/* * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_trace.h" #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b))) #define XFSA_FIXUP_BNO_OK 1 #define XFSA_FIXUP_CNT_OK 2 /* * Prototypes for per-ag allocation routines */ STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *); STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *); STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *); STATIC int xfs_alloc_ag_vextent_small(xfs_alloc_arg_t *, xfs_btree_cur_t *, xfs_agblock_t *, xfs_extlen_t *, int *); /* * Internal functions. */ /* * Lookup the record equal to [bno, len] in the btree given by cur. */ STATIC int /* error */ xfs_alloc_lookup_eq( struct xfs_btree_cur *cur, /* btree cursor */ xfs_agblock_t bno, /* starting block of extent */ xfs_extlen_t len, /* length of extent */ int *stat) /* success/failure */ { cur->bc_rec.a.ar_startblock = bno; cur->bc_rec.a.ar_blockcount = len; return xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat); } /* * Lookup the first record greater than or equal to [bno, len] * in the btree given by cur. */ STATIC int /* error */ xfs_alloc_lookup_ge( struct xfs_btree_cur *cur, /* btree cursor */ xfs_agblock_t bno, /* starting block of extent */ xfs_extlen_t len, /* length of extent */ int *stat) /* success/failure */ { cur->bc_rec.a.ar_startblock = bno; cur->bc_rec.a.ar_blockcount = len; return xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat); } /* * Lookup the first record less than or equal to [bno, len] * in the btree given by cur. */ int /* error */ xfs_alloc_lookup_le( struct xfs_btree_cur *cur, /* btree cursor */ xfs_agblock_t bno, /* starting block of extent */ xfs_extlen_t len, /* length of extent */ int *stat) /* success/failure */ { cur->bc_rec.a.ar_startblock = bno; cur->bc_rec.a.ar_blockcount = len; return xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat); } /* * Update the record referred to by cur to the value given * by [bno, len]. * This either works (return 0) or gets an EFSCORRUPTED error. */ STATIC int /* error */ xfs_alloc_update( struct xfs_btree_cur *cur, /* btree cursor */ xfs_agblock_t bno, /* starting block of extent */ xfs_extlen_t len) /* length of extent */ { union xfs_btree_rec rec; rec.alloc.ar_startblock = cpu_to_be32(bno); rec.alloc.ar_blockcount = cpu_to_be32(len); return xfs_btree_update(cur, &rec); } /* * Get the data from the pointed-to record. */ int /* error */ xfs_alloc_get_rec( struct xfs_btree_cur *cur, /* btree cursor */ xfs_agblock_t *bno, /* output: starting block of extent */ xfs_extlen_t *len, /* output: length of extent */ int *stat) /* output: success/failure */ { union xfs_btree_rec *rec; int error; error = xfs_btree_get_rec(cur, &rec, stat); if (!error && *stat == 1) { *bno = be32_to_cpu(rec->alloc.ar_startblock); *len = be32_to_cpu(rec->alloc.ar_blockcount); } return error; } /* * Compute aligned version of the found extent. * Takes alignment and min length into account. */ STATIC void xfs_alloc_compute_aligned( xfs_alloc_arg_t *args, /* allocation argument structure */ xfs_agblock_t foundbno, /* starting block in found extent */ xfs_extlen_t foundlen, /* length in found extent */ xfs_agblock_t *resbno, /* result block number */ xfs_extlen_t *reslen) /* result length */ { xfs_agblock_t bno; xfs_extlen_t diff; xfs_extlen_t len; if (args->alignment > 1 && foundlen >= args->minlen) { bno = roundup(foundbno, args->alignment); diff = bno - foundbno; len = diff >= foundlen ? 0 : foundlen - diff; } else { bno = foundbno; len = foundlen; } *resbno = bno; *reslen = len; } /* * Compute best start block and diff for "near" allocations. * freelen >= wantlen already checked by caller. */ STATIC xfs_extlen_t /* difference value (absolute) */ xfs_alloc_compute_diff( xfs_agblock_t wantbno, /* target starting block */ xfs_extlen_t wantlen, /* target length */ xfs_extlen_t alignment, /* target alignment */ xfs_agblock_t freebno, /* freespace's starting block */ xfs_extlen_t freelen, /* freespace's length */ xfs_agblock_t *newbnop) /* result: best start block from free */ { xfs_agblock_t freeend; /* end of freespace extent */ xfs_agblock_t newbno1; /* return block number */ xfs_agblock_t newbno2; /* other new block number */ xfs_extlen_t newlen1=0; /* length with newbno1 */ xfs_extlen_t newlen2=0; /* length with newbno2 */ xfs_agblock_t wantend; /* end of target extent */ ASSERT(freelen >= wantlen); freeend = freebno + freelen; wantend = wantbno + wantlen; if (freebno >= wantbno) { if ((newbno1 = roundup(freebno, alignment)) >= freeend) newbno1 = NULLAGBLOCK; } else if (freeend >= wantend && alignment > 1) { newbno1 = roundup(wantbno, alignment); newbno2 = newbno1 - alignment; if (newbno1 >= freeend) newbno1 = NULLAGBLOCK; else newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1); if (newbno2 < freebno) newbno2 = NULLAGBLOCK; else newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2); if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) { if (newlen1 < newlen2 || (newlen1 == newlen2 && XFS_ABSDIFF(newbno1, wantbno) > XFS_ABSDIFF(newbno2, wantbno))) newbno1 = newbno2; } else if (newbno2 != NULLAGBLOCK) newbno1 = newbno2; } else if (freeend >= wantend) { newbno1 = wantbno; } else if (alignment > 1) { newbno1 = roundup(freeend - wantlen, alignment); if (newbno1 > freeend - wantlen && newbno1 - alignment >= freebno) newbno1 -= alignment; else if (newbno1 >= freeend) newbno1 = NULLAGBLOCK; } else newbno1 = freeend - wantlen; *newbnop = newbno1; return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno); } /* * Fix up the length, based on mod and prod. * len should be k * prod + mod for some k. * If len is too small it is returned unchanged. * If len hits maxlen it is left alone. */ STATIC void xfs_alloc_fix_len( xfs_alloc_arg_t *args) /* allocation argument structure */ { xfs_extlen_t k; xfs_extlen_t rlen; ASSERT(args->mod < args->prod); rlen = args->len; ASSERT(rlen >= args->minlen); ASSERT(rlen <= args->maxlen); if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen || (args->mod == 0 && rlen < args->prod)) return; k = rlen % args->prod; if (k == args->mod) return; if (k > args->mod) { if ((int)(rlen = rlen - k - args->mod) < (int)args->minlen) return; } else { if ((int)(rlen = rlen - args->prod - (args->mod - k)) < (int)args->minlen) return; } ASSERT(rlen >= args->minlen); ASSERT(rlen <= args->maxlen); args->len = rlen; } /* * Fix up length if there is too little space left in the a.g. * Return 1 if ok, 0 if too little, should give up. */ STATIC int xfs_alloc_fix_minleft( xfs_alloc_arg_t *args) /* allocation argument structure */ { xfs_agf_t *agf; /* a.g. freelist header */ int diff; /* free space difference */ if (args->minleft == 0) return 1; agf = XFS_BUF_TO_AGF(args->agbp); diff = be32_to_cpu(agf->agf_freeblks) + be32_to_cpu(agf->agf_flcount) - args->len - args->minleft; if (diff >= 0) return 1; args->len += diff; /* shrink the allocated space */ if (args->len >= args->minlen) return 1; args->agbno = NULLAGBLOCK; return 0; } /* * Update the two btrees, logically removing from freespace the extent * starting at rbno, rlen blocks. The extent is contained within the * actual (current) free extent fbno for flen blocks. * Flags are passed in indicating whether the cursors are set to the * relevant records. */ STATIC int /* error code */ xfs_alloc_fixup_trees( xfs_btree_cur_t *cnt_cur, /* cursor for by-size btree */ xfs_btree_cur_t *bno_cur, /* cursor for by-block btree */ xfs_agblock_t fbno, /* starting block of free extent */ xfs_extlen_t flen, /* length of free extent */ xfs_agblock_t rbno, /* starting block of returned extent */ xfs_extlen_t rlen, /* length of returned extent */ int flags) /* flags, XFSA_FIXUP_... */ { int error; /* error code */ int i; /* operation results */ xfs_agblock_t nfbno1; /* first new free startblock */ xfs_agblock_t nfbno2; /* second new free startblock */ xfs_extlen_t nflen1=0; /* first new free length */ xfs_extlen_t nflen2=0; /* second new free length */ /* * Look up the record in the by-size tree if necessary. */ if (flags & XFSA_FIXUP_CNT_OK) { #ifdef DEBUG if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i))) return error; XFS_WANT_CORRUPTED_RETURN( i == 1 && nfbno1 == fbno && nflen1 == flen); #endif } else { if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 1); } /* * Look up the record in the by-block tree if necessary. */ if (flags & XFSA_FIXUP_BNO_OK) { #ifdef DEBUG if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i))) return error; XFS_WANT_CORRUPTED_RETURN( i == 1 && nfbno1 == fbno && nflen1 == flen); #endif } else { if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 1); } #ifdef DEBUG if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) { struct xfs_btree_block *bnoblock; struct xfs_btree_block *cntblock; bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_bufs[0]); cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_bufs[0]); XFS_WANT_CORRUPTED_RETURN( bnoblock->bb_numrecs == cntblock->bb_numrecs); } #endif /* * Deal with all four cases: the allocated record is contained * within the freespace record, so we can have new freespace * at either (or both) end, or no freespace remaining. */ if (rbno == fbno && rlen == flen) nfbno1 = nfbno2 = NULLAGBLOCK; else if (rbno == fbno) { nfbno1 = rbno + rlen; nflen1 = flen - rlen; nfbno2 = NULLAGBLOCK; } else if (rbno + rlen == fbno + flen) { nfbno1 = fbno; nflen1 = flen - rlen; nfbno2 = NULLAGBLOCK; } else { nfbno1 = fbno; nflen1 = rbno - fbno; nfbno2 = rbno + rlen; nflen2 = (fbno + flen) - nfbno2; } /* * Delete the entry from the by-size btree. */ if ((error = xfs_btree_delete(cnt_cur, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 1); /* * Add new by-size btree entry(s). */ if (nfbno1 != NULLAGBLOCK) { if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 0); if ((error = xfs_btree_insert(cnt_cur, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 1); } if (nfbno2 != NULLAGBLOCK) { if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 0); if ((error = xfs_btree_insert(cnt_cur, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 1); } /* * Fix up the by-block btree entry(s). */ if (nfbno1 == NULLAGBLOCK) { /* * No remaining freespace, just delete the by-block tree entry. */ if ((error = xfs_btree_delete(bno_cur, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 1); } else { /* * Update the by-block entry to start later|be shorter. */ if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1))) return error; } if (nfbno2 != NULLAGBLOCK) { /* * 2 resulting free entries, need to add one. */ if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 0); if ((error = xfs_btree_insert(bno_cur, &i))) return error; XFS_WANT_CORRUPTED_RETURN(i == 1); } return 0; } /* * Read in the allocation group free block array. */ STATIC int /* error */ xfs_alloc_read_agfl( xfs_mount_t *mp, /* mount point structure */ xfs_trans_t *tp, /* transaction pointer */ xfs_agnumber_t agno, /* allocation group number */ xfs_buf_t **bpp) /* buffer for the ag free block array */ { xfs_buf_t *bp; /* return value */ int error; ASSERT(agno != NULLAGNUMBER); error = xfs_trans_read_buf( mp, tp, mp->m_ddev_targp, XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)), XFS_FSS_TO_BB(mp, 1), 0, &bp); if (error) return error; ASSERT(bp); ASSERT(!XFS_BUF_GETERROR(bp)); XFS_BUF_SET_VTYPE_REF(bp, B_FS_AGFL, XFS_AGFL_REF); *bpp = bp; return 0; } STATIC int xfs_alloc_update_counters( struct xfs_trans *tp, struct xfs_perag *pag, struct xfs_buf *agbp, long len) { struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); pag->pagf_freeblks += len; be32_add_cpu(&agf->agf_freeblks, len); xfs_trans_agblocks_delta(tp, len); if (unlikely(be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length))) return EFSCORRUPTED; xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS); return 0; } /* * Allocation group level functions. */ /* * Allocate a variable extent in the allocation group agno. * Type and bno are used to determine where in the allocation group the * extent will start. * Extent's length (returned in *len) will be between minlen and maxlen, * and of the form k * prod + mod unless there's nothing that large. * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. */ STATIC int /* error */ xfs_alloc_ag_vextent( xfs_alloc_arg_t *args) /* argument structure for allocation */ { int error=0; ASSERT(args->minlen > 0); ASSERT(args->maxlen > 0); ASSERT(args->minlen <= args->maxlen); ASSERT(args->mod < args->prod); ASSERT(args->alignment > 0); /* * Branch to correct routine based on the type. */ args->wasfromfl = 0; switch (args->type) { case XFS_ALLOCTYPE_THIS_AG: error = xfs_alloc_ag_vextent_size(args); break; case XFS_ALLOCTYPE_NEAR_BNO: error = xfs_alloc_ag_vextent_near(args); break; case XFS_ALLOCTYPE_THIS_BNO: error = xfs_alloc_ag_vextent_exact(args); break; default: ASSERT(0); /* NOTREACHED */ } if (error || args->agbno == NULLAGBLOCK) return error; ASSERT(args->len >= args->minlen); ASSERT(args->len <= args->maxlen); ASSERT(!args->wasfromfl || !args->isfl); ASSERT(args->agbno % args->alignment == 0); if (!args->wasfromfl) { error = xfs_alloc_update_counters(args->tp, args->pag, args->agbp, -((long)(args->len))); if (error) return error; /* * Search the busylist for these blocks and mark the * transaction as synchronous if blocks are found. This * avoids the need to block due to a synchronous log * force to ensure correct ordering as the synchronous * transaction will guarantee that for us. */ if (xfs_alloc_busy_search(args->mp, args->agno, args->agbno, args->len)) xfs_trans_set_sync(args->tp); } if (!args->isfl) { xfs_trans_mod_sb(args->tp, args->wasdel ? XFS_TRANS_SB_RES_FDBLOCKS : XFS_TRANS_SB_FDBLOCKS, -((long)(args->len))); } XFS_STATS_INC(xs_allocx); XFS_STATS_ADD(xs_allocb, args->len); return error; } /* * Allocate a variable extent at exactly agno/bno. * Extent's length (returned in *len) will be between minlen and maxlen, * and of the form k * prod + mod unless there's nothing that large. * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it. */ STATIC int /* error */ xfs_alloc_ag_vextent_exact( xfs_alloc_arg_t *args) /* allocation argument structure */ { xfs_btree_cur_t *bno_cur;/* by block-number btree cursor */ xfs_btree_cur_t *cnt_cur;/* by count btree cursor */ xfs_agblock_t end; /* end of allocated extent */ int error; xfs_agblock_t fbno; /* start block of found extent */ xfs_agblock_t fend; /* end block of found extent */ xfs_extlen_t flen; /* length of found extent */ int i; /* success/failure of operation */ xfs_agblock_t maxend; /* end of maximal extent */ xfs_agblock_t minend; /* end of minimal extent */ xfs_extlen_t rlen; /* length of returned extent */ ASSERT(args->alignment == 1); /* * Allocate/initialize a cursor for the by-number freespace btree. */ bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, args->agno, XFS_BTNUM_BNO); /* * Lookup bno and minlen in the btree (minlen is irrelevant, really). * Look for the closest free block <= bno, it must contain bno * if any free block does. */ error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i); if (error) goto error0; if (!i) goto not_found; /* * Grab the freespace record. */ error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); ASSERT(fbno <= args->agbno); minend = args->agbno + args->minlen; maxend = args->agbno + args->maxlen; fend = fbno + flen; /* * Give up if the freespace isn't long enough for the minimum request. */ if (fend < minend) goto not_found; /* * End of extent will be smaller of the freespace end and the * maximal requested end. * * Fix the length according to mod and prod if given. */ end = XFS_AGBLOCK_MIN(fend, maxend); args->len = end - args->agbno; xfs_alloc_fix_len(args); if (!xfs_alloc_fix_minleft(args)) goto not_found; rlen = args->len; ASSERT(args->agbno + rlen <= fend); end = args->agbno + rlen; /* * We are allocating agbno for rlen [agbno .. end] * Allocate/initialize a cursor for the by-size btree. */ cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, args->agno, XFS_BTNUM_CNT); ASSERT(args->agbno + args->len <= be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length)); error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno, args->len, XFSA_FIXUP_BNO_OK); if (error) { xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); goto error0; } xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); args->wasfromfl = 0; trace_xfs_alloc_exact_done(args); return 0; not_found: /* Didn't find it, return null. */ xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); args->agbno = NULLAGBLOCK; trace_xfs_alloc_exact_notfound(args); return 0; error0: xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); trace_xfs_alloc_exact_error(args); return error; } /* * Search the btree in a given direction via the search cursor and compare * the records found against the good extent we've already found. */ STATIC int xfs_alloc_find_best_extent( struct xfs_alloc_arg *args, /* allocation argument structure */ struct xfs_btree_cur **gcur, /* good cursor */ struct xfs_btree_cur **scur, /* searching cursor */ xfs_agblock_t gdiff, /* difference for search comparison */ xfs_agblock_t *sbno, /* extent found by search */ xfs_extlen_t *slen, xfs_extlen_t *slena, /* aligned length */ int dir) /* 0 = search right, 1 = search left */ { xfs_agblock_t bno; xfs_agblock_t new; xfs_agblock_t sdiff; int error; int i; /* The good extent is perfect, no need to search. */ if (!gdiff) goto out_use_good; /* * Look until we find a better one, run out of space or run off the end. */ do { error = xfs_alloc_get_rec(*scur, sbno, slen, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); xfs_alloc_compute_aligned(args, *sbno, *slen, &bno, slena); /* * The good extent is closer than this one. */ if (!dir) { if (bno >= args->agbno + gdiff) goto out_use_good; } else { if (bno <= args->agbno - gdiff) goto out_use_good; } /* * Same distance, compare length and pick the best. */ if (*slena >= args->minlen) { args->len = XFS_EXTLEN_MIN(*slena, args->maxlen); xfs_alloc_fix_len(args); sdiff = xfs_alloc_compute_diff(args->agbno, args->len, args->alignment, *sbno, *slen, &new); /* * Choose closer size and invalidate other cursor. */ if (sdiff < gdiff) goto out_use_search; goto out_use_good; } if (!dir) error = xfs_btree_increment(*scur, 0, &i); else error = xfs_btree_decrement(*scur, 0, &i); if (error) goto error0; } while (i); out_use_good: xfs_btree_del_cursor(*scur, XFS_BTREE_NOERROR); *scur = NULL; return 0; out_use_search: xfs_btree_del_cursor(*gcur, XFS_BTREE_NOERROR); *gcur = NULL; return 0; error0: /* caller invalidates cursors */ return error; } /* * Allocate a variable extent near bno in the allocation group agno. * Extent's length (returned in len) will be between minlen and maxlen, * and of the form k * prod + mod unless there's nothing that large. * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. */ STATIC int /* error */ xfs_alloc_ag_vextent_near( xfs_alloc_arg_t *args) /* allocation argument structure */ { xfs_btree_cur_t *bno_cur_gt; /* cursor for bno btree, right side */ xfs_btree_cur_t *bno_cur_lt; /* cursor for bno btree, left side */ xfs_btree_cur_t *cnt_cur; /* cursor for count btree */ xfs_agblock_t gtbno; /* start bno of right side entry */ xfs_agblock_t gtbnoa; /* aligned ... */ xfs_extlen_t gtdiff; /* difference to right side entry */ xfs_extlen_t gtlen; /* length of right side entry */ xfs_extlen_t gtlena = 0; /* aligned ... */ xfs_agblock_t gtnew; /* useful start bno of right side */ int error; /* error code */ int i; /* result code, temporary */ int j; /* result code, temporary */ xfs_agblock_t ltbno; /* start bno of left side entry */ xfs_agblock_t ltbnoa; /* aligned ... */ xfs_extlen_t ltdiff; /* difference to left side entry */ xfs_extlen_t ltlen; /* length of left side entry */ xfs_extlen_t ltlena = 0; /* aligned ... */ xfs_agblock_t ltnew; /* useful start bno of left side */ xfs_extlen_t rlen; /* length of returned extent */ #if defined(DEBUG) && defined(__KERNEL__) /* * Randomly don't execute the first algorithm. */ int dofirst; /* set to do first algorithm */ dofirst = random32() & 1; #endif /* * Get a cursor for the by-size btree. */ cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, args->agno, XFS_BTNUM_CNT); ltlen = 0; bno_cur_lt = bno_cur_gt = NULL; /* * See if there are any free extents as big as maxlen. */ if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, args->maxlen, &i))) goto error0; /* * If none, then pick up the last entry in the tree unless the * tree is empty. */ if (!i) { if ((error = xfs_alloc_ag_vextent_small(args, cnt_cur, <bno, <len, &i))) goto error0; if (i == 0 || ltlen == 0) { xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); return 0; } ASSERT(i == 1); } args->wasfromfl = 0; /* * First algorithm. * If the requested extent is large wrt the freespaces available * in this a.g., then the cursor will be pointing to a btree entry * near the right edge of the tree. If it's in the last btree leaf * block, then we just examine all the entries in that block * that are big enough, and pick the best one. * This is written as a while loop so we can break out of it, * but we never loop back to the top. */ while (xfs_btree_islastblock(cnt_cur, 0)) { xfs_extlen_t bdiff; int besti=0; xfs_extlen_t blen=0; xfs_agblock_t bnew=0; #if defined(DEBUG) && defined(__KERNEL__) if (!dofirst) break; #endif /* * Start from the entry that lookup found, sequence through * all larger free blocks. If we're actually pointing at a * record smaller than maxlen, go to the start of this block, * and skip all those smaller than minlen. */ if (ltlen || args->alignment > 1) { cnt_cur->bc_ptrs[0] = 1; do { if ((error = xfs_alloc_get_rec(cnt_cur, <bno, <len, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if (ltlen >= args->minlen) break; if ((error = xfs_btree_increment(cnt_cur, 0, &i))) goto error0; } while (i); ASSERT(ltlen >= args->minlen); if (!i) break; } i = cnt_cur->bc_ptrs[0]; for (j = 1, blen = 0, bdiff = 0; !error && j && (blen < args->maxlen || bdiff > 0); error = xfs_btree_increment(cnt_cur, 0, &j)) { /* * For each entry, decide if it's better than * the previous best entry. */ if ((error = xfs_alloc_get_rec(cnt_cur, <bno, <len, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); xfs_alloc_compute_aligned(args, ltbno, ltlen, <bnoa, <lena); if (ltlena < args->minlen) continue; args->len = XFS_EXTLEN_MIN(ltlena, args->maxlen); xfs_alloc_fix_len(args); ASSERT(args->len >= args->minlen); if (args->len < blen) continue; ltdiff = xfs_alloc_compute_diff(args->agbno, args->len, args->alignment, ltbno, ltlen, <new); if (ltnew != NULLAGBLOCK && (args->len > blen || ltdiff < bdiff)) { bdiff = ltdiff; bnew = ltnew; blen = args->len; besti = cnt_cur->bc_ptrs[0]; } } /* * It didn't work. We COULD be in a case where * there's a good record somewhere, so try again. */ if (blen == 0) break; /* * Point at the best entry, and retrieve it again. */ cnt_cur->bc_ptrs[0] = besti; if ((error = xfs_alloc_get_rec(cnt_cur, <bno, <len, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); ASSERT(ltbno + ltlen <= be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length)); args->len = blen; if (!xfs_alloc_fix_minleft(args)) { xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); trace_xfs_alloc_near_nominleft(args); return 0; } blen = args->len; /* * We are allocating starting at bnew for blen blocks. */ args->agbno = bnew; ASSERT(bnew >= ltbno); ASSERT(bnew + blen <= ltbno + ltlen); /* * Set up a cursor for the by-bno tree. */ bno_cur_lt = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, args->agno, XFS_BTNUM_BNO); /* * Fix up the btree entries. */ if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur_lt, ltbno, ltlen, bnew, blen, XFSA_FIXUP_CNT_OK))) goto error0; xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); xfs_btree_del_cursor(bno_cur_lt, XFS_BTREE_NOERROR); trace_xfs_alloc_near_first(args); return 0; } /* * Second algorithm. * Search in the by-bno tree to the left and to the right * simultaneously, until in each case we find a space big enough, * or run into the edge of the tree. When we run into the edge, * we deallocate that cursor. * If both searches succeed, we compare the two spaces and pick * the better one. * With alignment, it's possible for both to fail; the upper * level algorithm that picks allocation groups for allocations * is not supposed to do this. */ /* * Allocate and initialize the cursor for the leftward search. */ bno_cur_lt = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, args->agno, XFS_BTNUM_BNO); /* * Lookup <= bno to find the leftward search's starting point. */ if ((error = xfs_alloc_lookup_le(bno_cur_lt, args->agbno, args->maxlen, &i))) goto error0; if (!i) { /* * Didn't find anything; use this cursor for the rightward * search. */ bno_cur_gt = bno_cur_lt; bno_cur_lt = NULL; } /* * Found something. Duplicate the cursor for the rightward search. */ else if ((error = xfs_btree_dup_cursor(bno_cur_lt, &bno_cur_gt))) goto error0; /* * Increment the cursor, so we will point at the entry just right * of the leftward entry if any, or to the leftmost entry. */ if ((error = xfs_btree_increment(bno_cur_gt, 0, &i))) goto error0; if (!i) { /* * It failed, there are no rightward entries. */ xfs_btree_del_cursor(bno_cur_gt, XFS_BTREE_NOERROR); bno_cur_gt = NULL; } /* * Loop going left with the leftward cursor, right with the * rightward cursor, until either both directions give up or * we find an entry at least as big as minlen. */ do { if (bno_cur_lt) { if ((error = xfs_alloc_get_rec(bno_cur_lt, <bno, <len, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); xfs_alloc_compute_aligned(args, ltbno, ltlen, <bnoa, <lena); if (ltlena >= args->minlen) break; if ((error = xfs_btree_decrement(bno_cur_lt, 0, &i))) goto error0; if (!i) { xfs_btree_del_cursor(bno_cur_lt, XFS_BTREE_NOERROR); bno_cur_lt = NULL; } } if (bno_cur_gt) { if ((error = xfs_alloc_get_rec(bno_cur_gt, >bno, >len, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); xfs_alloc_compute_aligned(args, gtbno, gtlen, >bnoa, >lena); if (gtlena >= args->minlen) break; if ((error = xfs_btree_increment(bno_cur_gt, 0, &i))) goto error0; if (!i) { xfs_btree_del_cursor(bno_cur_gt, XFS_BTREE_NOERROR); bno_cur_gt = NULL; } } } while (bno_cur_lt || bno_cur_gt); /* * Got both cursors still active, need to find better entry. */ if (bno_cur_lt && bno_cur_gt) { if (ltlena >= args->minlen) { /* * Left side is good, look for a right side entry. */ args->len = XFS_EXTLEN_MIN(ltlena, args->maxlen); xfs_alloc_fix_len(args); ltdiff = xfs_alloc_compute_diff(args->agbno, args->len, args->alignment, ltbno, ltlen, <new); error = xfs_alloc_find_best_extent(args, &bno_cur_lt, &bno_cur_gt, ltdiff, >bno, >len, >lena, 