/* * index.c - NTFS kernel index handling. Part of the Linux-NTFS project. * * Copyright (c) 2004-2005 Anton Altaparmakov * * This program/include file is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as published * by the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program/include file is distributed in the hope that it will be * useful, but WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program (in the main directory of the Linux-NTFS * distribution in the file COPYING); if not, write to the Free Software * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/slab.h> #include "aops.h" #include "collate.h" #include "debug.h" #include "index.h" #include "ntfs.h" /** * ntfs_index_ctx_get - allocate and initialize a new index context * @idx_ni: ntfs index inode with which to initialize the context * * Allocate a new index context, initialize it with @idx_ni and return it. * Return NULL if allocation failed. * * Locking: Caller must hold i_mutex on the index inode. */ ntfs_index_context *ntfs_index_ctx_get(ntfs_inode *idx_ni) { ntfs_index_context *ictx; ictx = kmem_cache_alloc(ntfs_index_ctx_cache, GFP_NOFS); if (ictx) *ictx = (ntfs_index_context){ .idx_ni = idx_ni }; return ictx; } /** * ntfs_index_ctx_put - release an index context * @ictx: index context to free * * Release the index context @ictx, releasing all associated resources. * * Locking: Caller must hold i_mutex on the index inode. */ void ntfs_index_ctx_put(ntfs_index_context *ictx) { if (ictx->entry) { if (ictx->is_in_root) { if (ictx->actx) ntfs_attr_put_search_ctx(ictx->actx); if (ictx->base_ni) unmap_mft_record(ictx->base_ni); } else { struct page *page = ictx->page; if (page) { BUG_ON(!PageLocked(page)); unlock_page(page); ntfs_unmap_page(page); } } } kmem_cache_free(ntfs_index_ctx_cache, ictx); return; } /** * ntfs_index_lookup - find a key in an index and return its index entry * @key: [IN] key for which to search in the index * @key_len: [IN] length of @key in bytes * @ictx: [IN/OUT] context describing the index and the returned entry * * Before calling ntfs_index_lookup(), @ictx must have been obtained from a * call to ntfs_index_ctx_get(). * * Look for the @key in the index specified by the index lookup context @ictx. * ntfs_index_lookup() walks the contents of the index looking for the @key. * * If the @key is found in the index, 0 is returned and @ictx is setup to * describe the index entry containing the matching @key. @ictx->entry is the * index entry and @ictx->data and @ictx->data_len are the index entry data and * its length in bytes, respectively. * * If the @key is not found in the index, -ENOENT is returned and @ictx is * setup to describe the index entry whose key collates immediately after the * search @key, i.e. this is the position in the index at which an index entry * with a key of @key would need to be inserted. * * If an error occurs return the negative error code and @ictx is left * untouched. * * When finished with the entry and its data, call ntfs_index_ctx_put() to free * the context and other associated resources. * * If the index entry was modified, call flush_dcache_index_entry_page() * immediately after the modification and either ntfs_index_entry_mark_dirty() * or ntfs_index_entry_write() before the call to ntfs_index_ctx_put() to * ensure that the changes are written to disk. * * Locking: - Caller must hold i_mutex on the index inode. * - Each page cache page in the index allocation mapping must be * locked whilst being accessed otherwise we may find a corrupt * page due to it being under ->writepage at the moment which * applies the mst protection fixups before writing out and then * removes them again after the write is complete after which it * unlocks the page. */ int ntfs_index_lookup(const void *key, const int key_len, ntfs_index_context *ictx) { VCN vcn, old_vcn; ntfs_inode *idx_ni = ictx->idx_ni; ntfs_volume *vol = idx_ni->vol; struct super_block *sb = vol->sb; ntfs_inode *base_ni = idx_ni->ext.base_ntfs_ino; MFT_RECORD *m; INDEX_ROOT *ir; INDEX_ENTRY *ie; INDEX_ALLOCATION *ia; u8 *index_end, *kaddr; ntfs_attr_search_ctx *actx; struct address_space *ia_mapping; struct page *page; int rc, err = 0; ntfs_debug("Entering."); BUG_ON(!NInoAttr(idx_ni)); BUG_ON(idx_ni->type != AT_INDEX_ALLOCATION); BUG_ON(idx_ni->nr_extents != -1); BUG_ON(!base_ni); BUG_ON(!key); BUG_ON(key_len <= 0); if (!ntfs_is_collation_rule_supported( idx_ni->itype.index.collation_rule)) { ntfs_error(sb, "Index uses unsupported collation rule 0x%x. " "Aborting lookup.", le32_to_cpu( idx_ni->itype.index.collation_rule)); return -EOPNOTSUPP; } /* Get hold of the mft record for the index inode. */ m = map_mft_record(base_ni); if (IS_ERR(m)) { ntfs_error(sb, "map_mft_record() failed with error code %ld.", -PTR_ERR(m)); return PTR_ERR(m); } actx = ntfs_attr_get_search_ctx(base_ni, m); if (unlikely(!actx)) { err = -ENOMEM; goto err_out; } /* Find the index root attribute in the mft record. */ err = ntfs_attr_lookup(AT_INDEX_ROOT, idx_ni->name, idx_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, actx); if (unlikely(err)) { if (err == -ENOENT) { ntfs_error(sb, "Index root attribute missing in inode " "0x%lx.", idx_ni->mft_no); err = -EIO; } goto err_out; } /* Get to the index root value (it has been verified in read_inode). */ ir = (INDEX_ROOT*)((u8*)actx->attr + le16_to_cpu(actx->attr->data.resident.value_offset)); index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length); /* The first index entry. */ ie = (INDEX_ENTRY*)((u8*)&ir->index + le32_to_cpu(ir->index.entries_offset)); /* * Loop until we exceed valid memory (corruption case) or until we * reach the last entry. */ for (;; ie = (INDEX_ENTRY*)((u8*)ie + le16_to_cpu(ie->length))) { /* Bounds checks. */ if ((u8*)ie < (u8*)actx->mrec || (u8*)ie + sizeof(INDEX_ENTRY_HEADER) > index_end || (u8*)ie + le16_to_cpu(ie->length) > index_end) goto idx_err_out; /* * The last entry cannot contain a key. It can however contain * a pointer to a child node in the B+tree so we just break out. */ if (ie->flags & INDEX_ENTRY_END) break; /* Further bounds checks. */ if ((u32)sizeof(INDEX_ENTRY_HEADER) + le16_to_cpu(ie->key_length) > le16_to_cpu(ie->data.vi.data_offset) || (u32)le16_to_cpu(ie->data.vi.data_offset) + le16_to_cpu(ie->data.vi.data_length) > le16_to_cpu(ie->length)) goto idx_err_out; /* If the keys match perfectly, we setup @ictx and return 0. */ if ((key_len == le16_to_cpu(ie->key_length)) && !memcmp(key, &ie->key, key_len)) { ir_done: ictx->is_in_root = true; ictx->ir = ir; ictx->actx = actx; ictx->base_ni = base_ni; ictx->ia = NULL; ictx->page = NULL; done: ictx->entry = ie; ictx->data = (u8*)ie + le16_to_cpu(ie->data.vi.data_offset); ictx->data_len = le16_to_cpu(ie->data.vi.data_length); ntfs_debug("Done."); return err; } /* * Not a perfect match, need to do full blown collation so we * know which way in the B+tree we have to go. */ rc = ntfs_collate(vol, idx_ni->itype.index.collation_rule, key, key_len, &ie->key, le16_to_cpu(ie->key_length)); /* * If @key collates before the key of the current entry, there * is definitely no such key in this index but we might need to * descend into the B+tree so we just break out of the loop. */ if (rc == -1) break; /* * A match should never happen as the memcmp() call should have * cought it, but we still treat it correctly. */ if (!rc) goto ir_done; /* The keys are not equal, continue the search. */ } /* * We have finished with this index without success. Check for the * presence of a child node and if not present setup @ictx and return * -ENOENT. */ if (!(ie->flags & INDEX_ENTRY_NODE)) { ntfs_debug("Entry not found."); err = -ENOENT; goto ir_done; } /* Child node present, descend into it. */ /* Consistency check: Verify that an index allocation exists. */ if (!NInoIndexAllocPresent(idx_ni)) { ntfs_error(sb, "No index allocation attribute but index entry " "requires one. Inode 0x%lx is corrupt or " "driver bug.", idx_ni->mft_no); goto err_out; } /* Get the starting vcn of the index_block holding the child node. */ vcn = sle64_to_cpup((sle64*)((u8*)ie + le16_to_cpu(ie->length) - 8)); ia_mapping = VFS_I(idx_ni)->i_mapping; /* * We are done with the index root and the mft record. Release them, * otherwise we deadlock with ntfs_map_page(). */ ntfs_attr_put_search_ctx(actx); unmap_mft_record(base_ni); m = NULL; actx = NULL; descend_into_child_node: /* * Convert vcn to index into the index allocation attribute in units * of PAGE_CACHE_SIZE and map the page cache page, reading it from * disk if necessary. */ page = ntfs_map_page(ia_mapping, vcn << idx_ni->itype.index.vcn_size_bits >> PAGE_CACHE_SHIFT); if (IS_ERR(page)) { ntfs_error(sb, "Failed to map index page, error %ld.", -PTR_ERR(page)); err = PTR_ERR(page); goto err_out; } lock_page(page); kaddr = (u8*)page_address(page); fast_descend_into_child_node: /* Get to the index allocation block. */ ia = (INDEX_ALLOCATION*)(kaddr + ((vcn << idx_ni->itype.index.vcn_size_bits) & ~PAGE_CACHE_MASK)); /* Bounds checks. */ if ((u8*)ia < kaddr || (u8*)ia > kaddr + PAGE_CACHE_SIZE) { ntfs_error(sb, "Out of bounds check failed. Corrupt inode " "0x%lx or driver bug.", idx_ni->mft_no); goto unm_err_out; } /* Catch multi sector transfer fixup errors. */ if (unlikely(!ntfs_is_indx_record(ia->magic))) { ntfs_error(sb, "Index record with vcn 0x%llx is corrupt. " "Corrupt inode 0x%lx. Run chkdsk.", (long long)vcn, idx_ni->mft_no); goto unm_err_out; } if (sle64_to_cpu(ia->index_block_vcn) != vcn) { ntfs_error(sb, "Actual VCN (0x%llx) of index buffer is " "different from expected VCN (0x%llx). Inode " "0x%lx is corrupt or driver bug.", (unsigned long long) sle64_to_cpu(ia->index_block_vcn), (unsigned long long)vcn, idx_ni->mft_no); goto unm_err_out; } if (le32_to_cpu(ia->index.allocated_size) + 0x18 != idx_ni->itype.index.block_size) { ntfs_error(sb, "Index buffer (VCN 0x%llx) of inode 0x%lx has " "a size (%u) differing from the index " "specified size (%u). Inode is corrupt or " "driver bug.", (unsigned long long)vcn, idx_ni->mft_no, le32_to_cpu(ia->index.allocated_size) + 0x18, idx_ni->itype.index.block_size); goto unm_err_out; } index_end = (u8*)ia + idx_ni->itype.index.block_size; if (index_end > kaddr + PAGE_CACHE_SIZE) { ntfs_error(sb, "Index buffer (VCN 0x%llx) of inode 0x%lx " "crosses page boundary. Impossible! Cannot " "access! This is probably a bug in the " "driver.", (unsigned long long)vcn, idx_ni->mft_no); goto unm_err_out; } index_end = (u8*)&ia->index + le32_to_cpu(ia->index.index_length); if (index_end > (u8*)ia + idx_ni->itype.index.block_size) { ntfs_error(sb, "Size of index buffer (VCN 0x%llx) of inode " "0x%lx exceeds maximum size.", (unsigned long long)vcn, idx_ni->mft_no); goto unm_err_out; } /* The first index entry. */ ie = (INDEX_ENTRY*)((u8*)&ia->index + le32_to_cpu(ia->index.entries_offset)); /* * Iterate similar to above big loop but applied to index buffer, thus * loop until we exceed valid memory (corruption case) or until we * reach the last entry. */ for (;; ie = (INDEX_ENTRY*)((u8*)ie + le16_to_cpu(ie->length))) { /* Bounds checks. */ if ((u8*)ie < (u8*)ia || (u8*)ie + sizeof(INDEX_ENTRY_HEADER) > index_end || (u8*)ie + le16_to_cpu(ie->length) > index_end) { ntfs_error(sb, "Index entry out of bounds in inode " "0x%lx.", idx_ni->mft_no); goto unm_err_out; } /* * The last entry cannot contain a key. It can however contain * a pointer to a child node in the B+tree so we just break out. */ if (ie->flags & INDEX_ENTRY_END) break; /* Further bounds checks. */ if ((u32)sizeof(INDEX_ENTRY_HEADER) + le16_to_cpu(ie->key_length) > le16_to_cpu(ie->data.vi.data_offset) || (u32)le16_to_cpu(ie->data.vi.data_offset) + le16_to_cpu(ie->data.vi.data_length) > le16_to_cpu(ie->length)) { ntfs_error(sb, "Index entry out of bounds in inode " "0x%lx.", idx_ni->mft_no); goto unm_err_out; } /* If the keys match perfectly, we setup @ictx and return 0. */ if ((key_len == le16_to_cpu(ie->key_length)) && !memcmp(key, &ie->key, key_len)) { ia_done: ictx->is_in_root = false; ictx->actx = NULL; ictx->base_ni = NULL; ictx->ia = ia; ictx->page = page; goto done; } /* * Not a perfect match, need to do full blown collation so we * know which way in the B+tree we have to go. */ rc = ntfs_collate(vol, idx_ni->itype.index.collation_rule, key, key_len, &ie->key, le16_to_cpu(ie->key_length)); /* * If @key collates before the key of the current entry, there * is definitely no such key in this index but we might need to * descend into the B+tree so we just break out of the loop. */ if (rc == -1) break; /* * A match should never happen as the memcmp() call should have * cought it, but we still treat it correctly. */ if (!rc) goto ia_done; /* The keys are not equal, continue the search. */ } /* * We have finished with this index buffer without success. Check for * the presence of a child node and if not present return -ENOENT. */ if (!(ie->flags & INDEX_ENTRY_NODE)) { ntfs_debug("Entry not found."); err = -ENOENT; goto ia_done; } if ((ia->index.flags & NODE_MASK) == LEAF_NODE) { ntfs_error(sb, "Index entry with child node found in a leaf " "node in inode 0x%lx.", idx_ni->mft_no); goto unm_err_out; } /* Child node present, descend into it. */ old_vcn = vcn; vcn = sle64_to_cpup((sle64*)((u8*)ie + le16_to_cpu(ie->length) - 8)); if (vcn >= 0) { /* * If vcn is in the same page cache page as old_vcn we recycle * the mapped page. */ if (old_vcn << vol->cluster_size_bits >> PAGE_CACHE_SHIFT == vcn << vol->cluster_size_bits >> PAGE_CACHE_SHIFT) goto fast_descend_into_child_node; unlock_page(page); ntfs_unmap_page(page); goto descend_into_child_node; } ntfs_error(sb, "Negative child node vcn in inode 0x%lx.", idx_ni->mft_no); unm_err_out: unlock_page(page); ntfs_unmap_page(page); err_out: if (!err) err = -EIO; if (actx) ntfs_attr_put_search_ctx(actx); if (m) unmap_mft_record(base_ni); return err; idx_err_out: ntfs_error(sb, "Corrupt index. Aborting lookup."); goto err_out; }