/* * linux/fs/hfs/super.c * * Copyright (C) 1995-1997 Paul H. Hargrove * (C) 2003 Ardis Technologies <roman@ardistech.com> * This file may be distributed under the terms of the GNU General Public License. * * This file contains hfs_read_super(), some of the super_ops and * init_hfs_fs() and exit_hfs_fs(). The remaining super_ops are in * inode.c since they deal with inodes. * * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds */ #include <linux/module.h> #include <linux/blkdev.h> #include <linux/mount.h> #include <linux/init.h> #include <linux/nls.h> #include <linux/parser.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/vfs.h> #include "hfs_fs.h" #include "btree.h" static struct kmem_cache *hfs_inode_cachep; MODULE_LICENSE("GPL"); /* * hfs_write_super() * * Description: * This function is called by the VFS only. When the filesystem * is mounted r/w it updates the MDB on disk. * Input Variable(s): * struct super_block *sb: Pointer to the hfs superblock * Output Variable(s): * NONE * Returns: * void * Preconditions: * 'sb' points to a "valid" (struct super_block). * Postconditions: * The MDB is marked 'unsuccessfully unmounted' by clearing bit 8 of drAtrb * (hfs_put_super() must set this flag!). Some MDB fields are updated * and the MDB buffer is written to disk by calling hfs_mdb_commit(). */ static void hfs_write_super(struct super_block *sb) { lock_super(sb); sb->s_dirt = 0; /* sync everything to the buffers */ if (!(sb->s_flags & MS_RDONLY)) hfs_mdb_commit(sb); unlock_super(sb); } static int hfs_sync_fs(struct super_block *sb, int wait) { lock_super(sb); hfs_mdb_commit(sb); sb->s_dirt = 0; unlock_super(sb); return 0; } /* * hfs_put_super() * * This is the put_super() entry in the super_operations structure for * HFS filesystems. The purpose is to release the resources * associated with the superblock sb. */ static void hfs_put_super(struct super_block *sb) { if (sb->s_dirt) hfs_write_super(sb); hfs_mdb_close(sb); /* release the MDB's resources */ hfs_mdb_put(sb); } /* * hfs_statfs() * * This is the statfs() entry in the super_operations structure for * HFS filesystems. The purpose is to return various data about the * filesystem. * * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks. */ static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; u64 id = huge_encode_dev(sb->s_bdev->bd_dev); buf->f_type = HFS_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div; buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div; buf->f_bavail = buf->f_bfree; buf->f_files = HFS_SB(sb)->fs_ablocks; buf->f_ffree = HFS_SB(sb)->free_ablocks; buf->f_fsid.val[0] = (u32)id; buf->f_fsid.val[1] = (u32)(id >> 32); buf->f_namelen = HFS_NAMELEN; return 0; } static int hfs_remount(struct super_block *sb, int *flags, char *data) { *flags |= MS_NODIRATIME; if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) return 0; if (!(*flags & MS_RDONLY)) { if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) { printk(KERN_WARNING "hfs: filesystem was not cleanly unmounted, " "running fsck.hfs is recommended. leaving read-only.\n"); sb->s_flags |= MS_RDONLY; *flags |= MS_RDONLY; } else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) { printk(KERN_WARNING "hfs: filesystem is marked locked, leaving read-only.