0 /* search right */); } else { ASSERT(gtlena >= args->minlen); /* * Right side is good, look for a left side entry. */ args->len = XFS_EXTLEN_MIN(gtlena, args->maxlen); xfs_alloc_fix_len(args); gtdiff = xfs_alloc_compute_diff(args->agbno, args->len, args->alignment, gtbno, gtlen, >new); error = xfs_alloc_find_best_extent(args, &bno_cur_gt, &bno_cur_lt, gtdiff, <bno, <len, <lena, 1 /* search left */); } if (error) goto error0; } /* * If we couldn't get anything, give up. */ if (bno_cur_lt == NULL && bno_cur_gt == NULL) { trace_xfs_alloc_size_neither(args); args->agbno = NULLAGBLOCK; return 0; } /* * At this point we have selected a freespace entry, either to the * left or to the right. If it's on the right, copy all the * useful variables to the "left" set so we only have one * copy of this code. */ if (bno_cur_gt) { bno_cur_lt = bno_cur_gt; bno_cur_gt = NULL; ltbno = gtbno; ltbnoa = gtbnoa; ltlen = gtlen; ltlena = gtlena; j = 1; } else j = 0; /* * Fix up the length and compute the useful address. */ args->len = XFS_EXTLEN_MIN(ltlena, args->maxlen); xfs_alloc_fix_len(args); if (!xfs_alloc_fix_minleft(args)) { trace_xfs_alloc_near_nominleft(args); xfs_btree_del_cursor(bno_cur_lt, XFS_BTREE_NOERROR); xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); return 0; } rlen = args->len; (void)xfs_alloc_compute_diff(args->agbno, rlen, args->alignment, ltbno, ltlen, <new); ASSERT(ltnew >= ltbno); ASSERT(ltnew + rlen <= ltbno + ltlen); ASSERT(ltnew + rlen <= be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length)); args->agbno = ltnew; if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur_lt, ltbno, ltlen, ltnew, rlen, XFSA_FIXUP_BNO_OK))) goto error0; if (j) trace_xfs_alloc_near_greater(args); else trace_xfs_alloc_near_lesser(args); xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); xfs_btree_del_cursor(bno_cur_lt, XFS_BTREE_NOERROR); return 0; error0: trace_xfs_alloc_near_error(args); if (cnt_cur != NULL) xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); if (bno_cur_lt != NULL) xfs_btree_del_cursor(bno_cur_lt, XFS_BTREE_ERROR); if (bno_cur_gt != NULL) xfs_btree_del_cursor(bno_cur_gt, XFS_BTREE_ERROR); return error; } /* * Allocate a variable extent anywhere in the allocation group agno. * Extent's length (returned in len) will be between minlen and maxlen, * and of the form k * prod + mod unless there's nothing that large. * Return the starting a.g. block, or NULLAGBLOCK if we can't do it. */ STATIC int /* error */ xfs_alloc_ag_vextent_size( xfs_alloc_arg_t *args) /* allocation argument structure */ { xfs_btree_cur_t *bno_cur; /* cursor for bno btree */ xfs_btree_cur_t *cnt_cur; /* cursor for cnt btree */ int error; /* error result */ xfs_agblock_t fbno; /* start of found freespace */ xfs_extlen_t flen; /* length of found freespace */ int i; /* temp status variable */ xfs_agblock_t rbno; /* returned block number */ xfs_extlen_t rlen; /* length of returned extent */ /* * Allocate and initialize a cursor for the by-size btree. */ cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, args->agno, XFS_BTNUM_CNT); bno_cur = NULL; /* * Look for an entry >= maxlen+alignment-1 blocks. */ if ((error = xfs_alloc_lookup_ge(cnt_cur, 0, args->maxlen + args->alignment - 1, &i))) goto error0; /* * If none, then pick up the last entry in the tree unless the * tree is empty. */ if (!i) { if ((error = xfs_alloc_ag_vextent_small(args, cnt_cur, &fbno, &flen, &i))) goto error0; if (i == 0 || flen == 0) { xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); trace_xfs_alloc_size_noentry(args); return 0; } ASSERT(i == 1); } /* * There's a freespace as big as maxlen+alignment-1, get it. */ else { if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); } /* * In the first case above, we got the last entry in the * by-size btree. Now we check to see if the space hits maxlen * once aligned; if not, we search left for something better. * This can't happen in the second case above. */ xfs_alloc_compute_aligned(args, fbno, flen, &rbno, &rlen); rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); XFS_WANT_CORRUPTED_GOTO(rlen == 0 || (rlen <= flen && rbno + rlen <= fbno + flen), error0); if (rlen < args->maxlen) { xfs_agblock_t bestfbno; xfs_extlen_t bestflen; xfs_agblock_t bestrbno; xfs_extlen_t bestrlen; bestrlen = rlen; bestrbno = rbno; bestflen = flen; bestfbno = fbno; for (;;) { if ((error = xfs_btree_decrement(cnt_cur, 0, &i))) goto error0; if (i == 0) break; if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if (flen < bestrlen) break; xfs_alloc_compute_aligned(args, fbno, flen, &rbno, &rlen); rlen = XFS_EXTLEN_MIN(args->maxlen, rlen); XFS_WANT_CORRUPTED_GOTO(rlen == 0 || (rlen <= flen && rbno + rlen <= fbno + flen), error0); if (rlen > bestrlen) { bestrlen = rlen; bestrbno = rbno; bestflen = flen; bestfbno = fbno; if (rlen == args->maxlen) break; } } if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); rlen = bestrlen; rbno = bestrbno; flen = bestflen; fbno = bestfbno; } args->wasfromfl = 0; /* * Fix up the length. */ args->len = rlen; xfs_alloc_fix_len(args); if (rlen < args->minlen || !xfs_alloc_fix_minleft(args)) { xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); trace_xfs_alloc_size_nominleft(args); args->agbno = NULLAGBLOCK; return 0; } rlen = args->len; XFS_WANT_CORRUPTED_GOTO(rlen <= flen, error0); /* * Allocate and initialize a cursor for the by-block tree. */ bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp, args->agno, XFS_BTNUM_BNO); if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, rbno, rlen, XFSA_FIXUP_CNT_OK))) goto error0; xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); cnt_cur = bno_cur = NULL; args->len = rlen; args->agbno = rbno; XFS_WANT_CORRUPTED_GOTO( args->agbno + args->len <= be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length), error0); trace_xfs_alloc_size_done(args); return 0; error0: trace_xfs_alloc_size_error(args); if (cnt_cur) xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); if (bno_cur) xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); return error; } /* * Deal with the case where only small freespaces remain. * Either return the contents of the last freespace record, * or allocate space from the freelist if there is nothing in the tree. */ STATIC int /* error */ xfs_alloc_ag_vextent_small( xfs_alloc_arg_t *args, /* allocation argument structure */ xfs_btree_cur_t *ccur, /* by-size cursor */ xfs_agblock_t *fbnop, /* result block number */ xfs_extlen_t *flenp, /* result length */ int *stat) /* status: 0-freelist, 1-normal/none */ { int error; xfs_agblock_t fbno; xfs_extlen_t flen; int i; if ((error = xfs_btree_decrement(ccur, 0, &i))) goto error0; if (i) { if ((error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); } /* * Nothing in the btree, try the freelist. Make sure * to respect minleft even when pulling from the * freelist. */ else if (args->minlen == 1 && args->alignment == 1 && !args->isfl && (be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_flcount) > args->minleft)) { error = xfs_alloc_get_freelist(args->tp, args->agbp, &fbno, 0); if (error) goto error0; if (fbno != NULLAGBLOCK) { if (args->userdata) { xfs_buf_t *bp; bp = xfs_btree_get_bufs(args->mp, args->tp, args->agno, fbno, 0); xfs_trans_binval(args->tp, bp); } args->len = 1; args->agbno = fbno; XFS_WANT_CORRUPTED_GOTO( args->agbno + args->len <= be32_to_cpu(XFS_BUF_TO_AGF(args->agbp)->agf_length), error0); args->wasfromfl = 1; trace_xfs_alloc_small_freelist(args); *stat = 0; return 0; } /* * Nothing in the freelist. */ else flen = 0; } /* * Can't allocate from the freelist for some reason. */ else { fbno = NULLAGBLOCK; flen = 0; } /* * Can't do the allocation, give up. */ if (flen < args->minlen) { args->agbno = NULLAGBLOCK; trace_xfs_alloc_small_notenough(args); flen = 0; } *fbnop = fbno; *flenp = flen; *stat = 1; trace_xfs_alloc_small_done(args); return 0; error0: trace_xfs_alloc_small_error(args); return error; } /* * Free the extent starting at agno/bno for length. */ STATIC int /* error */ xfs_free_ag_extent( xfs_trans_t *tp, /* transaction pointer */ xfs_buf_t *agbp, /* buffer for a.g. freelist header */ xfs_agnumber_t agno, /* allocation group number */ xfs_agblock_t bno, /* starting block number */ xfs_extlen_t len, /* length of extent */ int isfl) /* set if is freelist blocks - no sb acctg */ { xfs_btree_cur_t *bno_cur; /* cursor for by-block btree */ xfs_btree_cur_t *cnt_cur; /* cursor for by-size btree */ int error; /* error return value */ xfs_agblock_t gtbno; /* start of right neighbor block */ xfs_extlen_t gtlen; /* length of right neighbor block */ int haveleft; /* have a left neighbor block */ int haveright; /* have a right neighbor block */ int i; /* temp, result code */ xfs_agblock_t ltbno; /* start of left neighbor block */ xfs_extlen_t ltlen; /* length of left neighbor block */ xfs_mount_t *mp; /* mount