/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the Interfaces handler. * * Version: @(#)dev.h 1.0.10 08/12/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> * Alan Cox, <alan@lxorguk.ukuu.org.uk> * Bjorn Ekwall. <bj0rn@blox.se> * Pekka Riikonen <priikone@poseidon.pspt.fi> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Moved to /usr/include/linux for NET3 */ #ifndef _LINUX_NETDEVICE_H #define _LINUX_NETDEVICE_H #include <linux/if.h> #include <linux/if_ether.h> #include <linux/if_packet.h> #include <linux/if_link.h> #ifdef __KERNEL__ #include <linux/pm_qos_params.h> #include <linux/timer.h> #include <linux/delay.h> #include <linux/mm.h> #include <asm/atomic.h> #include <asm/cache.h> #include <asm/byteorder.h> #include <linux/device.h> #include <linux/percpu.h> #include <linux/rculist.h> #include <linux/dmaengine.h> #include <linux/workqueue.h> #include <linux/ethtool.h> #include <net/net_namespace.h> #include <net/dsa.h> #ifdef CONFIG_DCB #include <net/dcbnl.h> #endif struct vlan_group; struct netpoll_info; struct phy_device; /* 802.11 specific */ struct wireless_dev; /* source back-compat hooks */ #define SET_ETHTOOL_OPS(netdev,ops) \ ( (netdev)->ethtool_ops = (ops) ) #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev functions are available. */ #define HAVE_FREE_NETDEV /* free_netdev() */ #define HAVE_NETDEV_PRIV /* netdev_priv() */ /* hardware address assignment types */ #define NET_ADDR_PERM 0 /* address is permanent (default) */ #define NET_ADDR_RANDOM 1 /* address is generated randomly */ #define NET_ADDR_STOLEN 2 /* address is stolen from other device */ /* Backlog congestion levels */ #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ #define NET_RX_DROP 1 /* packet dropped */ /* * Transmit return codes: transmit return codes originate from three different * namespaces: * * - qdisc return codes * - driver transmit return codes * - errno values * * Drivers are allowed to return any one of those in their hard_start_xmit() * function. Real network devices commonly used with qdiscs should only return * the driver transmit return codes though - when qdiscs are used, the actual * transmission happens asynchronously, so the value is not propagated to * higher layers. Virtual network devices transmit synchronously, in this case * the driver transmit return codes are consumed by dev_queue_xmit(), all * others are propagated to higher layers. */ /* qdisc ->enqueue() return codes. */ #define NET_XMIT_SUCCESS 0x00 #define NET_XMIT_DROP 0x01 /* skb dropped */ #define NET_XMIT_CN 0x02 /* congestion notification */ #define NET_XMIT_POLICED 0x03 /* skb is shot by police */ #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It * indicates that the device will soon be dropping packets, or already drops * some packets of the same priority; prompting us to send less aggressively. */ #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) /* Driver transmit return codes */ #define NETDEV_TX_MASK 0xf0 enum netdev_tx { __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ NETDEV_TX_OK = 0x00, /* driver took care of packet */ NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ }; typedef enum netdev_tx netdev_tx_t; /* * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. */ static inline bool dev_xmit_complete(int rc) { /* * Positive cases with an skb consumed by a driver: * - successful transmission (rc == NETDEV_TX_OK) * - error while transmitting (rc < 0) * - error while queueing to a different device (rc & NET_XMIT_MASK) */ if (likely(rc < NET_XMIT_MASK)) return true; return false; } #endif #define MAX_ADDR_LEN 32 /* Largest hardware address length */ /* Initial net device group. All devices belong to group 0 by default. */ #define INIT_NETDEV_GROUP 0 #ifdef __KERNEL__ /* * Compute the worst case header length according to the protocols * used. */ #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) # if defined(CONFIG_MAC80211_MESH) # define LL_MAX_HEADER 128 # else # define LL_MAX_HEADER 96 # endif #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE) # define LL_MAX_HEADER 48 #else # define LL_MAX_HEADER 32 #endif #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \ !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \ !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \ !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE) #define MAX_HEADER LL_MAX_HEADER #else #define MAX_HEADER (LL_MAX_HEADER + 48) #endif /* * Old network device statistics. Fields are native words * (unsigned long) so they can be read and written atomically. */ struct net_device_stats { unsigned long rx_packets; unsigned long tx_packets; unsigned long rx_bytes; unsigned long tx_bytes; unsigned long rx_errors; unsigned long tx_errors; unsigned long rx_dropped; unsigned long tx_dropped; unsigned long multicast; unsigned long collisions; unsigned long rx_length_errors; unsigned long rx_over_errors; unsigned long rx_crc_errors; unsigned long rx_frame_errors; unsigned long rx_fifo_errors; unsigned long rx_missed_errors; unsigned long tx_aborted_errors; unsigned long tx_carrier_errors; unsigned long tx_fifo_errors; unsigned long tx_heartbeat_errors; unsigned long tx_window_errors; unsigned long rx_compressed; unsigned long tx_compressed; }; #endif /* __KERNEL__ */ /* Media selection options. */ enum { IF_PORT_UNKNOWN = 0, IF_PORT_10BASE2, IF_PORT_10BASET, IF_PORT_AUI, IF_PORT_100BASET, IF_PORT_100BASETX, IF_PORT_100BASEFX }; #ifdef __KERNEL__ #include <linux/cache.h> #include <linux/skbuff.h> struct neighbour; struct neigh_parms; struct sk_buff; struct netdev_hw_addr { struct list_head list; unsigned char addr[MAX_ADDR_LEN]; unsigned char type; #define NETDEV_HW_ADDR_T_LAN 1 #define NETDEV_HW_ADDR_T_SAN 2 #define NETDEV_HW_ADDR_T_SLAVE 3 #define NETDEV_HW_ADDR_T_UNICAST 4 #define NETDEV_HW_ADDR_T_MULTICAST 5 bool synced; bool global_use; int refcount; struct rcu_head rcu_head; }; struct netdev_hw_addr_list { struct list_head list; int count; }; #define netdev_hw_addr_list_count(l) ((l)->count) #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) #define netdev_hw_addr_list_for_each(ha, l) \ list_for_each_entry(ha, &(l)->list, list) #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) #define netdev_for_each_uc_addr(ha, dev) \ netdev_hw_addr_list_for_each(ha, &(dev)->uc) #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) #define netdev_for_each_mc_addr(ha, dev) \ netdev_hw_addr_list_for_each(ha, &(dev)->mc) struct hh_cache { struct hh_cache *hh_next; /* Next entry */ atomic_t hh_refcnt; /* number of users */ /* * We want hh_output, hh_len, hh_lock and hh_data be a in a separate * cache line on SMP. * They are mostly read, but hh_refcnt may be changed quite frequently, * incurring cache line ping pongs. */ __be16 hh_type ____cacheline_aligned_in_smp; /* protocol identifier, f.e ETH_P_IP * NOTE: For VLANs, this will be the * encapuslated type. --BLG */ u16 hh_len; /* length of header */ int (*hh_output)(struct sk_buff *skb); seqlock_t hh_lock; /* cached hardware header; allow for machine alignment needs. */ #define HH_DATA_MOD 16 #define HH_DATA_OFF(__len) \ (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) #define HH_DATA_ALIGN(__len) \ (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; }; static inline void hh_cache_put(struct hh_cache *hh) { if (atomic_dec_and_test(&hh->hh_refcnt)) kfree(hh); } /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. * Alternative is: * dev->hard_header_len ? (dev->hard_header_len + * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 * * We could use other alignment values, but we must maintain the * relationship HH alignment <= LL alignment. * * LL_ALLOCATED_SPACE also takes into account the tailroom the device * may need. */ #define LL_RESERVED_SPACE(dev) \ ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) #define LL_RESERVED_SPACE_EXTRA(dev,extra) \ ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) #define LL_ALLOCATED_SPACE(dev) \ ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) struct header_ops { int (*create) (struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len); int (*parse)(const struct sk_buff *skb, unsigned char *haddr); int (*rebuild)(struct sk_buff *skb); #define HAVE_HEADER_CACHE int (*cache)(const struct neighbour *neigh, struct hh_cache *hh); void (*cache_update)(struct hh_cache *hh, const struct net_device *dev, const unsigned char *haddr); }; /* These flag bits are private to the generic network queueing * layer, they may not be explicitly referenced by any other * code. */ enum netdev_state_t { __LINK_STATE_START, __LINK_STATE_PRESENT, __LINK_STATE_NOCARRIER, __LINK_STATE_LINKWATCH_PENDING, __LINK_STATE_DORMANT, }; /* * This structure holds at boot time configured netdevice settings. They * are then used in the device probing. */ struct netdev_boot_setup { char name[IFNAMSIZ]; struct ifmap map; }; #define NETDEV_BOOT_SETUP_MAX 8 extern int __init netdev_boot_setup(char *str); /* * Structure for NAPI scheduling similar to tasklet but with weighting */ struct napi_struct { /* The poll_list must only be managed by the entity which * changes the state of the NAPI_STATE_SCHED bit. This means * whoever atomically sets that bit can add this napi_struct * to the per-cpu poll_list, and whoever clears that bit * can remove from the list right before clearing the bit. */ struct list_head poll_list; unsigned long state; int weight; int (*poll)(struct napi_struct *, int); #ifdef CONFIG_NETPOLL spinlock_t poll_lock; int poll_owner; #endif unsigned int gro_count; struct net_device *dev; struct list_head dev_list; struct sk_buff *gro_list; struct sk_buff *skb; }; enum { NAPI_STATE_SCHED, /* Poll is scheduled */ NAPI_STATE_DISABLE, /* Disable pending */ NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ }; enum gro_result { GRO_MERGED, GRO_MERGED_FREE, GRO_HELD, GRO_NORMAL, GRO_DROP, }; typedef enum gro_result gro_result_t; /* * enum rx_handler_result - Possible return values for rx_handlers. * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it * further. * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in * case skb->dev was changed by rx_handler. * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. * * rx_handlers are functions called from inside __netif_receive_skb(), to do * special processing of the skb, prior to delivery to protocol handlers. * * Currently, a net_device can only have a single rx_handler registered. Trying * to register a second rx_handler will return -EBUSY. * * To register a rx_handler on a net_device, use netdev_rx_handler_register(). * To unregister a rx_handler on a net_device, use * netdev_rx_handler_unregister(). * * Upon return, rx_handler is expected to tell __netif_receive_skb() what to * do with the skb. * * If the rx_handler consumed to skb in some way, it should return * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for * the skb to be delivered in some other ways. * * If the rx_handler changed skb->dev, to divert the skb to another * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the * new device will be called if it exists. * * If the rx_handler consider the skb should be ignored, it should return * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that * are registred on exact device (ptype->dev == skb->dev). * * If the rx_handler didn't changed skb->dev, but want the skb to be normally * delivered, it should return RX_HANDLER_PASS. * * A device without a registered rx_handler will behave as if rx_handler * returned RX_HANDLER_PASS. */ enum rx_handler_result { RX_HANDLER_CONSUMED, RX_HANDLER_ANOTHER, RX_HANDLER_EXACT, RX_HANDLER_PASS, }; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); extern void __napi_schedule(struct napi_struct *n); static inline int napi_disable_pending(struct napi_struct *n) { return test_bit(NAPI_STATE_DISABLE, &n->state); } /** * napi_schedule_prep - check if napi can be scheduled * @n: napi context * * Test if NAPI routine is already running, and if not mark * it as running. This is used as a condition variable * insure only one NAPI poll instance runs. We also make * sure there is no pending NAPI disable. */ static inline int napi_schedule_prep(struct napi_struct *n) { return !napi_disable_pending(n) && !test_and_set_bit(NAPI_STATE_SCHED, &n->state); } /** * napi_schedule - schedule NAPI poll * @n: napi context * * Schedule NAPI poll routine to be called if it is not already * running. */ static inline void napi_schedule(struct napi_struct *n) { if (napi_schedule_prep(n)) __napi_schedule(n); } /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ static inline int napi_reschedule(struct napi_struct *napi) { if (napi_schedule_prep(napi)) { __napi_schedule(napi); return 1; } return 0; } /** * napi_complete - NAPI processing complete * @n: napi context * * Mark NAPI processing as complete. */ extern void __napi_complete(struct napi_struct *n); extern void napi_complete(struct napi_struct *n); /** * napi_disable - prevent NAPI from scheduling * @n: napi context * * Stop NAPI from being scheduled on this context. * Waits till any outstanding processing completes. */ static inline void napi_disable(struct napi_struct *n) { set_bit(NAPI_STATE_DISABLE, &n->state); while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) msleep(1); clear_bit(NAPI_STATE_DISABLE, &n->state); } /** * napi_enable - enable NAPI scheduling * @n: napi context * * Resume NAPI from being scheduled on this context. * Must be paired with napi_disable. */ static inline void napi_enable(struct napi_struct *n) { BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); smp_mb__before_clear_bit(); clear_bit(NAPI_STATE_SCHED, &n->state); } #ifdef CONFIG_SMP /** * napi_synchronize - wait until NAPI is not running * @n: napi context * * Wait until NAPI is done being scheduled on this context. * Waits till any outstanding processing completes but * does not disable future activations. */ static inline void napi_synchronize(const struct napi_struct *n) { while (test_bit(NAPI_STATE_SCHED, &n->state)) msleep(1); } #else # define napi_synchronize(n) barrier() #endif enum netdev_queue_state_t { __QUEUE_STATE_XOFF, __QUEUE_STATE_FROZEN, #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \ (1 << __QUEUE_STATE_FROZEN)) }; struct netdev_queue { /* * read mostly part */ struct net_device *dev; struct Qdisc *qdisc; unsigned long state; struct Qdisc *qdisc_sleeping; #ifdef CONFIG_RPS struct kobject kobj; #endif #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) int numa_node; #endif /* * write mostly part */ spinlock_t _xmit_lock ____cacheline_aligned_in_smp; int xmit_lock_owner; /* * please use this field instead of dev->trans_start */ unsigned long trans_start; } ____cacheline_aligned_in_smp; static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) { #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) return q->numa_node; #else return NUMA_NO_NODE; #endif } static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) { #if defined(CONFIG_XPS) && defined(CONFIG_NUMA) q->numa_node = node; #endif } #ifdef CONFIG_RPS /* * This structure holds an RPS map which can be of variable length. The * map is an array of CPUs. */ struct rps_map { unsigned int len; struct rcu_head rcu; u16 cpus[0]; }; #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16))) /* * The rps_dev_flow structure contains the mapping of a flow to a CPU, the * tail pointer for that CPU's input queue at the time of last enqueue, and * a hardware filter index. */ struct rps_dev_flow { u16 cpu; u16 filter; unsigned int last_qtail; }; #define RPS_NO_FILTER 0xffff /* * The rps_dev_flow_table structure contains a table of flow mappings. */ struct rps_dev_flow_table { unsigned int mask; struct rcu_head rcu; struct work_struct free_work; struct rps_dev_flow flows[0]; }; #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ (_num * sizeof(struct rps_dev_flow))) /* * The rps_sock_flow_table contains mappings of flows to the last CPU * on which they were processed by the application (set in recvmsg). */ struct rps_sock_flow_table { unsigned int mask; u16 ents[0]; }; #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ (_num * sizeof(u16))) #define RPS_NO_CPU 0xffff static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, u32 hash) { if (table && hash) { unsigned int cpu, index = hash & table->mask; /* We only give a hint, preemption can change cpu under us */ cpu = raw_smp_processor_id(); if (table->ents[index] != cpu) table->ents[index] = cpu; } } static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, u32 hash) { if (table && hash) table->ents[hash & table->mask] = RPS_NO_CPU; } extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; #ifdef CONFIG_RFS_ACCEL extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, u16 filter_id); #endif /* This structure contains an instance of an RX queue. */ struct netdev_rx_queue { struct rps_map __rcu *rps_map; struct rps_dev_flow_table __rcu *rps_flow_table; struct kobject kobj; struct net_device *dev; } ____cacheline_aligned_in_smp; #endif /* CONFIG_RPS */ #ifdef CONFIG_XPS /* * This structure holds an XPS map which can be of variable length. The * map is an array of queues. */ struct xps_map { unsigned int len; unsigned int alloc_len; struct rcu_head rcu; u16 queues[0]; }; #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16))) #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ / sizeof(u16)) /* * This structure holds all XPS maps for device. Maps are indexed by CPU. */ struct xps_dev_maps { struct rcu_head rcu; struct xps_map __rcu *cpu_map[0]; }; #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ (nr_cpu_ids * sizeof(struct xps_map *))) #endif /* CONFIG_XPS */ #define TC_MAX_QUEUE 16 #define TC_BITMASK 15 /* HW offloaded queuing disciplines txq count and offset maps */ struct netdev_tc_txq { u16 count; u16 offset; }; /* * This structure defines the management hooks for network devices. * The following hooks can be defined; unless noted otherwise, they are * optional and can be filled with a null pointer. * * int (*ndo_init)(struct