\n"); sb->s_flags |= MS_RDONLY; *flags |= MS_RDONLY; } } return 0; } static int hfs_show_options(struct seq_file *seq, struct vfsmount *mnt) { struct hfs_sb_info *sbi = HFS_SB(mnt->mnt_sb); if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f)) seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator); if (sbi->s_type != cpu_to_be32(0x3f3f3f3f)) seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type); seq_printf(seq, ",uid=%u,gid=%u", sbi->s_uid, sbi->s_gid); if (sbi->s_file_umask != 0133) seq_printf(seq, ",file_umask=%o", sbi->s_file_umask); if (sbi->s_dir_umask != 0022) seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask); if (sbi->part >= 0) seq_printf(seq, ",part=%u", sbi->part); if (sbi->session >= 0) seq_printf(seq, ",session=%u", sbi->session); if (sbi->nls_disk) seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset); if (sbi->nls_io) seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset); if (sbi->s_quiet) seq_printf(seq, ",quiet"); return 0; } static struct inode *hfs_alloc_inode(struct super_block *sb) { struct hfs_inode_info *i; i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL); return i ? &i->vfs_inode : NULL; } static void hfs_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); INIT_LIST_HEAD(&inode->i_dentry); kmem_cache_free(hfs_inode_cachep, HFS_I(inode)); } static void hfs_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, hfs_i_callback); } static const struct super_operations hfs_super_operations = { .alloc_inode = hfs_alloc_inode, .destroy_inode = hfs_destroy_inode, .write_inode = hfs_write_inode, .evict_inode = hfs_evict_inode, .put_super = hfs_put_super, .write_super = hfs_write_super, .sync_fs = hfs_sync_fs, .statfs = hfs_statfs, .remount_fs = hfs_remount, .show_options = hfs_show_options, }; enum { opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask, opt_part, opt_session, opt_type, opt_creator, opt_quiet, opt_codepage, opt_iocharset, opt_err }; static const match_table_t tokens = { { opt_uid, "uid=%u" }, { opt_gid, "gid=%u" }, { opt_umask, "umask=%o" }, { opt_file_umask, "file_umask=%o" }, { opt_dir_umask, "dir_umask=%o" }, { opt_part, "part=%u" }, { opt_session, "session=%u" }, { opt_type, "type=%s" }, { opt_creator, "creator=%s" }, { opt_quiet, "quiet" }, { opt_codepage, "codepage=%s" }, { opt_iocharset, "iocharset=%s" }, { opt_err, NULL } }; static inline int match_fourchar(substring_t *arg, u32 *result) { if (arg->to - arg->from != 4) return -EINVAL; memcpy(result, arg->from, 4); return 0; } /* * parse_options() * * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger * This function is called by hfs_read_super() to parse the mount options. */ static int parse_options(char *options, struct hfs_sb_info *hsb) { char *p; substring_t args[MAX_OPT_ARGS]; int tmp, token; /* initialize the sb with defaults */ hsb->s_uid = current_uid(); hsb->s_gid = current_gid(); hsb->s_file_umask = 0133; hsb->s_dir_umask = 0022; hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */ hsb->s_quiet = 0; hsb->part = -1; hsb->session = -1; if (!options) return 1; while ((p = strsep(&options, ",")) != NULL) { if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case opt_uid: if (match_int(&args[0], &tmp)) { printk(KERN_ERR "hfs: uid requires an argument\n"); return 0; } hsb->s_uid = (uid_t)tmp; break; case opt_gid: if (match_int(&args[0], &tmp)) { printk(KERN_ERR "hfs: gid requires an argument\n"); return 0; } hsb->s_gid = (gid_t)tmp; break; case opt_umask: if (match_octal(&args[0], &tmp)) { printk(KERN_ERR "hfs: umask requires a value\n"); return 0; } hsb->s_file_umask = (umode_t)tmp; hsb->s_dir_umask = (umode_t)tmp; break; case opt_file_umask: if (match_octal(&args[0], &tmp)) { printk(KERN_ERR "hfs: file_umask requires a value\n"); return 0; } hsb->s_file_umask = (umode_t)tmp; break; case opt_dir_umask: if (match_octal(&args[0], &tmp)) { printk(KERN_ERR "hfs: dir_umask requires a value\n"); return 0; } hsb->s_dir_umask = (umode_t)tmp; break; case opt_part: if (match_int(&args[0], &hsb->part)) { printk(KERN_ERR "hfs: part requires an argument\n"); return 0; } break; case opt_session: if (match_int(&args[0], &hsb->session)) { printk(KERN_ERR "hfs: session requires an argument\n"); return 0; } break; case opt_type: if (match_fourchar(&args[0], &hsb->s_type)) { printk(KERN_ERR "hfs: type