/* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter */ /* * This file implements most of the debugging stuff which is compiled in only * when it is enabled. But some debugging check functions are implemented in * corresponding subsystem, just because they are closely related and utilize * various local functions of those subsystems. */ #define UBIFS_DBG_PRESERVE_UBI #include "ubifs.h" #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/debugfs.h> #include <linux/math64.h> #include <linux/slab.h> #ifdef CONFIG_UBIFS_FS_DEBUG DEFINE_SPINLOCK(dbg_lock); static char dbg_key_buf0[128]; static char dbg_key_buf1[128]; unsigned int ubifs_msg_flags; unsigned int ubifs_chk_flags; unsigned int ubifs_tst_flags; module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); MODULE_PARM_DESC(debug_chks, "Debug check flags"); MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); static const char *get_key_fmt(int fmt) { switch (fmt) { case UBIFS_SIMPLE_KEY_FMT: return "simple"; default: return "unknown/invalid format"; } } static const char *get_key_hash(int hash) { switch (hash) { case UBIFS_KEY_HASH_R5: return "R5"; case UBIFS_KEY_HASH_TEST: return "test"; default: return "unknown/invalid name hash"; } } static const char *get_key_type(int type) { switch (type) { case UBIFS_INO_KEY: return "inode"; case UBIFS_DENT_KEY: return "direntry"; case UBIFS_XENT_KEY: return "xentry"; case UBIFS_DATA_KEY: return "data"; case UBIFS_TRUN_KEY: return "truncate"; default: return "unknown/invalid key"; } } static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, char *buffer) { char *p = buffer; int type = key_type(c, key); if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { switch (type) { case UBIFS_INO_KEY: sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), get_key_type(type)); break; case UBIFS_DENT_KEY: case UBIFS_XENT_KEY: sprintf(p, "(%lu, %s, %#08x)", (unsigned long)key_inum(c, key), get_key_type(type), key_hash(c, key)); break; case UBIFS_DATA_KEY: sprintf(p, "(%lu, %s, %u)", (unsigned long)key_inum(c, key), get_key_type(type), key_block(c, key)); break; case UBIFS_TRUN_KEY: sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), get_key_type(type)); break; default: sprintf(p, "(bad key type: %#08x, %#08x)", key->u32[0], key->u32[1]); } } else sprintf(p, "bad key format %d", c->key_fmt); } const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) { /* dbg_lock must be held */ sprintf_key(c, key, dbg_key_buf0); return dbg_key_buf0; } const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) { /* dbg_lock must be held */ sprintf_key(c, key, dbg_key_buf1); return dbg_key_buf1; } const char *dbg_ntype(int type) { switch (type) { case UBIFS_PAD_NODE: return "padding node"; case UBIFS_SB_NODE: return "superblock node"; case UBIFS_MST_NODE: return "master node"; case UBIFS_REF_NODE: return "reference node"; case UBIFS_INO_NODE: return "inode node"; case UBIFS_DENT_NODE: return "direntry node"; case UBIFS_XENT_NODE: return "xentry node"; case UBIFS_DATA_NODE: return "data node"; case UBIFS_TRUN_NODE: return "truncate node"; case UBIFS_IDX_NODE: return "indexing node"; case UBIFS_CS_NODE: return "commit start node"; case UBIFS_ORPH_NODE: return "orphan node"; default: return "unknown node"; } } static const char *dbg_gtype(int type) { switch (type) { case UBIFS_NO_NODE_GROUP: return "no node group"; case UBIFS_IN_NODE_GROUP: return "in node group"; case UBIFS_LAST_OF_NODE_GROUP: return "last of node group"; default: return "unknown"; } } const char *dbg_cstate(int cmt_state) { switch (cmt_state) { case COMMIT_RESTING: return "commit resting"; case COMMIT_BACKGROUND: return "background commit requested"; case COMMIT_REQUIRED: return "commit required"; case COMMIT_RUNNING_BACKGROUND: return "BACKGROUND commit running"; case COMMIT_RUNNING_REQUIRED: return "commit running and required"; case COMMIT_BROKEN: return "broken commit"; default: return "unknown commit state"; } } const char *dbg_jhead(int jhead) { switch (jhead) { case GCHD: return "0 (GC)"; case BASEHD: return "1 (base)"; case DATAHD: return "2 (data)"; default: return "unknown journal head"; } } static void dump_ch(const struct ubifs_ch *ch) { printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, dbg_ntype(ch->node_type)); printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, dbg_gtype(ch->group_type)); printk(KERN_DEBUG "\tsqnum %llu\n", (unsigned long long)le64_to_cpu(ch->sqnum)); printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); } void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) { const struct ubifs_inode *ui = ubifs_inode(inode); printk(KERN_DEBUG "Dump in-memory inode:"); printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); printk(KERN_DEBUG "\tsize %llu\n", (unsigned long long)i_size_read(inode)); printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); printk(KERN_DEBUG "\tatime %u.%u\n", (unsigned int)inode->i_atime.tv_sec, (unsigned int)inode->i_atime.tv_nsec); printk(KERN_DEBUG "\tmtime %u.%u\n", (unsigned int)inode->i_mtime.tv_sec, (unsigned int)inode->i_mtime.tv_nsec); printk(KERN_DEBUG "\tctime %u.%u\n", (unsigned int)inode->i_ctime.tv_sec, (unsigned int)inode->i_ctime.tv_nsec); printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); printk(KERN_DEBUG "\txattr %u\n", ui->xattr); printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); printk(KERN_DEBUG "\tsynced_i_size %llu\n", (unsigned long long)ui->synced_i_size); printk(KERN_DEBUG "\tui_size %llu\n", (unsigned long long)ui->ui_size); printk(KERN_DEBUG "\tflags %d\n", ui->flags); printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); } void dbg_dump_node(const struct ubifs_info *c, const void *node) { int i, n; union ubifs_key key; const struct ubifs_ch *ch = node; if (dbg_failure_mode) return; /* If the magic is incorrect, just hexdump the first bytes */ if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, (void *)node, UBIFS_CH_SZ, 1); return; } spin_lock(&dbg_lock); dump_ch(node); switch (ch->node_type) { case UBIFS_PAD_NODE: { const struct ubifs_pad_node *pad = node; printk(KERN_DEBUG "\tpad_len %u\n", le32_to_cpu(pad->pad_len)); break; } case UBIFS_SB_NODE: { const struct ubifs_sb_node *sup = node; unsigned int sup_flags = le32_to_cpu(sup->flags); printk(KERN_DEBUG "\tkey_hash %d (%s)\n", (int)sup->key_hash, get_key_hash(sup->key_hash)); printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); printk(KERN_DEBUG "\tflags %#x\n", sup_flags); printk(KERN_DEBUG "\t big_lpt %u\n", !!(sup_flags & UBIFS_FLG_BIGLPT)); printk(KERN_DEBUG "\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); printk(KERN_DEBUG "\tleb_size %u\n", le32_to_cpu(sup->leb_size)); printk(KERN_DEBUG "\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); printk(KERN_DEBUG "\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); printk(KERN_DEBUG "\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); printk(KERN_DEBUG "\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); printk(KERN_DEBUG "\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); printk(KERN_DEBUG "\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); printk(KERN_DEBUG "\tfanout %u\n", le32_to_cpu(sup->fanout)); printk(KERN_DEBUG "\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); printk(KERN_DEBUG "\tdefault_compr %u\n", (int)le16_to_cpu(sup->default_compr)); printk(KERN_DEBUG "\trp_size %llu\n", (unsigned long long)le64_to_cpu(sup->rp_size)); printk(KERN_DEBUG "\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); printk(KERN_DEBUG "\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); printk(KERN_DEBUG "\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); printk(KERN_DEBUG "\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); printk(KERN_DEBUG "\tUUID %pUB\n", sup->uuid); break; } case UBIFS_MST_NODE: { const struct ubifs_mst_node *mst = node; printk(KERN_DEBUG "\thighest_inum %llu\n", (unsigned long long)le64_to_cpu(mst->highest_inum)); printk(KERN_DEBUG "\tcommit number %llu\n", (unsigned long long)le64_to_cpu(mst->cmt_no)); printk(KERN_DEBUG "\tflags %#x\n", le32_to_cpu(mst->flags)); printk(KERN_DEBUG "\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); printk(KERN_DEBUG "\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); printk(KERN_DEBUG "\troot_offs %u\n", le32_to_cpu(mst->root_offs)); printk(KERN_DEBUG "\troot_len %u\n", le32_to_cpu(mst->root_len)); printk(KERN_DEBUG "\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); printk(KERN_DEBUG "\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); printk(KERN_DEBUG "\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); printk(KERN_DEBUG "\tindex_size %llu\n", (unsigned long long)le64_to_cpu(mst->index_size)); printk(KERN_DEBUG "\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); printk(KERN_DEBUG "\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); printk(KERN_DEBUG "\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); printk(KERN_DEBUG "\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); printk(KERN_DEBUG "\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); printk(KERN_DEBUG "\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); printk(KERN_DEBUG "\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); printk(KERN_DEBUG "\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); printk(KERN_DEBUG "\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); printk(KERN_DEBUG "\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); printk(KERN_DEBUG "\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); printk(KERN_DEBUG "\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); printk(KERN_DEBUG "\ttotal_free %llu\n", (unsigned long long)le64_to_cpu(mst->total_free)); printk(KERN_DEBUG "\ttotal_dirty %llu\n", (unsigned long long)le64_to_cpu(mst->total_dirty)); printk(KERN_DEBUG "\ttotal_used %llu\n", (unsigned long long)le64_to_cpu(mst->total_used)); printk(KERN_DEBUG "\ttotal_dead %llu\n", (unsigned long long)le64_to_cpu(mst->total_dead)); printk(KERN_DEBUG "\ttotal_dark %llu\n", (unsigned long long)le64_to_cpu(mst->total_dark)); break; } case UBIFS_REF_NODE: { const struct ubifs_ref_node *ref = node; printk(KERN_DEBUG "\tlnum %u\n", le32_to_cpu(ref->lnum)); printk(KERN_DEBUG "\toffs %u\n", le32_to_cpu(ref->offs)); printk(KERN_DEBUG "\tjhead %u\n", le32_to_cpu(ref->jhead)); break; } case UBIFS_INO_NODE: { const struct ubifs_ino_node *ino = node; key_read(c, &ino->key, &key); printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); printk(KERN_DEBUG "\tcreat_sqnum %llu\n", (unsigned long long)le64_to_cpu(ino->creat_sqnum)); printk(KERN_DEBUG "\tsize %llu\n", (unsigned long long)le64_to_cpu(ino->size)); printk(KERN_DEBUG "\tnlink %u\n", le32_to_cpu(ino->nlink)); printk(KERN_DEBUG "\tatime %lld.%u\n", (long long)le64_to_cpu(ino->atime_sec), le32_to_cpu(ino->atime_nsec)); printk(KERN_DEBUG "\tmtime %lld.%u\n", (long long)le64_to_cpu(ino->mtime_sec), le32_to_cpu(ino->mtime_nsec)); printk(KERN_DEBUG "\tctime %lld.%u\n", (long long)le64_to_cpu(ino->ctime_sec), le32_to_cpu(ino->ctime_nsec)); printk(KERN_DEBUG "\tuid %u\n", le32_to_cpu(ino->uid)); printk(KERN_DEBUG "\tgid %u\n", le32_to_cpu(ino->gid)); printk(KERN_DEBUG "\tmode %u\n", le32_to_cpu(ino->mode)); printk(KERN_DEBUG "\tflags %#x\n", le32_to_cpu(ino->flags)); printk(KERN_DEBUG "\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); printk(KERN_DEBUG "\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); printk(KERN_DEBUG "\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); printk(KERN_DEBUG "\tcompr_type %#x\n", (int)le16_to_cpu(ino->compr_type)); printk(KERN_DEBUG "\tdata len %u\n", le32_to_cpu(ino->data_len)); break; } case UBIFS_DENT_NODE: case UBIFS_XENT_NODE: { const struct ubifs_dent_node *dent = node; int nlen = le16_to_cpu(dent->nlen); key_read(c, &dent->key, &key); printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); printk(KERN_DEBUG "\tinum %llu\n", (unsigned long long)le64_to_cpu(dent->inum)); printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); printk(KERN_DEBUG "\tnlen %d\n", nlen); printk(KERN_DEBUG "\tname "); if (nlen > UBIFS_MAX_NLEN) printk(KERN_DEBUG "(bad name length, not printing, " "bad or corrupted node)"); else { for (i = 0; i < nlen && dent->name[i]; i++) printk(KERN_CONT "%c", dent->name[i]); } printk(KERN_CONT "\n"); break; } case UBIFS_DATA_NODE: { const struct ubifs_data_node *dn = node; int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; key_read(c, &dn->key, &key); printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); printk(KERN_DEBUG "\tsize %u\n", le32_to_cpu(dn->size)); printk(KERN_DEBUG "\tcompr_typ %d\n", (int)le16_to_cpu(dn->compr_type)); printk(KERN_DEBUG "\tdata size %d\n", dlen); printk(KERN_DEBUG "\tdata:\n"); print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, (void *)&dn->data, dlen, 0); break; } case UBIFS_TRUN_NODE: { const struct ubifs_trun_node *trun = node; printk(KERN_DEBUG "\tinum %u\n", le32_to_cpu(trun->inum)); printk(KERN_DEBUG "\told_size %llu\n", (unsigned long long)le64_to_cpu(trun->old_size)); printk(KERN_DEBUG "\tnew_size %llu\n", (unsigned long long)le64_to_cpu(trun->new_size)); break; } case UBIFS_IDX_NODE: { const struct ubifs_idx_node *idx = node; n = le16_to_cpu(idx->child_cnt); printk(KERN_DEBUG "\tchild_cnt %d\n", n); printk(KERN_DEBUG "\tlevel %d\n", (int)le16_to_cpu(idx->level)); printk(KERN_DEBUG "\tBranches:\n"); for (i = 0; i < n && i < c->fanout - 1; i++) { const struct ubifs_branch *br; br = ubifs_idx_branch(c, idx, i); key_read(c, &br->key, &key); printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), le32_to_cpu(br->len), DBGKEY(&key)); } break; } case UBIFS_CS_NODE: break; case UBIFS_ORPH_NODE: { const struct ubifs_orph_node *orph = node; printk(KERN_DEBUG "\tcommit number %llu\n", (unsigned long long) le64_to_cpu(orph->cmt_no) & LLONG_MAX); printk(KERN_DEBUG "\tlast node flag %llu\n", (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); for (i = 0; i < n; i++) printk(KERN_DEBUG "\t ino %llu\n", (unsigned long long)le64_to_cpu(orph->inos[i])); break; } default: printk(KERN_DEBUG "node type %d was not recognized\n", (int)ch->node_type); } spin_unlock(&dbg_lock); } void dbg_dump_budget_req(const struct ubifs_budget_req *req) { spin_lock(&dbg_lock); printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", req->new_ino, req->dirtied_ino); printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", req->new_ino_d, req->dirtied_ino_d); printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", req->new_page, req->dirtied_page); printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", req->new_dent, req->mod_dent); printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", req->data_growth, req->dd_growth); spin_unlock(&dbg_lock); } void dbg_dump_lstats(const struct ubifs_lp_stats *lst) { spin_lock(&dbg_lock); printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, lst->total_dirty); printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " "total_dead %lld\n", lst->total_used, lst->total_dark, lst->total_dead); spin_unlock(&dbg_lock); } void dbg_dump_budg(struct ubifs_info *c) { int i; struct rb_node *rb; struct ubifs_bud *bud; struct ubifs_gced_idx_leb *idx_gc; long long available, outstanding, free; ubifs_assert(spin_is_locked(&c->space_lock)); spin_lock(&dbg_lock); printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, " "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid, c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, c->freeable_cnt); printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), atomic_long_read(&c->dirty_zn_cnt), atomic_long_read(&c->clean_zn_cnt)); printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", c->dark_wm, c->dead_wm, c->max_idx_node_sz); printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); /* If we are in R/O mode, journal heads do not exist */ if (c->jheads) for (i = 0; i < c->jhead_cnt; i++) printk(KERN_DEBUG "\tjhead %s\t LEB %d\n", dbg_jhead(c->jheads[i].wbuf.jhead), c->jheads[i].wbuf.lnum); for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { bud = rb_entry(rb, struct ubifs_bud, rb); printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); } list_for_each_entry(bud, &c->old_buds, list) printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); list_for_each_entry(idx_gc, &c->idx_gc, list) printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", idx_gc->lnum, idx_gc->unmap); printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); /* Print budgeting predictions */ available = ubifs_calc_available(c, c->min_idx_lebs); outstanding = c->budg_data_growth + c->budg_dd_growth; free = ubifs_get_free_space_nolock(c); printk(KERN_DEBUG "Budgeting predictions:\n"); printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n", available, outstanding, free); spin_unlock(&dbg_lock); } void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) { int i, spc, dark = 0, dead = 0; struct