point struct for filesystem */ xfs_agblock_t nbno; /* new starting block of freespace */ xfs_extlen_t nlen; /* new length of freespace */ xfs_perag_t *pag; /* per allocation group data */ mp = tp->t_mountp; /* * Allocate and initialize a cursor for the by-block btree. */ bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_BNO); cnt_cur = NULL; /* * Look for a neighboring block on the left (lower block numbers) * that is contiguous with this space. */ if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft))) goto error0; if (haveleft) { /* * There is a block to our left. */ if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); /* * It's not contiguous, though. */ if (ltbno + ltlen < bno) haveleft = 0; else { /* * If this failure happens the request to free this * space was invalid, it's (partly) already free. * Very bad. */ XFS_WANT_CORRUPTED_GOTO(ltbno + ltlen <= bno, error0); } } /* * Look for a neighboring block on the right (higher block numbers) * that is contiguous with this space. */ if ((error = xfs_btree_increment(bno_cur, 0, &haveright))) goto error0; if (haveright) { /* * There is a block to our right. */ if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); /* * It's not contiguous, though. */ if (bno + len < gtbno) haveright = 0; else { /* * If this failure happens the request to free this * space was invalid, it's (partly) already free. * Very bad. */ XFS_WANT_CORRUPTED_GOTO(gtbno >= bno + len, error0); } } /* * Now allocate and initialize a cursor for the by-size tree. */ cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_CNT); /* * Have both left and right contiguous neighbors. * Merge all three into a single free block. */ if (haveleft && haveright) { /* * Delete the old by-size entry on the left. */ if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if ((error = xfs_btree_delete(cnt_cur, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); /* * Delete the old by-size entry on the right. */ if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if ((error = xfs_btree_delete(cnt_cur, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); /* * Delete the old by-block entry for the right block. */ if ((error = xfs_btree_delete(bno_cur, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); /* * Move the by-block cursor back to the left neighbor. */ if ((error = xfs_btree_decrement(bno_cur, 0, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); #ifdef DEBUG /* * Check that this is the right record: delete didn't * mangle the cursor. */ { xfs_agblock_t xxbno; xfs_extlen_t xxlen; if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO( i == 1 && xxbno == ltbno && xxlen == ltlen, error0); } #endif /* * Update remaining by-block entry to the new, joined block. */ nbno = ltbno; nlen = len + ltlen + gtlen; if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) goto error0; } /* * Have only a left contiguous neighbor. * Merge it together with the new freespace. */ else if (haveleft) { /* * Delete the old by-size entry on the left. */ if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if ((error = xfs_btree_delete(cnt_cur, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); /* * Back up the by-block cursor to the left neighbor, and * update its length. */ if ((error = xfs_btree_decrement(bno_cur, 0, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); nbno = ltbno; nlen = len + ltlen; if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) goto error0; } /* * Have only a right contiguous neighbor. * Merge it together with the new freespace. */ else if (haveright) { /* * Delete the old by-size entry on the right. */ if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if ((error = xfs_btree_delete(cnt_cur, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); /* * Update the starting block and length of the right * neighbor in the by-block tree. */ nbno = bno; nlen = len + gtlen; if ((error = xfs_alloc_update(bno_cur, nbno, nlen))) goto error0; } /* * No contiguous neighbors. * Insert the new freespace into the by-block tree. */ else { nbno = bno; nlen = len; if ((error = xfs_btree_insert(bno_cur, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); } xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR); bno_cur = NULL; /* * In all cases we need to insert the new freespace in the by-size tree. */ if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 0, error0); if ((error = xfs_btree_insert(cnt_cur, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR); cnt_cur = NULL; /* * Update the freespace totals in the ag and superblock. */ pag = xfs_perag_get(mp, agno); error = xfs_alloc_update_counters(tp, pag, agbp, len); xfs_perag_put(pag); if (error) goto error0; if (!isfl) xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, (long)len); XFS_STATS_INC(xs_freex); XFS_STATS_ADD(xs_freeb, len); trace_xfs_free_extent(mp, agno, bno, len, isfl, haveleft, haveright); /* * Since blocks move to the free list without the coordination * used in xfs_bmap_finish, we can't allow block to be available * for reallocation and non-transaction writing (user data) * until we know that the transaction that moved it to the free * list is permanently on disk. We track the blocks by declaring * these blocks as "busy"; the busy list is maintained on a per-ag * basis and each transaction records which entries should be removed * when the iclog commits to disk. If a busy block is allocated, * the iclog is pushed up to the LSN that freed the block. */ xfs_alloc_busy_insert(tp, agno, bno, len); return 0; error0: trace_xfs_free_extent(mp, agno, bno, len, isfl, -1, -1); if (bno_cur) xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR); if (cnt_cur) xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR); return error; } /* * Visible (exported) allocation/free functions. * Some of these are used just by xfs_alloc_btree.c and this file. */ /* * Compute and fill in value of m_ag_maxlevels. */ void xfs_alloc_compute_maxlevels( xfs_mount_t *mp) /* file system mount structure */ { int level; uint maxblocks; uint maxleafents; int minleafrecs; int minnoderecs; maxleafents = (mp->m_sb.sb_agblocks + 1) / 2; minleafrecs = mp->m_alloc_mnr[0]; minnoderecs = mp->m_alloc_mnr[1]; maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs; for (level = 1; maxblocks > 1; level++) maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs; mp->m_ag_maxlevels = level; } /* * Find the length of the longest extent in an AG. */ xfs_extlen_t xfs_alloc_longest_free_extent( struct xfs_mount *mp, struct xfs_perag *pag) { xfs_extlen_t need, delta = 0; need = XFS_MIN_FREELIST_PAG(pag, mp); if (need > pag->pagf_flcount) delta = need - pag->pagf_flcount; if (pag->pagf_longest > delta) return pag->pagf_longest - delta; return pag->pagf_flcount > 0 || pag->pagf_longest > 0; } /* * Decide whether to use this allocation group for this allocation. * If so, fix up the btree freelist's size. */ STATIC int /* error */ xfs_alloc_fix_freelist( xfs_alloc_arg_t *args, /* allocation argument structure */ int flags) /* XFS_ALLOC_FLAG_... */ { xfs_buf_t *agbp; /* agf buffer pointer */ xfs_agf_t *agf; /* a.g. freespace structure pointer */ xfs_buf_t *agflbp;/* agfl buffer pointer */ xfs_agblock_t bno; /* freelist block */ xfs_extlen_t delta; /* new blocks needed in freelist */ int error; /* error result code */ xfs_extlen_t longest;/* longest extent in allocation group */ xfs_mount_t *mp; /* file system mount point structure */ xfs_extlen_t need; /* total blocks needed in freelist */ xfs_perag_t *pag; /* per-ag information structure */ xfs_alloc_arg_t targs; /* local allocation arguments */ xfs_trans_t *tp; /* transaction pointer */ mp = args->mp; pag = args->pag; tp = args->tp; if (!pag->pagf_init) { if ((error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp))) return error; if (!pag->pagf_init) { ASSERT(flags & XFS_ALLOC_FLAG_TRYLOCK); ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING)); args->agbp = NULL; return 0; } } else agbp = NULL; /* * If this is a metadata preferred pag and we are user data * then try somewhere else if we are not being asked to * try harder at this point */ if (pag->pagf_metadata && args->userdata && (flags & XFS_ALLOC_FLAG_TRYLOCK)) { ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING)); args->agbp = NULL; return 0; } if (!(flags & XFS_ALLOC_FLAG_FREEING)) { /* * If it looks like there isn't a long enough extent, or enough * total blocks, reject it. */ need = XFS_MIN_FREELIST_PAG(pag, mp); longest = xfs_alloc_longest_free_extent(mp, pag); if ((args->minlen + args->alignment + args->minalignslop - 1) > longest || ((int)(pag->pagf_freeblks + pag->pagf_flcount - need - args->total) < (int)args->minleft)) { if (agbp) xfs_trans_brelse(tp, agbp); args->agbp = NULL; return 0; } } /* * Get the a.g. freespace buffer. * Can fail if we're not blocking on locks, and it's held. */ if (agbp == NULL) { if ((error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp))) return error; if (agbp == NULL) { ASSERT(flags & XFS_ALLOC_FLAG_TRYLOCK); ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING)); args->agbp = NULL; return 0; } } /* * Figure out how many blocks we should have in the freelist. */ agf = XFS_BUF_TO_AGF(agbp); need = XFS_MIN_FREELIST(agf, mp); /* * If there isn't enough total or single-extent, reject it. */ if (!