msm_uport->exit_lpm_cb = pdata->exit_lpm_cb; resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, "uartdm_channels"); if (unlikely(!resource)) return -ENXIO; msm_uport->dma_tx_channel = resource->start; msm_uport->dma_rx_channel = resource->end; resource = platform_get_resource_byname(pdev, IORESOURCE_DMA, "uartdm_crci"); if (unlikely(!resource)) return -ENXIO; msm_uport->dma_tx_crci = resource->start; msm_uport->dma_rx_crci = resource->end; uport->iotype = UPIO_MEM; uport->fifosize = UART_FIFOSIZE; uport->ops = &msm_hs_ops; uport->flags = UPF_BOOT_AUTOCONF; uport->uartclk = UARTCLK; msm_uport->imr_reg = 0x0; msm_uport->clk = clk_get(&pdev->dev, "uartdm_clk"); if (IS_ERR(msm_uport->clk)) return PTR_ERR(msm_uport->clk); ret = uartdm_init_port(uport); if (unlikely(ret)) return ret; msm_uport->clk_state = MSM_HS_CLK_PORT_OFF; hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); msm_uport->clk_off_timer.function = msm_hs_clk_off_retry; msm_uport->clk_off_delay = ktime_set(0, 1000000); /* 1ms */ uport->line = pdev->id; return uart_add_one_port(&msm_hs_driver, uport); } static int __init msm_serial_hs_init(void) { int ret, i; /* Init all UARTS as non-configured */ for (i = 0; i < UARTDM_NR; i++) q_uart_port[i].uport.type = PORT_UNKNOWN; msm_hs_workqueue = create_singlethread_workqueue("msm_serial_hs"); if (unlikely(!msm_hs_workqueue)) return -ENOMEM; ret = uart_register_driver(&msm_hs_driver); if (unlikely(ret)) { printk(KERN_ERR "%s failed to load\n", __func__); goto err_uart_register_driver; } ret = platform_driver_register(&msm_serial_hs_platform_driver); if (ret) { printk(KERN_ERR "%s failed to load\n", __func__); goto err_platform_driver_register; } return ret; err_platform_driver_register: uart_unregister_driver(&msm_hs_driver); err_uart_register_driver: destroy_workqueue(msm_hs_workqueue); return ret; } module_init(msm_serial_hs_init); /* * Called by the upper layer when port is closed. * - Disables the port * - Unhook the ISR */ static void msm_hs_shutdown(struct uart_port *uport) { unsigned long flags; struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); BUG_ON(msm_uport->rx.flush < FLUSH_STOP); spin_lock_irqsave(&uport->lock, flags); clk_enable(msm_uport->clk); /* Disable the transmitter */ msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_TX_DISABLE_BMSK); /* Disable the receiver */ msm_hs_write(uport, UARTDM_CR_ADDR, UARTDM_CR_RX_DISABLE_BMSK); pm_runtime_disable(uport->dev); pm_runtime_set_suspended(uport->dev); /* Free the interrupt */ free_irq(uport->irq, msm_uport); if (use_low_power_rx_wakeup(msm_uport)) free_irq(msm_uport->rx_wakeup.irq, msm_uport); msm_uport->imr_reg = 0; msm_hs_write(uport, UARTDM_IMR_ADDR, msm_uport->imr_reg); wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN); clk_disable(msm_uport->clk); /* to balance local clk_enable() */ if (msm_uport->clk_state != MSM_HS_CLK_OFF) clk_disable(msm_uport->clk); /* to balance clk_state */ msm_uport->clk_state = MSM_HS_CLK_PORT_OFF; dma_unmap_single(uport->dev, msm_uport->tx.dma_base, UART_XMIT_SIZE, DMA_TO_DEVICE); spin_unlock_irqrestore(&uport->lock, flags); if (cancel_work_sync(&msm_uport->rx.tty_work)) msm_hs_tty_flip_buffer_work(&msm_uport->rx.tty_work); } static void __exit msm_serial_hs_exit(void) { flush_workqueue(msm_hs_workqueue); destroy_workqueue(msm_hs_workqueue); platform_driver_unregister(&msm_serial_hs_platform_driver); uart_unregister_driver(&msm_hs_driver); } module_exit(msm_serial_hs_exit); #ifdef CONFIG_PM_RUNTIME static int msm_hs_runtime_idle(struct device *dev) { /* * returning success from idle results in runtime suspend to be * called */ return 0; } static int msm_hs_runtime_resume(struct device *dev) { struct platform_device *pdev = container_of(dev, struct platform_device, dev); struct msm_hs_port *msm_uport = &q_uart_port[pdev->id]; msm_hs_request_clock_on(&msm_uport->uport); return 0; } static int msm_hs_runtime_suspend(struct device *dev) { struct platform_device *pdev = container_of(dev, struct platform_device, dev); struct msm_hs_port *msm_uport = &q_uart_port[pdev->id]; msm_hs_request_clock_off(&msm_uport->uport); return 0; } #else #define msm_hs_runtime_idle NULL #define msm_hs_runtime_resume NULL #define msm_hs_runtime_suspend NULL #endif static const struct dev_pm_ops msm_hs_dev_pm_ops = { .runtime_suspend = msm_hs_runtime_suspend, .runtime_resume = msm_hs_runtime_resume, .runtime_idle = msm_hs_runtime_idle, }; static struct platform_driver msm_serial_hs_platform_driver = { .probe = msm_hs_probe, .remove = __devexit_p(msm_hs_remove), .driver = { .name = "msm_serial_hs", .owner = THIS_MODULE, .pm = &msm_hs_dev_pm_ops, }, }; static struct uart_driver msm_hs_driver = { .owner = THIS_MODULE, .driver_name = "msm_serial_hs", .dev_name = "ttyHS", .nr = UARTDM_NR, .cons = 0, }; static struct uart_ops msm_hs_ops = { .tx_empty = msm_hs_tx_empty, .set_mctrl = msm_hs_set_mctrl_locked, .get_mctrl = msm_hs_get_mctrl_locked, .stop_tx = msm_hs_stop_tx_locked, .start_tx = msm_hs_start_tx_locked, .stop_rx = msm_hs_stop_rx_locked, .enable_ms = msm_hs_enable_ms_locked, .break_ctl = msm_hs_break_ctl, .startup = msm_hs_startup, .shutdown = msm_hs_shutdown, .set_termios = msm_hs_set_termios, .pm = msm_hs_pm, .type = msm_hs_type, .config_port = msm_hs_config_port, .release_port = msm_hs_release_port, .request_port = msm_hs_request_port, }; MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset"); MODULE_VERSION("1.2"); MODULE_LICENSE("GPL v2");