rb_node *rb; struct ubifs_bud *bud; spc = lp->free + lp->dirty; if (spc < c->dead_wm) dead = spc; else dark = ubifs_calc_dark(c, spc); if (lp->flags & LPROPS_INDEX) printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " "free + dirty %-8d flags %#x (", lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, lp->flags); else printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " "flags %#-4x (", lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); if (lp->flags & LPROPS_TAKEN) { if (lp->flags & LPROPS_INDEX) printk(KERN_CONT "index, taken"); else printk(KERN_CONT "taken"); } else { const char *s; if (lp->flags & LPROPS_INDEX) { switch (lp->flags & LPROPS_CAT_MASK) { case LPROPS_DIRTY_IDX: s = "dirty index"; break; case LPROPS_FRDI_IDX: s = "freeable index"; break; default: s = "index"; } } else { switch (lp->flags & LPROPS_CAT_MASK) { case LPROPS_UNCAT: s = "not categorized"; break; case LPROPS_DIRTY: s = "dirty"; break; case LPROPS_FREE: s = "free"; break; case LPROPS_EMPTY: s = "empty"; break; case LPROPS_FREEABLE: s = "freeable"; break; default: s = NULL; break; } } printk(KERN_CONT "%s", s); } for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { bud = rb_entry(rb, struct ubifs_bud, rb); if (bud->lnum == lp->lnum) { int head = 0; for (i = 0; i < c->jhead_cnt; i++) { if (lp->lnum == c->jheads[i].wbuf.lnum) { printk(KERN_CONT ", jhead %s", dbg_jhead(i)); head = 1; } } if (!head) printk(KERN_CONT ", bud of jhead %s", dbg_jhead(bud->jhead)); } } if (lp->lnum == c->gc_lnum) printk(KERN_CONT ", GC LEB"); printk(KERN_CONT ")\n"); } void dbg_dump_lprops(struct ubifs_info *c) { int lnum, err; struct ubifs_lprops lp; struct ubifs_lp_stats lst; printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n", current->pid); ubifs_get_lp_stats(c, &lst); dbg_dump_lstats(&lst); for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { err = ubifs_read_one_lp(c, lnum, &lp); if (err) ubifs_err("cannot read lprops for LEB %d", lnum); dbg_dump_lprop(c, &lp); } printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n", current->pid); } void dbg_dump_lpt_info(struct ubifs_info *c) { int i; spin_lock(&dbg_lock); printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid); printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); printk(KERN_DEBUG "\tLPT head is at %d:%d\n", c->nhead_lnum, c->nhead_offs); printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); if (c->big_lpt) printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", c->lsave_lnum, c->lsave_offs); for (i = 0; i < c->lpt_lebs; i++) printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " "cmt %d\n", i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); spin_unlock(&dbg_lock); } void dbg_dump_leb(const struct ubifs_info *c, int lnum) { struct ubifs_scan_leb *sleb; struct ubifs_scan_node *snod; void *buf; if (dbg_failure_mode) return; printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", current->pid, lnum); buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); if (!buf) { ubifs_err("cannot allocate memory for dumping LEB %d", lnum); return; } sleb = ubifs_scan(c, lnum, 0, buf, 0); if (IS_ERR(sleb)) { ubifs_err("scan error %d", (int)PTR_ERR(sleb)); goto out; } printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, sleb->nodes_cnt, sleb->endpt); list_for_each_entry(snod, &sleb->nodes, list) { cond_resched(); printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, snod->offs, snod->len); dbg_dump_node(c, snod->node); } printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", current->pid, lnum); ubifs_scan_destroy(sleb); out: vfree(buf); return; } void dbg_dump_znode(const struct ubifs_info *c, const struct ubifs_znode *znode) { int n; const struct ubifs_zbranch *zbr; spin_lock(&dbg_lock); if (znode->parent) zbr = &znode->parent->zbranch[znode->iip]; else zbr = &c->zroot; printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, znode->level, znode->child_cnt, znode->flags); if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { spin_unlock(&dbg_lock); return; } printk(KERN_DEBUG "zbranches:\n"); for (n = 0; n < znode->child_cnt; n++) { zbr = &znode->zbranch[n]; if (znode->level > 0) printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " "%s\n", n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, DBGKEY(&zbr->key)); else printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " "%s\n", n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, DBGKEY(&zbr->key)); } spin_unlock(&dbg_lock); } void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) { int i; printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n", current->pid, cat, heap->cnt); for (i = 0; i < heap->cnt; i++) { struct ubifs_lprops *lprops = heap->arr[i]; printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " "flags %d\n", i, lprops->lnum, lprops->hpos, lprops->free, lprops->dirty, lprops->flags); } printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid); } void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, struct ubifs_nnode *parent, int iip) { int i; printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid); printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", pnode->flags, iip, pnode->level, pnode->num); for (i = 0; i < UBIFS_LPT_FANOUT; i++) { struct ubifs_lprops *lp = &pnode->lprops[i]; printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", i, lp->free, lp->dirty, lp->flags, lp->lnum); } } void dbg_dump_tnc(struct ubifs_info *c) { struct ubifs_znode *znode; int level; printk(KERN_DEBUG "\n"); printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid); znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); level = znode->level; printk(KERN_DEBUG "== Level %d ==\n", level); while (znode) { if (level != znode->level) { level = znode->level; printk(KERN_DEBUG "== Level %d ==\n", level); } dbg_dump_znode(c, znode); znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); } printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid); } static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) { dbg_dump_znode(c, znode); return 0; } /** * dbg_dump_index - dump the on-flash index. * @c: UBIFS file-system description object * * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' * which dumps only in-memory znodes and does not read znodes which from flash. */ void dbg_dump_index(struct ubifs_info *c) { dbg_walk_index(c, NULL, dump_znode, NULL); } /** * dbg_save_space_info - save information about flash space. * @c: UBIFS file-system description object * * This function saves information about UBIFS free space, dirty space, etc, in * order to check it later. */ void dbg_save_space_info(struct ubifs_info *c) { struct ubifs_debug_info *d = c->dbg; int freeable_cnt; spin_lock(&c->space_lock); memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); /* * We use a dirty hack here and zero out @c->freeable_cnt, because it * affects the free space calculations, and UBIFS might not know about * all freeable eraseblocks. Indeed, we know about freeable eraseblocks * only when we read their lprops, and we do this only lazily, upon the * need. So at any given point of time @c->freeable_cnt might be not * exactly accurate. * * Just one example about the issue we hit when we did not zero * @c->freeable_cnt. * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the * amount of free space in @d->saved_free * 2. We re-mount R/W, which makes UBIFS to read the "lsave" * information from flash, where we cache LEBs from various * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' * -> 'ubifs_get_pnode()' -> 'update_cats()' * -> 'ubifs_add_to_cat()'). * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt * becomes %1. * 4. We calculate the amount of free space when the re-mount is * finished in 'dbg_check_space_info()' and it does not match * @d->saved_free. */ freeable_cnt = c->freeable_cnt; c->freeable_cnt = 0; d->saved_free = ubifs_get_free_space_nolock(c); c->freeable_cnt = freeable_cnt; spin_unlock(&c->space_lock); } /** * dbg_check_space_info - check flash space information. * @c: UBIFS file-system description object * * This function compares current flash space information with the information * which was saved when the 'dbg_save_space_info()' function was called. * Returns zero if the information has not changed, and %-EINVAL it it has * changed. */ int dbg_check_space_info(struct ubifs_info *c) { struct ubifs_debug_info *d = c->dbg; struct ubifs_lp_stats lst; long long free; int