(flags & XFS_ALLOC_FLAG_FREEING)) { delta = need > be32_to_cpu(agf->agf_flcount) ? (need - be32_to_cpu(agf->agf_flcount)) : 0; longest = be32_to_cpu(agf->agf_longest); longest = (longest > delta) ? (longest - delta) : (be32_to_cpu(agf->agf_flcount) > 0 || longest > 0); if ((args->minlen + args->alignment + args->minalignslop - 1) > longest || ((int)(be32_to_cpu(agf->agf_freeblks) + be32_to_cpu(agf->agf_flcount) - need - args->total) < (int)args->minleft)) { xfs_trans_brelse(tp, agbp); args->agbp = NULL; return 0; } } /* * Make the freelist shorter if it's too long. */ while (be32_to_cpu(agf->agf_flcount) > need) { xfs_buf_t *bp; error = xfs_alloc_get_freelist(tp, agbp, &bno, 0); if (error) return error; if ((error = xfs_free_ag_extent(tp, agbp, args->agno, bno, 1, 1))) return error; bp = xfs_btree_get_bufs(mp, tp, args->agno, bno, 0); xfs_trans_binval(tp, bp); } /* * Initialize the args structure. */ targs.tp = tp; targs.mp = mp; targs.agbp = agbp; targs.agno = args->agno; targs.mod = targs.minleft = targs.wasdel = targs.userdata = targs.minalignslop = 0; targs.alignment = targs.minlen = targs.prod = targs.isfl = 1; targs.type = XFS_ALLOCTYPE_THIS_AG; targs.pag = pag; if ((error = xfs_alloc_read_agfl(mp, tp, targs.agno, &agflbp))) return error; /* * Make the freelist longer if it's too short. */ while (be32_to_cpu(agf->agf_flcount) < need) { targs.agbno = 0; targs.maxlen = need - be32_to_cpu(agf->agf_flcount); /* * Allocate as many blocks as possible at once. */ if ((error = xfs_alloc_ag_vextent(&targs))) { xfs_trans_brelse(tp, agflbp); return error; } /* * Stop if we run out. Won't happen if callers are obeying * the restrictions correctly. Can happen for free calls * on a completely full ag. */ if (targs.agbno == NULLAGBLOCK) { if (flags & XFS_ALLOC_FLAG_FREEING) break; xfs_trans_brelse(tp, agflbp); args->agbp = NULL; return 0; } /* * Put each allocated block on the list. */ for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) { error = xfs_alloc_put_freelist(tp, agbp, agflbp, bno, 0); if (error) return error; } } xfs_trans_brelse(tp, agflbp); args->agbp = agbp; return 0; } /* * Get a block from the freelist. * Returns with the buffer for the block gotten. */ int /* error */ xfs_alloc_get_freelist( xfs_trans_t *tp, /* transaction pointer */ xfs_buf_t *agbp, /* buffer containing the agf structure */ xfs_agblock_t *bnop, /* block address retrieved from freelist */ int btreeblk) /* destination is a AGF btree */ { xfs_agf_t *agf; /* a.g. freespace structure */ xfs_agfl_t *agfl; /* a.g. freelist structure */ xfs_buf_t *agflbp;/* buffer for a.g. freelist structure */ xfs_agblock_t bno; /* block number returned */ int error; int logflags; xfs_mount_t *mp; /* mount structure */ xfs_perag_t *pag; /* per allocation group data */ agf = XFS_BUF_TO_AGF(agbp); /* * Freelist is empty, give up. */ if (!agf->agf_flcount) { *bnop = NULLAGBLOCK; return 0; } /* * Read the array of free blocks. */ mp = tp->t_mountp; if ((error = xfs_alloc_read_agfl(mp, tp, be32_to_cpu(agf->agf_seqno), &agflbp))) return error; agfl = XFS_BUF_TO_AGFL(agflbp); /* * Get the block number and update the data structures. */ bno = be32_to_cpu(agfl->agfl_bno[be32_to_cpu(agf->agf_flfirst)]); be32_add_cpu(&agf->agf_flfirst, 1); xfs_trans_brelse(tp, agflbp); if (be32_to_cpu(agf->agf_flfirst) == XFS_AGFL_SIZE(mp)) agf->agf_flfirst = 0; pag = xfs_perag_get(mp, be32_to_cpu(agf->agf_seqno)); be32_add_cpu(&agf->agf_flcount, -1); xfs_trans_agflist_delta(tp, -1); pag->pagf_flcount--; xfs_perag_put(pag); logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT; if (btreeblk) { be32_add_cpu(&agf->agf_btreeblks, 1); pag->pagf_btreeblks++; logflags |= XFS_AGF_BTREEBLKS; } xfs_alloc_log_agf(tp, agbp, logflags); *bnop = bno; /* * As blocks are freed, they are added to the per-ag busy list and * remain there until the freeing transaction is committed to disk. * Now that we have allocated blocks, this list must be searched to see * if a block is being reused. If one is, then the freeing transaction * must be pushed to disk before this transaction. * * We do this by setting the current transaction to a sync transaction * which guarantees that the freeing transaction is on disk before this * transaction. This is done instead of a synchronous log force here so * that we don't sit and wait with the AGF locked in the transaction * during the log force. */ if (xfs_alloc_busy_search(mp, be32_to_cpu(agf->agf_seqno), bno, 1)) xfs_trans_set_sync(tp); return 0; } /* * Log the given fields from the agf structure. */ void xfs_alloc_log_agf( xfs_trans_t *tp, /* transaction pointer */ xfs_buf_t *bp, /* buffer for a.g. freelist header */ int fields) /* mask of fields to be logged (XFS_AGF_...) */ { int first; /* first byte offset */ int last; /* last byte offset */ static const short offsets[] = { offsetof(xfs_agf_t, agf_magicnum), offsetof(xfs_agf_t, agf_versionnum), offsetof(xfs_agf_t, agf_seqno), offsetof(xfs_agf_t, agf_length), offsetof(xfs_agf_t, agf_roots[0]), offsetof(xfs_agf_t, agf_levels[0]), offsetof(xfs_agf_t, agf_flfirst), offsetof(xfs_agf_t, agf_fllast), offsetof(xfs_agf_t, agf_flcount), offsetof(xfs_agf_t, agf_freeblks), offsetof(xfs_agf_t, agf_longest), offsetof(xfs_agf_t, agf_btreeblks), sizeof(xfs_agf_t) }; trace_xfs_agf(tp->t_mountp, XFS_BUF_TO_AGF(bp), fields, _RET_IP_); xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last); xfs_trans_log_buf(tp, bp, (uint)first, (uint)last); } /* * Interface for inode allocation to force the pag data to be initialized. */ int /* error */ xfs_alloc_pagf_init( xfs_mount_t *mp, /* file system mount structure */ xfs_trans_t *tp, /* transaction pointer */ xfs_agnumber_t agno, /* allocation group number */ int flags) /* XFS_ALLOC_FLAGS_... */ { xfs_buf_t *bp; int error; if ((error = xfs_alloc_read_agf(mp, tp, agno, flags, &bp))) return error; if (bp) xfs_trans_brelse(tp, bp); return 0; } /* * Put the block on the freelist for the allocation group. */ int /* error */ xfs_alloc_put_freelist( xfs_trans_t *tp, /* transaction pointer */ xfs_buf_t *agbp, /* buffer for a.g. freelist header */ xfs_buf_t *agflbp,/* buffer for a.g. free block array */ xfs_agblock_t bno, /* block being freed */ int btreeblk) /* block came from a AGF btree */ { xfs_agf_t *agf; /* a.g. freespace structure */ xfs_agfl_t *agfl; /* a.g. free block array */ __be32 *blockp;/* pointer to array entry */ int error; int logflags; xfs_mount_t *mp; /* mount structure */ xfs_perag_t *pag; /* per allocation group data */ agf = XFS_BUF_TO_AGF(agbp); mp = tp->t_mountp; if (!agflbp && (error = xfs_alloc_read_agfl(mp, tp, be32_to_cpu(agf->agf_seqno), &agflbp))) return error; agfl = XFS_BUF_TO_AGFL(agflbp); be32_add_cpu(&agf->agf_fllast, 1); if (be32_to_cpu(agf->agf_fllast) == XFS_AGFL_SIZE(mp)) agf->agf_fllast = 0; pag = xfs_perag_get(mp, be32_to_cpu(agf->agf_seqno)); be32_add_cpu(&agf->agf_flcount, 1); xfs_trans_agflist_delta(tp, 1); pag->pagf_flcount++; logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT; if (btreeblk) { be32_add_cpu(&agf->agf_btreeblks, -1); pag->pagf_btreeblks--; logflags |= XFS_AGF_BTREEBLKS; } xfs_perag_put(pag); xfs_alloc_log_agf(tp, agbp, logflags); ASSERT(be32_to_cpu(agf->agf_flcount) <= XFS_AGFL_SIZE(mp)); blockp = &agfl->agfl_bno[be32_to_cpu(agf->agf_fllast)]; *blockp = cpu_to_be32(bno); xfs_alloc_log_agf(tp, agbp, logflags); xfs_trans_log_buf(tp, agflbp, (int)((xfs_caddr_t)blockp - (xfs_caddr_t)agfl), (int)((xfs_caddr_t)blockp - (xfs_caddr_t)agfl + sizeof(xfs_agblock_t) - 1)); return 0; } /* * Read in the allocation group header (free/alloc section). */ int /* error */ xfs_read_agf( struct xfs_mount *mp, /* mount point structure */ struct xfs_trans *tp, /* transaction pointer */ xfs_agnumber_t agno, /* allocation group number */ int flags, /* XFS_BUF_ */ struct xfs_buf **bpp) /* buffer for the ag freelist header */ { struct xfs_agf *agf; /* ag freelist header */ int agf_ok; /* set if agf is consistent */ int error; ASSERT(agno != NULLAGNUMBER); error = xfs_trans_read_buf( mp, tp, mp->m_ddev_targp, XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)), XFS_FSS_TO_BB(mp, 1), flags, bpp); if (error) return error; if (!