requires a 4 character value\n"); return 0; } break; case opt_creator: if (match_fourchar(&args[0], &hsb->s_creator)) { printk(KERN_ERR "hfs: creator requires a 4 character value\n"); return 0; } break; case opt_quiet: hsb->s_quiet = 1; break; case opt_codepage: if (hsb->nls_disk) { printk(KERN_ERR "hfs: unable to change codepage\n"); return 0; } p = match_strdup(&args[0]); if (p) hsb->nls_disk = load_nls(p); if (!hsb->nls_disk) { printk(KERN_ERR "hfs: unable to load codepage \"%s\"\n", p); kfree(p); return 0; } kfree(p); break; case opt_iocharset: if (hsb->nls_io) { printk(KERN_ERR "hfs: unable to change iocharset\n"); return 0; } p = match_strdup(&args[0]); if (p) hsb->nls_io = load_nls(p); if (!hsb->nls_io) { printk(KERN_ERR "hfs: unable to load iocharset \"%s\"\n", p); kfree(p); return 0; } kfree(p); break; default: return 0; } } if (hsb->nls_disk && !hsb->nls_io) { hsb->nls_io = load_nls_default(); if (!hsb->nls_io) { printk(KERN_ERR "hfs: unable to load default iocharset\n"); return 0; } } hsb->s_dir_umask &= 0777; hsb->s_file_umask &= 0577; return 1; } /* * hfs_read_super() * * This is the function that is responsible for mounting an HFS * filesystem. It performs all the tasks necessary to get enough data * from the disk to read the root inode. This includes parsing the * mount options, dealing with Macintosh partitions, reading the * superblock and the allocation bitmap blocks, calling * hfs_btree_init() to get the necessary data about the extents and * catalog B-trees and, finally, reading the root inode into memory. */ static int hfs_fill_super(struct super_block *sb, void *data, int silent) { struct hfs_sb_info *sbi; struct hfs_find_data fd; hfs_cat_rec rec; struct inode *root_inode; int res; sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL); if (!sbi) return -ENOMEM; sb->s_fs_info = sbi; res = -EINVAL; if (!parse_options((char *)data, sbi)) { printk(KERN_ERR "hfs: unable to parse mount options.\n"); goto bail; } sb->s_op = &hfs_super_operations; sb->s_flags |= MS_NODIRATIME; mutex_init(&sbi->bitmap_lock); res = hfs_mdb_get(sb); if (res) { if (!silent) printk(KERN_WARNING "hfs: can't find a HFS filesystem on dev %s.\n", hfs_mdb_name(sb)); res = -EINVAL; goto bail; } /* try to get the root inode */ hfs_find_init(HFS_SB(sb)->cat_tree, &fd); res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd); if (!res) { if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) { res = -EIO; goto bail; } hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength); } if (res) { hfs_find_exit(&fd); goto bail_no_root; } res = -EINVAL; root_inode = hfs_iget(sb, &fd.search_key->cat, &rec); hfs_find_exit(&fd); if (!root_inode) goto bail_no_root; sb->s_d_op = &hfs_dentry_operations; res = -ENOMEM; sb->s_root = d_alloc_root(root_inode); if (!sb->s_root) goto bail_iput; /* everything's okay */ return 0; bail_iput: iput(root_inode); bail_no_root: printk(KERN_ERR "hfs: get root inode failed.\n"); bail: hfs_mdb_put(sb); return res; } static struct dentry *hfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super); } static struct file_system_type hfs_fs_type = { .owner = THIS_MODULE, .name = "hfs", .mount = hfs_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static void hfs_init_once(void *p) { struct hfs_inode_info *i = p; inode_init_once(&i->vfs_inode); } static int __init init_hfs_fs(void) { int err; hfs_inode_cachep = kmem_cache_create("hfs_inode_cache", sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN, hfs_init_once); if (!hfs_inode_cachep) return -ENOMEM; err = register_filesystem(&hfs_fs_type); if (err) kmem_cache_destroy(hfs_inode_cachep); return err; } static void __exit exit_hfs_fs(void) { unregister_filesystem(&hfs_fs_type); kmem_cache_destroy(hfs_inode_cachep); } module_init(init_hfs_fs) module_exit(exit_hfs_fs)