freeable_cnt; spin_lock(&c->space_lock); freeable_cnt = c->freeable_cnt; c->freeable_cnt = 0; free = ubifs_get_free_space_nolock(c); c->freeable_cnt = freeable_cnt; spin_unlock(&c->space_lock); if (free != d->saved_free) { ubifs_err("free space changed from %lld to %lld", d->saved_free, free); goto out; } return 0; out: ubifs_msg("saved lprops statistics dump"); dbg_dump_lstats(&d->saved_lst); ubifs_get_lp_stats(c, &lst); ubifs_msg("current lprops statistics dump"); dbg_dump_lstats(&lst); spin_lock(&c->space_lock); dbg_dump_budg(c); spin_unlock(&c->space_lock); dump_stack(); return -EINVAL; } /** * dbg_check_synced_i_size - check synchronized inode size. * @inode: inode to check * * If inode is clean, synchronized inode size has to be equivalent to current * inode size. This function has to be called only for locked inodes (@i_mutex * has to be locked). Returns %0 if synchronized inode size if correct, and * %-EINVAL if not. */ int dbg_check_synced_i_size(struct inode *inode) { int err = 0; struct ubifs_inode *ui = ubifs_inode(inode); if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) return 0; if (!S_ISREG(inode->i_mode)) return 0; mutex_lock(&ui->ui_mutex); spin_lock(&ui->ui_lock); if (ui->ui_size != ui->synced_i_size && !ui->dirty) { ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " "is clean", ui->ui_size, ui->synced_i_size); ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, inode->i_mode, i_size_read(inode)); dbg_dump_stack(); err = -EINVAL; } spin_unlock(&ui->ui_lock); mutex_unlock(&ui->ui_mutex); return err; } /* * dbg_check_dir - check directory inode size and link count. * @c: UBIFS file-system description object * @dir: the directory to calculate size for * @size: the result is returned here * * This function makes sure that directory size and link count are correct. * Returns zero in case of success and a negative error code in case of * failure. * * Note, it is good idea to make sure the @dir->i_mutex is locked before * calling this function. */ int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) { unsigned int nlink = 2; union ubifs_key key; struct ubifs_dent_node *dent, *pdent = NULL; struct qstr nm = { .name = NULL }; loff_t size = UBIFS_INO_NODE_SZ; if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) return 0; if (!S_ISDIR(dir->i_mode)) return 0; lowest_dent_key(c, &key, dir->i_ino); while (1) { int err; dent = ubifs_tnc_next_ent(c, &key, &nm); if (IS_ERR(dent)) { err = PTR_ERR(dent); if (err == -ENOENT) break; return err; } nm.name = dent->name; nm.len = le16_to_cpu(dent->nlen); size += CALC_DENT_SIZE(nm.len); if (dent->type == UBIFS_ITYPE_DIR) nlink += 1; kfree(pdent); pdent = dent; key_read(c, &dent->key, &key); } kfree(pdent); if (i_size_read(dir) != size) { ubifs_err("directory inode %lu has size %llu, " "but calculated size is %llu", dir->i_ino, (unsigned long long)i_size_read(dir), (unsigned long long)size); dump_stack(); return -EINVAL; } if (dir->i_nlink != nlink) { ubifs_err("directory inode %lu has nlink %u, but calculated " "nlink is %u", dir->i_ino, dir->i_nlink, nlink); dump_stack(); return -EINVAL; } return 0; } /** * dbg_check_key_order - make sure that colliding keys are properly ordered. * @c: UBIFS file-system description object * @zbr1: first zbranch * @zbr2: following zbranch * * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of * names of the direntries/xentries which are referred by the keys. This * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes * sure the name of direntry/xentry referred by @zbr1 is less than * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, * and a negative error code in case of failure. */ static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, struct ubifs_zbranch *zbr2) { int err, nlen1, nlen2, cmp; struct ubifs_dent_node *dent1, *dent2; union ubifs_key key; ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); if (!dent1) return -ENOMEM; dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); if (!dent2) { err = -ENOMEM; goto out_free; } err = ubifs_tnc_read_node(c, zbr1, dent1); if (err) goto out_free; err = ubifs_validate_entry(c, dent1); if (err) goto out_free; err = ubifs_tnc_read_node(c, zbr2, dent2); if (err) goto out_free; err = ubifs_validate_entry(c, dent2); if (err) goto out_free; /* Make sure node keys are the same as in zbranch */ err = 1; key_read(c, &dent1->key, &key); if (keys_cmp(c, &zbr1->key, &key)) { dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, zbr1->offs, DBGKEY(&key)); dbg_err("but it should have key %s according to tnc", DBGKEY(&zbr1->key)); dbg_dump_node(c, dent1); goto out_free; } key_read(c, &dent2->key, &key); if (keys_cmp(c, &zbr2->key, &key)) { dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, zbr1->offs, DBGKEY(&key)); dbg_err("but it should have key %s according to tnc", DBGKEY(&zbr2->key)); dbg_dump_node(c, dent2); goto out_free; } nlen1 = le16_to_cpu(dent1->nlen); nlen2 = le16_to_cpu(dent2->nlen); cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { err = 0; goto out_free; } if (cmp == 0 && nlen1 == nlen2) dbg_err("2 xent/dent nodes with the same name"); else dbg_err("bad order of colliding key %s", DBGKEY(&key)); ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); dbg_dump_node(c, dent1); ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); dbg_dump_node(c, dent2); out_free: kfree(dent2); kfree(dent1); return err; } /** * dbg_check_znode - check if znode is all right. * @c: UBIFS file-system description object * @zbr: zbranch which points to this znode * * This function makes sure that znode referred to by @zbr is all right. * Returns zero if it is, and %-EINVAL if it is not. */ static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) { struct ubifs_znode *znode = zbr->znode; struct ubifs_znode *zp = znode->parent; int n, err, cmp; if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { err = 1; goto out; } if (znode->level < 0) { err = 2; goto out; } if (znode->iip < 0 || znode->iip >= c->fanout) { err = 3; goto out; } if (zbr->len == 0) /* Only dirty zbranch may have no on-flash nodes */ if (!ubifs_zn_dirty(znode)) { err = 4; goto out; } if (ubifs_zn_dirty(znode)) { /* * If znode is dirty, its parent has to be dirty as well. The * order of the operation is important, so we have to have * memory barriers. */ smp_mb(); if (zp && !ubifs_zn_dirty(zp)) { /* * The dirty flag is atomic and is cleared outside the * TNC mutex, so znode's dirty flag may now have * been cleared. The child is always cleared before the * parent, so we just need to check again. */ smp_mb(); if (ubifs_zn_dirty(znode)) { err = 5; goto out; } } } if (zp) { const union ubifs_key *min, *max; if (znode->level != zp->level - 1) { err = 6; goto out; } /* Make sure the 'parent' pointer in our znode is correct */ err = ubifs_search_zbranch(c, zp, &zbr->key, &n); if (!err) { /* This zbranch does not exist in the parent */ err = 7; goto out; } if (znode->iip >= zp->child_cnt) { err = 8; goto out; } if (znode->iip != n) { /* This may happen only in case of collisions */ if (keys_cmp(c, &zp->zbranch[n].key, &zp->zbranch[znode->iip].key)) { err = 9; goto out; } n = znode->iip; } /* * Make sure that the first key in our znode is greater than or * equal to the key in the pointing zbranch. */ min = &zbr->key; cmp = keys_cmp(c, min, &znode->zbranch[0].key); if (cmp == 1) { err = 10; goto out; } if (n + 1 < zp->child_cnt) { max = &zp->zbranch[n + 1].key; /* * Make sure the last key in our znode is less or * equivalent than the key in the zbranch which goes * after our pointing zbranch. */ cmp = keys_cmp(c, max, &znode->zbranch[znode->child_cnt - 1].key); if (cmp == -1) { err = 11; goto out; } } } else { /* This may only be root znode */ if (zbr != &c->zroot) { err = 12; goto out; } } /* * Make sure that next key is greater or equivalent then the previous * one. */ for (n = 1; n < znode->child_cnt; n++) { cmp = keys_cmp(c, &znode->zbranch[n - 1].key, &znode->zbranch[n].key); if (cmp > 0) { err = 13; goto out; } if (cmp == 0) { /* This can only be keys with colliding hash */ if (!is_hash_key(c, &znode->zbranch[n].key)) { err = 14; goto out; } if (znode->level != 0 || c->replaying) continue; /* * Colliding keys should follow binary order of * corresponding xentry/dentry names. */ err = dbg_check_key_order(c, &znode->zbranch[n - 1], &znode->zbranch[n]); if (err < 0) return err; if (err) { err = 15; goto out; } } } for (n = 0; n < znode->child_cnt; n++) { if (!znode->zbranch[n].znode && (znode->zbranch[n].lnum == 0 || znode->zbranch[n].len == 0)) { err = 16; goto out; } if (znode->zbranch[n].lnum != 0 && znode->zbranch[n].len == 0) { err = 17; goto out; } if (znode->zbranch[n].lnum == 0 && znode->zbranch[n].len != 0) { err = 18; goto out; } if (znode->zbranch[n].lnum == 0 && znode->zbranch[n].offs != 0) { err = 19; goto out; } if (znode->level != 0 && znode->zbranch[n].znode) if (znode->zbranch[n].znode->parent != znode) { err = 20; goto out; } } return 0; out: ubifs_err("failed, error %d", err); ubifs_msg("dump of the znode"); dbg_dump_znode(c, znode); if (zp) { ubifs_msg("dump of the parent znode"); dbg_dump_znode(c, zp); } dump_stack(); return -EINVAL; } /** * dbg_check_tnc - check TNC tree. * @c: UBIFS file-system description object * @extra: do extra checks that are possible at start commit * * This function traverses whole TNC tree and checks every znode. Returns zero * if everything is all right and %-EINVAL if something is wrong with TNC. */ int dbg_check_tnc(struct ubifs_info *c, int extra) { struct ubifs_znode *znode; long clean_cnt = 0, dirty_cnt = 0; int err, last; if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) return 0; ubifs_assert(mutex_is_locked(&c->tnc_mutex)); if (!c->zroot.znode) return 0; znode = ubifs_tnc_postorder_first(c->zroot.znode); while (1) { struct ubifs_znode *prev; struct ubifs_zbranch *zbr; if (!znode->parent) zbr = &c->zroot; else zbr = &znode->parent->zbranch[znode->iip]; err = dbg_check_znode(c, zbr); if (err) return err; if (extra) { if (ubifs_zn_dirty(znode)) dirty_cnt += 1; else clean_cnt += 1; } prev = znode; znode = ubifs_tnc_postorder_next(znode); if (!znode) break; /* * If the last key of this znode is equivalent to the first key * of the next znode (collision), then check order of the keys. */ last = prev->child_cnt - 1; if (prev->level == 0 && znode->level == 0 && !c->replaying && !keys_cmp(c, &prev->zbranch[last].key, &znode->zbranch[0].key)) { err = dbg_check_key_order(c, &prev->zbranch[last], &znode->zbranch[0]); if (err < 0) return err; if (err) { ubifs_msg("first znode"); dbg_dump_znode(c, prev); ubifs_msg("second znode"); dbg_dump_znode(c, znode); return -EINVAL; } } } if (extra) { if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", atomic_long_read(&c->clean_zn_cnt), clean_cnt); return -EINVAL; } if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", atomic_long_read(&c->dirty_zn_cnt), dirty_cnt); return -EINVAL; } } return 0; } /** * dbg_walk_index - walk the on-flash index. * @c: UBIFS file-system description object * @leaf_cb: called for each leaf node * @znode_cb: called for each indexing node * @priv: private data which is passed to callbacks * * This function walks the UBIFS index and calls the @leaf_cb for each leaf * node and @znode_cb for each indexing node. Returns zero in case of success * and a negative error code in case of failure. * * It would be better if this function removed every znode it pulled to into * the TNC, so that the behavior more closely matched the non-debugging * behavior. */ int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, dbg_znode_callback znode_cb, void *priv) { int err; struct ubifs_zbranch *zbr; struct ubifs_znode *znode, *child; mutex_lock(&c->tnc_mutex); /* If the root indexing node is not in TNC - pull it */ if (!c->zroot.znode) { c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); if (IS_ERR(c->zroot.znode)) { err = PTR_ERR(c->zroot.znode); c->zroot.znode = NULL; goto out_unlock; } } /* * We are going to traverse the indexing tree in the postorder manner. * Go down and find the leftmost indexing node where we are going to * start from. */ znode = c->zroot.znode; while (znode->level > 0) { zbr = &znode->zbranch[0]; child = zbr->znode; if (!child) { child = ubifs_load_znode(c, zbr, znode, 0); if (IS_ERR(child)) { err = PTR_ERR(child); goto out_unlock; } zbr->znode = child; } znode = child; } /* Iterate over all indexing nodes */ while (1) { int idx; cond_resched(); if (znode_cb) { err = znode_cb(c, znode, priv); if (err) { ubifs_err("znode checking function returned " "error %d", err); dbg_dump_znode(c, znode); goto out_dump; } } if (leaf_cb && znode->level == 0) { for (idx = 0; idx < znode->child_cnt; idx++) { zbr = &znode->zbranch[idx]; err = leaf_cb(c, zbr, priv); if (err) { ubifs_err("leaf checking function " "returned error %d, for leaf " "at LEB %d:%d", err, zbr->lnum, zbr->offs); goto out_dump; } } } if (!znode->parent) break; idx = znode->iip + 1; znode = znode->parent; if (idx < znode->child_cnt) { /* Switch to the next index in the parent */ zbr = &znode->zbranch[idx]; child = zbr->znode; if (!child) { child = ubifs_load_znode(c, zbr, znode, idx); if (IS_ERR(child)) { err = PTR_ERR(child); goto out_unlock; } zbr->znode = child; } znode = child; } else /* * This is the last child, switch to the parent and * continue. */ continue; /* Go to the lowest leftmost znode in the new sub-tree */ while (znode->level > 0) { zbr = &znode->zbranch[0]; child = zbr->znode; if (!child) { child = ubifs_load_znode(c, zbr, znode, 0); if (IS_ERR(child)) { err = PTR_ERR(child); goto out_unlock; } zbr->znode = child; } znode = child; } } mutex_unlock(&c->tnc_mutex); return 0; out_dump: if (znode->parent) zbr = &znode->parent->zbranch[znode->iip]; else zbr = &c->zroot; ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); dbg_dump_znode(c, znode); out_unlock: mutex_unlock(&c->tnc_mutex); return err; } /** * add_size - add znode size to partially calculated index size. * @c: UBIFS file-system description object * @znode: znode to add size for * @priv: partially calculated index size * * This is a helper function for 'dbg_check_idx_size()' which is called for * every indexing node and adds its size to the 'long long' variable pointed to * by @priv. */ static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) { long long *idx_size = priv; int add; add = ubifs_idx_node_sz(c, znode->child_cnt); add = ALIGN(add, 8); *idx_size += add; return 0; } /** * dbg_check_idx_size - check index size. * @c: UBIFS file-system description object * @idx_size: size to check * * This function walks the UBIFS index, calculates its size and checks that the * size is equivalent to @idx_size. Returns zero in case of success and a * negative error code in case of failure. */ int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) { int err; long long calc = 0; if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) return 0; err = dbg_walk_index(c, NULL, add_size, &calc); if (err) { ubifs_err("error %d while walking the index", err); return err; } if (calc != idx_size) { ubifs_err("index size check failed: calculated size is %lld, " "should be %lld", calc, idx_size); dump_stack(); return -EINVAL; } return 0; } /** * struct fsck_inode - information about an inode used when checking the file-system. * @rb: link in the RB-tree of inodes * @inum: inode number * @mode: inode type, permissions, etc * @nlink: inode link count * @xattr_cnt: count of extended attributes * @references: how many directory/xattr entries refer this inode (calculated * while walking the index) * @calc_cnt: for directory inode count of child directories * @size: inode size (read from on-flash inode) * @xattr_sz: summary size of all extended attributes (read from on-flash * inode) * @calc_sz: for directories calculated directory size * @calc_xcnt: count of extended attributes * @calc_xsz: calculated summary size of all extended attributes * @xattr_nms: sum of lengths of all extended attribute names belonging to this * inode (read from on-flash inode) * @calc_xnms: calculated sum of lengths of all extended attribute names */ struct fsck_inode { struct rb_node rb; ino_t inum; umode_t mode; unsigned int nlink; unsigned int xattr_cnt; int references; int calc_cnt; long long size; unsigned int xattr_sz; long long calc_sz; long long calc_xcnt; long long calc_xsz; unsigned int xattr_nms; long long calc_xnms; }; /** * struct fsck_data - private FS checking information. * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) */ struct fsck_data { struct rb_root inodes; }; /** * add_inode - add inode information to RB-tree of inodes. * @c: UBIFS file-system description object * @fsckd: FS checking information * @ino: raw UBIFS inode to add * * This is a helper function for 'check_leaf()' which adds information about * inode @ino to the RB-tree of inodes. Returns inode information pointer in * case of success and a negative error code in case of failure. */ static struct