*bpp) return 0; ASSERT(!XFS_BUF_GETERROR(*bpp)); agf = XFS_BUF_TO_AGF(*bpp); /* * Validate the magic number of the agf block. */ agf_ok = be32_to_cpu(agf->agf_magicnum) == XFS_AGF_MAGIC && XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) && be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) && be32_to_cpu(agf->agf_flfirst) < XFS_AGFL_SIZE(mp) && be32_to_cpu(agf->agf_fllast) < XFS_AGFL_SIZE(mp) && be32_to_cpu(agf->agf_flcount) <= XFS_AGFL_SIZE(mp) && be32_to_cpu(agf->agf_seqno) == agno; if (xfs_sb_version_haslazysbcount(&mp->m_sb)) agf_ok = agf_ok && be32_to_cpu(agf->agf_btreeblks) <= be32_to_cpu(agf->agf_length); if (unlikely(XFS_TEST_ERROR(!agf_ok, mp, XFS_ERRTAG_ALLOC_READ_AGF, XFS_RANDOM_ALLOC_READ_AGF))) { XFS_CORRUPTION_ERROR("xfs_alloc_read_agf", XFS_ERRLEVEL_LOW, mp, agf); xfs_trans_brelse(tp, *bpp); return XFS_ERROR(EFSCORRUPTED); } XFS_BUF_SET_VTYPE_REF(*bpp, B_FS_AGF, XFS_AGF_REF); return 0; } /* * Read in the allocation group header (free/alloc section). */ int /* error */ xfs_alloc_read_agf( struct xfs_mount *mp, /* mount point structure */ struct xfs_trans *tp, /* transaction pointer */ xfs_agnumber_t agno, /* allocation group number */ int flags, /* XFS_ALLOC_FLAG_... */ struct xfs_buf **bpp) /* buffer for the ag freelist header */ { struct xfs_agf *agf; /* ag freelist header */ struct xfs_perag *pag; /* per allocation group data */ int error; ASSERT(agno != NULLAGNUMBER); error = xfs_read_agf(mp, tp, agno, (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, bpp); if (error) return error; if (!*bpp) return 0; ASSERT(!XFS_BUF_GETERROR(*bpp)); agf = XFS_BUF_TO_AGF(*bpp); pag = xfs_perag_get(mp, agno); if (!pag->pagf_init) { pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); pag->pagf_flcount = be32_to_cpu(agf->agf_flcount); pag->pagf_longest = be32_to_cpu(agf->agf_longest); pag->pagf_levels[XFS_BTNUM_BNOi] = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]); pag->pagf_levels[XFS_BTNUM_CNTi] = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]); spin_lock_init(&pag->pagb_lock); pag->pagb_count = 0; pag->pagb_tree = RB_ROOT; pag->pagf_init = 1; } #ifdef DEBUG else if (!XFS_FORCED_SHUTDOWN(mp)) { ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks)); ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks)); ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount)); ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest)); ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] == be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi])); ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] == be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi])); } #endif xfs_perag_put(pag); return 0; } /* * Allocate an extent (variable-size). * Depending on the allocation type, we either look in a single allocation * group or loop over the allocation groups to find the result. */ int /* error */ xfs_alloc_vextent( xfs_alloc_arg_t *args) /* allocation argument structure */ { xfs_agblock_t agsize; /* allocation group size */ int error; int flags; /* XFS_ALLOC_FLAG_... locking flags */ xfs_extlen_t minleft;/* minimum left value, temp copy */ xfs_mount_t *mp; /* mount structure pointer */ xfs_agnumber_t sagno; /* starting allocation group number */ xfs_alloctype_t type; /* input allocation type */ int bump_rotor = 0; int no_min = 0; xfs_agnumber_t rotorstep = xfs_rotorstep; /* inode32 agf stepper */ mp = args->mp; type = args->otype = args->type; args->agbno = NULLAGBLOCK; /* * Just fix this up, for the case where the last a.g. is shorter * (or there's only one a.g.) and the caller couldn't easily figure * that out (xfs_bmap_alloc). */ agsize = mp->m_sb.sb_agblocks; if (args->maxlen > agsize) args->maxlen = agsize; if (args->alignment == 0) args->alignment = 1; ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount); ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize); ASSERT(args->minlen <= args->maxlen); ASSERT(args->minlen <= agsize); ASSERT(args->mod < args->prod); if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount || XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize || args->minlen > args->maxlen || args->minlen > agsize || args->mod >= args->prod) { args->fsbno = NULLFSBLOCK; trace_xfs_alloc_vextent_badargs(args); return 0; } minleft = args->minleft; switch (type) { case XFS_ALLOCTYPE_THIS_AG: case XFS_ALLOCTYPE_NEAR_BNO: case XFS_ALLOCTYPE_THIS_BNO: /* * These three force us into a single a.g. */ args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno); args->pag = xfs_perag_get(mp, args->agno); args->minleft = 0; error = xfs_alloc_fix_freelist(args, 0); args->minleft = minleft; if (error) { trace_xfs_alloc_vextent_nofix(args); goto error0; } if (!args->agbp) { trace_xfs_alloc_vextent_noagbp(args); break; } args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno); if ((error = xfs_alloc_ag_vextent(args))) goto error0; break; case XFS_ALLOCTYPE_START_BNO: /* * Try near allocation first, then anywhere-in-ag after * the first a.g. fails. */ if ((args->userdata == XFS_ALLOC_INITIAL_USER_DATA) && (mp->m_flags & XFS_MOUNT_32BITINODES)) { args->fsbno = XFS_AGB_TO_FSB(mp, ((mp->m_agfrotor / rotorstep) % mp->m_sb.sb_agcount), 0); bump_rotor = 1; } args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno); args->type = XFS_ALLOCTYPE_NEAR_BNO; /* FALLTHROUGH */ case XFS_ALLOCTYPE_ANY_AG: case XFS_ALLOCTYPE_START_AG: case XFS_ALLOCTYPE_FIRST_AG: /* * Rotate through the allocation groups looking for a winner. */ if (type == XFS_ALLOCTYPE_ANY_AG) { /* * Start with the last place we left off. */ args->agno = sagno = (mp->m_agfrotor / rotorstep) % mp->m_sb.sb_agcount; args->type = XFS_ALLOCTYPE_THIS_AG; flags = XFS_ALLOC_FLAG_TRYLOCK; } else if (type == XFS_ALLOCTYPE_FIRST_AG) { /* * Start with allocation group given by bno. */ args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno); args->type = XFS_ALLOCTYPE_THIS_AG; sagno = 0; flags = 0; } else { if (type == XFS_ALLOCTYPE_START_AG) args->type = XFS_ALLOCTYPE_THIS_AG; /* * Start with the given allocation group. */ args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno); flags = XFS_ALLOC_FLAG_TRYLOCK; } /* * Loop over allocation groups twice; first time with * trylock set, second time without. */ for (;;) { args->pag = xfs_perag_get(mp, args->agno); if (no_min) args->minleft = 0; error = xfs_alloc_fix_freelist(args, flags); args->minleft = minleft; if (error) { trace_xfs_alloc_vextent_nofix(args); goto error0; } /* * If we get a buffer back then the allocation will fly. */ if (args->agbp) { if ((error = xfs_alloc_ag_vextent(args))) goto error0; break; } trace_xfs_alloc_vextent_loopfailed(args); /* * Didn't work, figure out the next iteration. */ if (args->agno == sagno && type == XFS_ALLOCTYPE_START_BNO) args->type = XFS_ALLOCTYPE_THIS_AG; /* * For the first allocation, we can try any AG to get * space. However, if we already have allocated a * block, we don't want to try AGs whose number is below * sagno. Otherwise, we may end up with out-of-order * locking of AGF, which might cause deadlock. */ if (++(args->agno) == mp->m_sb.sb_agcount) { if (args->firstblock != NULLFSBLOCK) args->agno = sagno; else args->agno = 0; } /* * Reached the starting a.g., must either be done * or switch to non-trylock mode. */ if (args->agno == sagno) { if (no_min == 1) { args->agbno = NULLAGBLOCK; trace_xfs_alloc_vextent_allfailed(args); break; } if (flags == 0) { no_min = 1; } else { flags = 0; if (type == XFS_ALLOCTYPE_START_BNO) { args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno); args->type = XFS_ALLOCTYPE_NEAR_BNO; } } } xfs_perag_put(args->pag); } if (bump_rotor || (type == XFS_ALLOCTYPE_ANY_AG)) { if (args->agno == sagno) mp->m_agfrotor = (mp->m_agfrotor + 1) % (mp->m_sb.sb_agcount * rotorstep); else mp->m_agfrotor = (args->agno * rotorstep + 1) % (mp->m_sb.sb_agcount * rotorstep); } break; default: ASSERT(0); /* NOTREACHED */ } if (args->agbno == NULLAGBLOCK) args->fsbno = NULLFSBLOCK; else { args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno); #ifdef DEBUG ASSERT(args->len >= args->minlen); ASSERT(args->len <= args->maxlen); ASSERT(args->agbno % args->alignment == 0); XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len); #endif } xfs_perag_put(args->pag); return 0; error0: xfs_perag_put(args->pag); return error; } /* * Free an extent. * Just break up the extent address and hand off to xfs_free_ag_extent * after fixing up the freelist. */ int /* error */ xfs_free_extent( xfs_trans_t *tp, /* transaction pointer */ xfs_fsblock_t bno, /* starting block number of extent */ xfs_extlen_t len) /* length of extent */ { xfs_alloc_arg_t args; int error; ASSERT(len != 0); memset(&args, 0, sizeof(xfs_alloc_arg_t)); args.tp = tp; args.mp = tp->t_mountp; /* * validate that the block number is legal - the enables us to detect * and handle a silent filesystem corruption rather than crashing. */ args.agno = XFS_FSB_TO_AGNO(args.mp, bno); if (args.agno >= args.mp->m_sb.sb_agcount) return EFSCORRUPTED; args.agbno = XFS_FSB_TO_AGBNO(args.mp, bno); if (args.agbno >= args.mp->m_sb.sb_agblocks) return EFSCORRUPTED; args.pag = xfs_perag_get(args.mp, args.agno); ASSERT(args.pag); error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING); if (error) goto