fsck_inode *add_inode(struct ubifs_info *c, struct fsck_data *fsckd, struct ubifs_ino_node *ino) { struct rb_node **p, *parent = NULL; struct fsck_inode *fscki; ino_t inum = key_inum_flash(c, &ino->key); p = &fsckd->inodes.rb_node; while (*p) { parent = *p; fscki = rb_entry(parent, struct fsck_inode, rb); if (inum < fscki->inum) p = &(*p)->rb_left; else if (inum > fscki->inum) p = &(*p)->rb_right; else return fscki; } if (inum > c->highest_inum) { ubifs_err("too high inode number, max. is %lu", (unsigned long)c->highest_inum); return ERR_PTR(-EINVAL); } fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); if (!fscki) return ERR_PTR(-ENOMEM); fscki->inum = inum; fscki->nlink = le32_to_cpu(ino->nlink); fscki->size = le64_to_cpu(ino->size); fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); fscki->xattr_sz = le32_to_cpu(ino->xattr_size); fscki->xattr_nms = le32_to_cpu(ino->xattr_names); fscki->mode = le32_to_cpu(ino->mode); if (S_ISDIR(fscki->mode)) { fscki->calc_sz = UBIFS_INO_NODE_SZ; fscki->calc_cnt = 2; } rb_link_node(&fscki->rb, parent, p); rb_insert_color(&fscki->rb, &fsckd->inodes); return fscki; } /** * search_inode - search inode in the RB-tree of inodes. * @fsckd: FS checking information * @inum: inode number to search * * This is a helper function for 'check_leaf()' which searches inode @inum in * the RB-tree of inodes and returns an inode information pointer or %NULL if * the inode was not found. */ static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) { struct rb_node *p; struct fsck_inode *fscki; p = fsckd->inodes.rb_node; while (p) { fscki = rb_entry(p, struct fsck_inode, rb); if (inum < fscki->inum) p = p->rb_left; else if (inum > fscki->inum) p = p->rb_right; else return fscki; } return NULL; } /** * read_add_inode - read inode node and add it to RB-tree of inodes. * @c: UBIFS file-system description object * @fsckd: FS checking information * @inum: inode number to read * * This is a helper function for 'check_leaf()' which finds inode node @inum in * the index, reads it, and adds it to the RB-tree of inodes. Returns inode * information pointer in case of success and a negative error code in case of * failure. */ static struct fsck_inode *read_add_inode(struct ubifs_info *c, struct fsck_data *fsckd, ino_t inum) { int n, err; union ubifs_key key; struct ubifs_znode *znode; struct ubifs_zbranch *zbr; struct ubifs_ino_node *ino; struct fsck_inode *fscki; fscki = search_inode(fsckd, inum); if (fscki) return fscki; ino_key_init(c, &key, inum); err = ubifs_lookup_level0(c, &key, &znode, &n); if (!err) { ubifs_err("inode %lu not found in index", (unsigned long)inum); return ERR_PTR(-ENOENT); } else if (err < 0) { ubifs_err("error %d while looking up inode %lu", err, (unsigned long)inum); return ERR_PTR(err); } zbr = &znode->zbranch[n]; if (zbr->len < UBIFS_INO_NODE_SZ) { ubifs_err("bad node %lu node length %d", (unsigned long)inum, zbr->len); return ERR_PTR(-EINVAL); } ino = kmalloc(zbr->len, GFP_NOFS); if (!ino) return ERR_PTR(-ENOMEM); err = ubifs_tnc_read_node(c, zbr, ino); if (err) { ubifs_err("cannot read inode node at LEB %d:%d, error %d", zbr->lnum, zbr->offs, err); kfree(ino); return ERR_PTR(err); } fscki = add_inode(c, fsckd, ino); kfree(ino); if (IS_ERR(fscki)) { ubifs_err("error %ld while adding inode %lu node", PTR_ERR(fscki), (unsigned long)inum); return fscki; } return fscki; } /** * check_leaf - check leaf node. * @c: UBIFS file-system description object * @zbr: zbranch of the leaf node to check * @priv: FS checking information * * This is a helper function for 'dbg_check_filesystem()' which is called for * every single leaf node while walking the indexing tree. It checks that the * leaf node referred from the indexing tree exists, has correct CRC, and does * some other basic validation. This function is also responsible for building * an RB-tree of inodes - it adds all inodes into the RB-tree. It also * calculates reference count, size, etc for each inode in order to later * compare them to the information stored inside the inodes and detect possible * inconsistencies. Returns zero in case of success and a negative error code * in case of failure. */ static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, void *priv) { ino_t inum; void *node; struct ubifs_ch *ch; int err, type = key_type(c, &zbr->key); struct fsck_inode *fscki; if (zbr->len < UBIFS_CH_SZ) { ubifs_err("bad leaf length %d (LEB %d:%d)", zbr->len, zbr->lnum, zbr->offs); return -EINVAL; } node = kmalloc(zbr->len, GFP_NOFS); if (!node) return -ENOMEM; err = ubifs_tnc_read_node(c, zbr, node); if (err) { ubifs_err("cannot read leaf node at LEB %d:%d, error %d", zbr->lnum, zbr->offs, err); goto out_free; } /* If this is an inode node, add it to RB-tree of inodes */ if (type == UBIFS_INO_KEY) { fscki = add_inode(c, priv, node); if (IS_ERR(fscki)) { err = PTR_ERR(fscki); ubifs_err("error %d while adding inode node", err); goto out_dump; } goto out; } if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && type != UBIFS_DATA_KEY) { ubifs_err("unexpected node type %d at LEB %d:%d", type, zbr->lnum, zbr->offs); err = -EINVAL; goto out_free; } ch = node; if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { ubifs_err("too high sequence number, max. is %llu", c->max_sqnum); err = -EINVAL; goto out_dump; } if (type == UBIFS_DATA_KEY) { long long blk_offs; struct ubifs_data_node *dn = node; /* * Search the inode node this data node belongs to and insert * it to the RB-tree of inodes. */ inum = key_inum_flash(c, &dn->key); fscki = read_add_inode(c, priv, inum); if (IS_ERR(fscki)) { err = PTR_ERR(fscki); ubifs_err("error %d while processing data node and " "trying to find inode node %lu", err, (unsigned long)inum); goto out_dump; } /* Make sure the data node is within inode size */ blk_offs = key_block_flash(c, &dn->key); blk_offs <<= UBIFS_BLOCK_SHIFT; blk_offs += le32_to_cpu(dn->size); if (blk_offs > fscki->size) { ubifs_err("data node at LEB %d:%d is not within inode " "size %lld", zbr->lnum, zbr->offs, fscki->size); err = -EINVAL; goto out_dump; } } else { int nlen; struct ubifs_dent_node *dent = node; struct fsck_inode *fscki1; err = ubifs_validate_entry(c, dent); if (err) goto out_dump; /* * Search the inode node this entry refers to and the parent * inode node and insert them to the RB-tree of inodes. */ inum = le64_to_cpu(dent->inum); fscki = read_add_inode(c, priv, inum); if (IS_ERR(fscki)) { err = PTR_ERR(fscki); ubifs_err("error %d while processing entry node and " "trying to find inode node %lu", err, (unsigned long)inum); goto out_dump; } /* Count how many direntries or xentries refers this inode */ fscki->references += 1; inum = key_inum_flash(c, &dent->key); fscki1 = read_add_inode(c, priv, inum); if (IS_ERR(fscki1)) { err = PTR_ERR(fscki1); ubifs_err("error %d while processing entry node and " "trying to find parent inode node %lu", err, (unsigned long)inum); goto out_dump; } nlen = le16_to_cpu(dent->nlen); if (type == UBIFS_XENT_KEY) { fscki1->calc_xcnt += 1; fscki1->calc_xsz += CALC_DENT_SIZE(nlen); fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); fscki1->calc_xnms += nlen; } else { fscki1->calc_sz += CALC_DENT_SIZE(nlen); if (dent->type == UBIFS_ITYPE_DIR) fscki1->calc_cnt += 1; } } out: kfree(node); return 0; out_dump: ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); dbg_dump_node(c, node); out_free: kfree(node); return err; } /** * free_inodes - free RB-tree of inodes. * @fsckd: FS checking information */ static void free_inodes(struct fsck_data *fsckd) { struct rb_node *this = fsckd->inodes.rb_node; struct fsck_inode *fscki; while (this) { if (this->rb_left) this = this->rb_left; else if (this->rb_right) this = this->rb_right; else { fscki = rb_entry(this, struct fsck_inode, rb); this = rb_parent(this); if (this) { if (this->rb_left == &fscki->rb) this->rb_left = NULL; else this->rb_right = NULL; } kfree(fscki); } } } /** * check_inodes - checks all inodes. * @c: UBIFS file-system description object * @fsckd: FS checking information * * This is a helper function for 'dbg_check_filesystem()' which walks the * RB-tree of inodes after the index scan has been finished, and checks that * inode nlink, size, etc are correct. Returns zero if inodes are fine, * %-EINVAL if not, and a negative error code in case of failure. */ static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) { int n, err; union ubifs_key key; struct ubifs_znode *znode; struct ubifs_zbranch *zbr; struct ubifs_ino_node *ino; struct fsck_inode *fscki; struct rb_node *this = rb_first(&fsckd->inodes); while (this) { fscki = rb_entry(this, struct fsck_inode, rb); this = rb_next(this); if (S_ISDIR(fscki->mode)) { /* * Directories have to have exactly one reference (they * cannot have hardlinks), although root inode is an * exception. */ if (fscki->inum != UBIFS_ROOT_INO && fscki->references != 1) { ubifs_err("directory inode %lu has %d " "direntries which refer it, but " "should be 1", (unsigned long)fscki->inum, fscki->references); goto out_dump; } if (fscki->inum == UBIFS_ROOT_INO && fscki->references != 0) { ubifs_err("root inode %lu has non-zero (%d) " "direntries which refer it", (unsigned long)fscki->inum, fscki->references); goto out_dump; } if (fscki->calc_sz != fscki->size) { ubifs_err("directory inode %lu size is %lld, " "but calculated size is %lld", (unsigned long)fscki->inum, fscki->size, fscki->calc_sz); goto out_dump; } if (fscki->calc_cnt != fscki->nlink) { ubifs_err("directory inode %lu nlink is %d, " "but calculated nlink is %d", (unsigned long)fscki->inum, fscki->nlink, fscki->calc_cnt); goto out_dump; } } else { if (fscki->references != fscki->nlink) { ubifs_err("inode %lu nlink is %d, but " "calculated nlink is %d", (unsigned long)fscki->inum, fscki->nlink, fscki->references); goto out_dump; } } if (fscki->xattr_sz != fscki->calc_xsz) { ubifs_err("inode %lu has xattr size %u, but " "calculated size is %lld", (unsigned long)fscki->inum, fscki->xattr_sz, fscki->calc_xsz); goto out_dump; } if (fscki->xattr_cnt != fscki->calc_xcnt) { ubifs_err("inode %lu has %u xattrs, but " "calculated count is %lld", (unsigned long)fscki->inum, fscki->xattr_cnt, fscki->calc_xcnt); goto out_dump; } if (fscki->xattr_nms != fscki->calc_xnms) { ubifs_err("inode %lu has xattr names' size %u, but " "calculated names' size is %lld", (unsigned long)fscki->inum, fscki->xattr_nms, fscki->calc_xnms); goto out_dump; } } return 0; out_dump: /* Read the bad inode and dump it */ ino_key_init(c, &key, fscki->inum); err = ubifs_lookup_level0(c, &key, &znode, &n); if (!err) { ubifs_err("inode %lu not found in index", (unsigned long)fscki->inum); return -ENOENT; } else if (err < 0) { ubifs_err("error %d while looking up inode %lu", err, (unsigned long)fscki->inum); return err; } zbr = &znode->zbranch[n]; ino = kmalloc(zbr->len, GFP_NOFS); if (!ino) return -ENOMEM; err = ubifs_tnc_read_node(c, zbr, ino); if (err) { ubifs_err("cannot read inode node at LEB %d:%d, error %d", zbr->lnum, zbr->offs, err); kfree(ino); return err; } ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", (unsigned long)fscki->inum, zbr->lnum, zbr->offs); dbg_dump_node(c, ino); kfree(ino); return -EINVAL; } /** * dbg_check_filesystem - check the file-system. * @c: UBIFS file-system description object * * This function checks the file system, namely: * o makes sure that all leaf nodes exist and their CRCs are correct; * o makes sure inode nlink, size, xattr size/count are correct (for all * inodes). * * The function reads whole indexing tree and all nodes, so it is pretty * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if * not, and a negative error code in case of failure. */ int dbg_check_filesystem(struct ubifs_info *c) { int err; struct fsck_data fsckd; if (!(ubifs_chk_flags & UBIFS_CHK_FS)) return 0; fsckd.inodes = RB_ROOT; err = dbg_walk_index(c, check_leaf, NULL, &fsckd); if (err) goto out_free; err = check_inodes(c, &fsckd); if (err) goto out_free; free_inodes(&fsckd); return 0; out_free: ubifs_err("file-system check failed with error %d", err); dump_stack(); free_inodes(&fsckd); return err; } /** * dbg_check_data_nodes_order - check that list of data nodes is sorted. * @c: UBIFS file-system description object * @head: the list of nodes ('struct ubifs_scan_node' objects) * * This function returns zero if the list of data nodes is sorted correctly, * and %-EINVAL if not. */ int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) { struct list_head *cur; struct ubifs_scan_node *sa, *sb; if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) return 0; for (cur = head->next; cur->next != head; cur = cur->next) { ino_t inuma, inumb; uint32_t blka, blkb; cond_resched(); sa = container_of(cur, struct ubifs_scan_node, list); sb = container_of(cur->next, struct ubifs_scan_node, list); if (sa->type != UBIFS_DATA_NODE) { ubifs_err("bad node type %d", sa->type); dbg_dump_node(c, sa->node); return -EINVAL; } if (sb->type != UBIFS_DATA_NODE) { ubifs_err("bad node type %d", sb->type); dbg_dump_node(c, sb->node); return -EINVAL; } inuma = key_inum(c, &sa->key); inumb = key_inum(c, &sb->key); if (inuma < inumb) continue; if (inuma > inumb) { ubifs_err("larger inum %lu goes before inum %lu", (unsigned long)inuma, (unsigned long)inumb); goto error_dump; } blka = key_block(c, &sa->key); blkb = key_block(c, &sb->key); if (blka > blkb) { ubifs_err("larger block %u goes before %u", blka, blkb); goto error_dump; } if (blka == blkb) { ubifs_err("two data nodes for the same block"); goto error_dump; } } return 0; error_dump: dbg_dump_node(c, sa->node); dbg_dump_node(c, sb->node); return -EINVAL; } /** * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. * @c: UBIFS file-system description object * @head: the list of nodes ('struct ubifs_scan_node' objects) * * This function returns zero if the list of non-data nodes is sorted correctly, * and %-EINVAL if not. */ int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) { struct list_head *cur; struct ubifs_scan_node *sa, *sb; if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) return 0; for (cur = head->next; cur->next != head; cur = cur->next) { ino_t inuma, inumb; uint32_t hasha, hashb; cond_resched(); sa = container_of(cur, struct ubifs_scan_node, list); sb = container_of(cur->next, struct ubifs_scan_node, list); if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && sa->type != UBIFS_XENT_NODE) { ubifs_err("bad node type %d", sa->type); dbg_dump_node(c, sa->node); return -EINVAL; } if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && sa->type != UBIFS_XENT_NODE) { ubifs_err("bad node type %d", sb->type); dbg_dump_node(c, sb->node); return -EINVAL; } if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { ubifs_err("non-inode node goes before inode node"); goto error_dump; } if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) continue; if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { /* Inode nodes are sorted in descending size order */ if (sa->len < sb->len) { ubifs_err("smaller inode node goes first"); goto error_dump; } continue; } /* * This is either a dentry or xentry, which should be sorted in * ascending (parent ino, hash) order. */ inuma = key_inum(c, &sa->key); inumb = key_inum(c, &sb->key); if (inuma < inumb) continue; if (inuma > inumb) { ubifs_err("larger inum %lu goes before inum %lu", (unsigned long)inuma, (unsigned long)inumb); goto error_dump; } hasha = key_block(c, &sa->key); hashb = key_block(c, &sb->key); if (hasha > hashb) { ubifs_err("larger hash %u goes before %u", hasha, hashb); goto error_dump; } } return 0; error_dump: ubifs_msg("dumping first node"); dbg_dump_node(c, sa->node); ubifs_msg("dumping second node"); dbg_dump_node(c, sb->node); return -EINVAL; return 0; } static int invocation_cnt; int dbg_force_in_the_gaps(void) { if (!dbg_force_in_the_gaps_enabled) return 0; /* Force in-the-gaps every 8th commit */ return !