error0; /* validate the extent size is legal now we have the agf locked */ if (args.agbno + len > be32_to_cpu(XFS_BUF_TO_AGF(args.agbp)->agf_length)) { error = EFSCORRUPTED; goto error0; } error = xfs_free_ag_extent(tp, args.agbp, args.agno, args.agbno, len, 0); error0: xfs_perag_put(args.pag); return error; } /* * AG Busy list management * The busy list contains block ranges that have been freed but whose * transactions have not yet hit disk. If any block listed in a busy * list is reused, the transaction that freed it must be forced to disk * before continuing to use the block. * * xfs_alloc_busy_insert - add to the per-ag busy list * xfs_alloc_busy_clear - remove an item from the per-ag busy list * xfs_alloc_busy_search - search for a busy extent */ /* * Insert a new extent into the busy tree. * * The busy extent tree is indexed by the start block of the busy extent. * there can be multiple overlapping ranges in the busy extent tree but only * ever one entry at a given start block. The reason for this is that * multi-block extents can be freed, then smaller chunks of that extent * allocated and freed again before the first transaction commit is on disk. * If the exact same start block is freed a second time, we have to wait for * that busy extent to pass out of the tree before the new extent is inserted. * There are two main cases we have to handle here. * * The first case is a transaction that triggers a "free - allocate - free" * cycle. This can occur during btree manipulations as a btree block is freed * to the freelist, then allocated from the free list, then freed again. In * this case, the second extxpnet free is what triggers the duplicate and as * such the transaction IDs should match. Because the extent was allocated in * this transaction, the transaction must be marked as synchronous. This is * true for all cases where the free/alloc/free occurs in the one transaction, * hence the addition of the ASSERT(tp->t_flags & XFS_TRANS_SYNC) to this case. * This serves to catch violations of the second case quite effectively. * * The second case is where the free/alloc/free occur in different * transactions. In this case, the thread freeing the extent the second time * can't mark the extent busy immediately because it is already tracked in a * transaction that may be committing. When the log commit for the existing * busy extent completes, the busy extent will be removed from the tree. If we * allow the second busy insert to continue using that busy extent structure, * it can be freed before this transaction is safely in the log. Hence our * only option in this case is to force the log to remove the existing busy * extent from the list before we insert the new one with the current * transaction ID. * * The problem we are trying to avoid in the free-alloc-free in separate * transactions is most easily described with a timeline: * * Thread 1 Thread 2 Thread 3 xfslogd * xact alloc * free X * mark busy * commit xact * free xact * xact alloc * alloc X * busy search * mark xact sync * commit xact * free xact * force log * checkpoint starts * .... * xact alloc * free X * mark busy * finds match * *** KABOOM! *** * .... * log IO completes * unbusy X * checkpoint completes * * By issuing a log force in thread 3 @ "KABOOM", the thread will block until * the checkpoint completes, and the busy extent it matched will have been * removed from the tree when it is woken. Hence it can then continue safely. * * However, to ensure this matching process is robust, we need to use the * transaction ID for identifying transaction, as delayed logging results in * the busy extent and transaction lifecycles being different. i.e. the busy * extent is active for a lot longer than the transaction. Hence the * transaction structure can be freed and reallocated, then mark the same * extent busy again in the new transaction. In this case the new transaction * will have a different tid but can have the same address, and hence we need * to check against the tid. * * Future: for delayed logging, we could avoid the log force if the extent was * first freed in the current checkpoint sequence. This, however, requires the * ability to pin the current checkpoint in memory until this transaction * commits to ensure that both the original free and the current one combine * logically into the one checkpoint. If the checkpoint sequences are * different, however, we still need to wait on a log force. */ void xfs_alloc_busy_insert( struct xfs_trans *tp, xfs_agnumber_t agno, xfs_agblock_t bno, xfs_extlen_t len) { struct xfs_busy_extent *new; struct xfs_busy_extent *busyp; struct xfs_perag *pag; struct rb_node **rbp; struct rb_node *parent; int match; new = kmem_zalloc(sizeof(struct xfs_busy_extent), KM_MAYFAIL); if (!new) { /* * No Memory! Since it is now not possible to track the free * block, make this a synchronous transaction to insure that * the block is not reused before this transaction commits. */ trace_xfs_alloc_busy(tp, agno, bno, len, 1); xfs_trans_set_sync(tp); return; } new->agno = agno; new->bno = bno; new->length = len; new->tid = xfs_log_get_trans_ident(tp); INIT_LIST_HEAD(&new->list); /* trace before insert to be able to see failed inserts */ trace_xfs_alloc_busy(tp, agno, bno, len, 0); pag = xfs_perag_get(tp->t_mountp, new->agno); restart: spin_lock(&pag->pagb_lock); rbp = &pag->pagb_tree.rb_node; parent = NULL; busyp = NULL; match = 0; while (*rbp && match >= 0) { parent = *rbp; busyp = rb_entry(parent, struct xfs_busy_extent, rb_node); if (new->bno < busyp->bno) { /* may overlap, but exact start block is lower */ rbp = &(*rbp)->rb_left; if (new->bno + new->length > busyp->bno) match = busyp->tid == new->tid ? 1 : -1; } else if (new->bno > busyp->bno) { /* may overlap, but exact start block is higher */ rbp = &(*rbp)->rb_right; if (bno < busyp->bno + busyp->length) match = busyp->tid == new->tid ? 1 : -1; } else { match = busyp->tid == new->tid ? 1 : -1; break; } } if (match < 0) { /* overlap marked busy in different transaction */ spin_unlock(&pag->pagb_lock); xfs_log_force(tp->t_mountp, XFS_LOG_SYNC); goto restart; } if (match > 0) { /* * overlap marked busy in same transaction. Update if exact * start block match, otherwise combine the busy extents into * a single range. */ if (busyp->bno == new->bno) { busyp->length = max(busyp->length, new->length); spin_unlock(&pag->pagb_lock); ASSERT(tp->t_flags & XFS_TRANS_SYNC); xfs_perag_put(pag); kmem_free(new); return; } rb_erase(&busyp->rb_node, &pag->pagb_tree); new->length = max(busyp->bno + busyp->length, new->bno + new->length) - min(busyp->bno, new->bno); new->bno = min(busyp->bno, new->bno); /* * Start the search over from the tree root, because * erasing the node can rearrange the tree topology. */ spin_unlock(&pag->pagb_lock); goto restart; } else busyp = NULL; rb_link_node(&new->rb_node, parent, rbp); rb_insert_color(&new->rb_node, &pag->pagb_tree); list_add(&new->list, &tp->t_busy); spin_unlock(&pag->pagb_lock); xfs_perag_put(pag); kmem_free(busyp); } /* * Search for a busy extent within the range of the extent we are about to * allocate. You need to be holding the busy extent tree lock when calling * xfs_alloc_busy_search(). This function returns 0 for no overlapping busy * extent, -1 for an overlapping but not exact busy extent, and 1 for an exact * match. This is done so that a non-zero return indicates an overlap that * will require a synchronous transaction, but it can still be * used to distinguish between a partial or exact match. */ int xfs_alloc_busy_search( struct xfs_mount *mp, xfs_agnumber_t agno, xfs_agblock_t bno, xfs_extlen_t len) { struct xfs_perag *pag; struct rb_node *rbp; struct xfs_busy_extent *busyp; int match = 0; pag = xfs_perag_get(mp, agno); spin_lock(&pag->pagb_lock); rbp = pag->pagb_tree.rb_node; /* find closest start bno overlap */ while (rbp) { busyp = rb_entry(rbp, struct xfs_busy_extent, rb_node); if (bno < busyp->bno) { /* may overlap, but exact start block is lower */ if (bno + len > busyp->bno) match = -1; rbp = rbp->rb_left; } else if (bno > busyp->bno) { /* may overlap, but exact start block is higher */ if (bno < busyp->bno + busyp->length) match = -1; rbp = rbp->rb_right; } else { /* bno matches busyp, length determines exact match */ match = (busyp->length == len) ? 1 : -1; break; } } spin_unlock(&pag->pagb_lock); trace_xfs_alloc_busysearch(mp, agno, bno, len, !!match); xfs_perag_put(pag); return match; } void xfs_alloc_busy_clear( struct xfs_mount *mp, struct xfs_busy_extent *busyp) { struct xfs_perag *pag; trace_xfs_alloc_unbusy(mp, busyp->agno, busyp->bno, busyp->length); ASSERT(xfs_alloc_busy_search(mp, busyp->agno, busyp->bno, busyp->length) == 1); list_del_init(&busyp->list); pag = xfs_perag_get(mp, busyp->agno); spin_lock(&pag->pagb_lock); rb_erase(&busyp->rb_node, &pag->pagb_tree); spin_unlock(&pag->pagb_lock); xfs_perag_put(pag); kmem_free(busyp); }