((invocation_cnt++) & 0x7); } /* Failure mode for recovery testing */ #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) struct failure_mode_info { struct list_head list; struct ubifs_info *c; }; static LIST_HEAD(fmi_list); static DEFINE_SPINLOCK(fmi_lock); static unsigned int next; static int simple_rand(void) { if (next == 0) next = current->pid; next = next * 1103515245 + 12345; return (next >> 16) & 32767; } static void failure_mode_init(struct ubifs_info *c) { struct failure_mode_info *fmi; fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); if (!fmi) { ubifs_err("Failed to register failure mode - no memory"); return; } fmi->c = c; spin_lock(&fmi_lock); list_add_tail(&fmi->list, &fmi_list); spin_unlock(&fmi_lock); } static void failure_mode_exit(struct ubifs_info *c) { struct failure_mode_info *fmi, *tmp; spin_lock(&fmi_lock); list_for_each_entry_safe(fmi, tmp, &fmi_list, list) if (fmi->c == c) { list_del(&fmi->list); kfree(fmi); } spin_unlock(&fmi_lock); } static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) { struct failure_mode_info *fmi; spin_lock(&fmi_lock); list_for_each_entry(fmi, &fmi_list, list) if (fmi->c->ubi == desc) { struct ubifs_info *c = fmi->c; spin_unlock(&fmi_lock); return c; } spin_unlock(&fmi_lock); return NULL; } static int in_failure_mode(struct ubi_volume_desc *desc) { struct ubifs_info *c = dbg_find_info(desc); if (c && dbg_failure_mode) return c->dbg->failure_mode; return 0; } static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) { struct ubifs_info *c = dbg_find_info(desc); struct ubifs_debug_info *d; if (!c || !dbg_failure_mode) return 0; d = c->dbg; if (d->failure_mode) return 1; if (!d->fail_cnt) { /* First call - decide delay to failure */ if (chance(1, 2)) { unsigned int delay = 1 << (simple_rand() >> 11); if (chance(1, 2)) { d->fail_delay = 1; d->fail_timeout = jiffies + msecs_to_jiffies(delay); dbg_rcvry("failing after %ums", delay); } else { d->fail_delay = 2; d->fail_cnt_max = delay; dbg_rcvry("failing after %u calls", delay); } } d->fail_cnt += 1; } /* Determine if failure delay has expired */ if (d->fail_delay == 1) { if (time_before(jiffies, d->fail_timeout)) return 0; } else if (d->fail_delay == 2) if (d->fail_cnt++ < d->fail_cnt_max) return 0; if (lnum == UBIFS_SB_LNUM) { if (write) { if (chance(1, 2)) return 0; } else if (chance(19, 20)) return 0; dbg_rcvry("failing in super block LEB %d", lnum); } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { if (chance(19, 20)) return 0; dbg_rcvry("failing in master LEB %d", lnum); } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { if (write) { if (chance(99, 100)) return 0; } else if (chance(399, 400)) return 0; dbg_rcvry("failing in log LEB %d", lnum); } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { if (write) { if (chance(7, 8)) return 0; } else if (chance(19, 20)) return 0; dbg_rcvry("failing in LPT LEB %d", lnum); } else if (lnum >= c->orph_first && lnum <= c->orph_last) { if (write) { if (chance(1, 2)) return 0; } else if (chance(9, 10)) return 0; dbg_rcvry("failing in orphan LEB %d", lnum); } else if (lnum == c->ihead_lnum) { if (chance(99, 100)) return 0; dbg_rcvry("failing in index head LEB %d", lnum); } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { if (chance(9, 10)) return 0; dbg_rcvry("failing in GC head LEB %d", lnum); } else if (write && !RB_EMPTY_ROOT(&c->buds) && !ubifs_search_bud(c, lnum)) { if (chance(19, 20)) return 0; dbg_rcvry("failing in non-bud LEB %d", lnum); } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || c->cmt_state == COMMIT_RUNNING_REQUIRED) { if (chance(999, 1000)) return 0; dbg_rcvry("failing in bud LEB %d commit running", lnum); } else { if (chance(9999, 10000)) return 0; dbg_rcvry("failing in bud LEB %d commit not running", lnum); } ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); d->failure_mode = 1; dump_stack(); return 1; } static void cut_data(const void *buf, int len) { int flen, i; unsigned char *p = (void *)buf; flen = (len * (long long)simple_rand()) >> 15; for (i = flen; i < len; i++) p[i] = 0xff; } int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, int len, int check) { if (in_failure_mode(desc)) return -EIO; return ubi_leb_read(desc, lnum, buf, offset, len, check); } int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, int offset, int len, int dtype) { int err, failing; if (in_failure_mode(desc)) return -EIO; failing = do_fail(desc, lnum, 1); if (failing) cut_data(buf, len); err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); if (err) return err; if (failing) return -EIO; return 0; } int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, int len, int dtype) { int err; if (do_fail(desc, lnum, 1)) return -EIO; err = ubi_leb_change(desc, lnum, buf, len, dtype); if (err) return err; if (do_fail(desc, lnum, 1)) return -EIO; return 0; } int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) { int err; if (do_fail(desc, lnum, 0)) return -EIO; err = ubi_leb_erase(desc, lnum); if (err) return err; if (do_fail(desc, lnum, 0)) return -EIO; return 0; } int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) { int err; if (do_fail(desc, lnum, 0)) return -EIO; err = ubi_leb_unmap(desc, lnum); if (err) return err; if (do_fail(desc, lnum, 0)) return -EIO; return 0; } int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) { if (in_failure_mode(desc)) return -EIO; return ubi_is_mapped(desc, lnum); } int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) { int err; if (do_fail(desc, lnum, 0)) return -EIO; err = ubi_leb_map(desc, lnum, dtype); if (err) return err; if (do_fail(desc, lnum, 0)) return -EIO; return 0; } /** * ubifs_debugging_init - initialize UBIFS debugging. * @c: UBIFS file-system description object * * This function initializes debugging-related data for the file system. * Returns zero in case of success and a negative error code in case of * failure. */ int ubifs_debugging_init(struct ubifs_info *c) { c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); if (!c->dbg) return -ENOMEM; failure_mode_init(c); return 0; } /** * ubifs_debugging_exit - free debugging data. * @c: UBIFS file-system description object */ void ubifs_debugging_exit(struct ubifs_info *c) { failure_mode_exit(c); kfree(c->dbg); } /* * Root directory for UBIFS stuff in debugfs. Contains sub-directories which * contain the stuff specific to particular file-system mounts. */ static struct dentry *dfs_rootdir; /** * dbg_debugfs_init - initialize debugfs file-system. * * UBIFS uses debugfs file-system to expose various debugging knobs to * user-space. This function creates "ubifs" directory in the debugfs * file-system. Returns zero in case of success and a negative error code in * case of failure. */ int dbg_debugfs_init(void) { dfs_rootdir = debugfs_create_dir("ubifs", NULL); if (IS_ERR(dfs_rootdir)) { int err = PTR_ERR(dfs_rootdir); ubifs_err("cannot create \"ubifs\" debugfs directory, " "error %d\n", err); return err; } return 0; } /** * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. */ void dbg_debugfs_exit(void) { debugfs_remove(dfs_rootdir); } static int open_debugfs_file(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } static ssize_t write_debugfs_file(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct ubifs_info *c = file->private_data; struct ubifs_debug_info *d = c->dbg; if (file->f_path.dentry == d->dfs_dump_lprops) dbg_dump_lprops(c); else if (file->f_path.dentry == d->dfs_dump_budg) { spin_lock(&c->space_lock); dbg_dump_budg(c); spin_unlock(&c->space_lock); } else if (file->f_path.dentry == d->dfs_dump_tnc) { mutex_lock(&c->tnc_mutex); dbg_dump_tnc(c); mutex_unlock(&c->tnc_mutex); } else return -EINVAL; *ppos += count; return count; } static const struct file_operations dfs_fops = { .open = open_debugfs_file, .write = write_debugfs_file, .owner = THIS_MODULE, .llseek = default_llseek, }; /** * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. * @c: UBIFS file-system description object * * This function creates all debugfs files for this instance of UBIFS. Returns * zero in case of success and a negative error code in case of failure. * * Note, the only reason we have not merged this function with the * 'ubifs_debugging_init()' function is because it is better to initialize * debugfs interfaces at the very end of the mount process, and remove them at * the very beginning of the mount process. */ int dbg_debugfs_init_fs(struct ubifs_info *c) { int err; const char *fname; struct dentry *dent; struct ubifs_debug_info *d = c->dbg; sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); fname = d->dfs_dir_name; dent = debugfs_create_dir(fname, dfs_rootdir); if (IS_ERR_OR_NULL(dent)) goto out; d->dfs_dir = dent; fname = "dump_lprops"; dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); if (IS_ERR_OR_NULL(dent)) goto out_remove; d->dfs_dump_lprops = dent; fname = "dump_budg"; dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); if (IS_ERR_OR_NULL(dent)) goto out_remove; d->dfs_dump_budg = dent; fname = "dump_tnc"; dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); if (IS_ERR_OR_NULL(dent)) goto out_remove; d->dfs_dump_tnc = dent; return 0; out_remove: debugfs_remove_recursive(d->dfs_dir); out: err = dent ? PTR_ERR(dent) : -ENODEV; ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", fname, err); return err; } /** * dbg_debugfs_exit_fs - remove all debugfs files. * @c: UBIFS file-system description object */ void dbg_debugfs_exit_fs(struct ubifs_info *c) { debugfs_remove_recursive(c->dbg->dfs_dir); } #endif /* CONFIG_UBIFS_FS_DEBUG */