net_device *dev); * This function is called once when network device is registered. * The network device can use this to any late stage initializaton * or semantic validattion. It can fail with an error code which will * be propogated back to register_netdev * * void (*ndo_uninit)(struct net_device *dev); * This function is called when device is unregistered or when registration * fails. It is not called if init fails. * * int (*ndo_open)(struct net_device *dev); * This function is called when network device transistions to the up * state. * * int (*ndo_stop)(struct net_device *dev); * This function is called when network device transistions to the down * state. * * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, * struct net_device *dev); * Called when a packet needs to be transmitted. * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) * Required can not be NULL. * * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); * Called to decide which queue to when device supports multiple * transmit queues. * * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); * This function is called to allow device receiver to make * changes to configuration when multicast or promiscious is enabled. * * void (*ndo_set_rx_mode)(struct net_device *dev); * This function is called device changes address list filtering. * * void (*ndo_set_multicast_list)(struct net_device *dev); * This function is called when the multicast address list changes. * * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); * This function is called when the Media Access Control address * needs to be changed. If this interface is not defined, the * mac address can not be changed. * * int (*ndo_validate_addr)(struct net_device *dev); * Test if Media Access Control address is valid for the device. * * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); * Called when a user request an ioctl which can't be handled by * the generic interface code. If not defined ioctl's return * not supported error code. * * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); * Used to set network devices bus interface parameters. This interface * is retained for legacy reason, new devices should use the bus * interface (PCI) for low level management. * * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); * Called when a user wants to change the Maximum Transfer Unit * of a device. If not defined, any request to change MTU will * will return an error. * * void (*ndo_tx_timeout)(struct net_device *dev); * Callback uses when the transmitter has not made any progress * for dev->watchdog ticks. * * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, * struct rtnl_link_stats64 *storage); * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); * Called when a user wants to get the network device usage * statistics. Drivers must do one of the following: * 1. Define @ndo_get_stats64 to fill in a zero-initialised * rtnl_link_stats64 structure passed by the caller. * 2. Define @ndo_get_stats to update a net_device_stats structure * (which should normally be dev->stats) and return a pointer to * it. The structure may be changed asynchronously only if each * field is written atomically. * 3. Update dev->stats asynchronously and atomically, and define * neither operation. * * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp); * If device support VLAN receive acceleration * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called * when vlan groups for the device changes. Note: grp is NULL * if no vlan's groups are being used. * * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) * this function is called when a VLAN id is registered. * * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) * this function is called when a VLAN id is unregistered. * * void (*ndo_poll_controller)(struct net_device *dev); * * SR-IOV management functions. * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); * int (*ndo_get_vf_config)(struct net_device *dev, * int vf, struct ifla_vf_info *ivf); * int (*ndo_set_vf_port)(struct net_device *dev, int vf, * struct nlattr *port[]); * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) * Called to setup 'tc' number of traffic classes in the net device. This * is always called from the stack with the rtnl lock held and netif tx * queues stopped. This allows the netdevice to perform queue management * safely. * * Fiber Channel over Ethernet (FCoE) offload functions. * int (*ndo_fcoe_enable)(struct net_device *dev); * Called when the FCoE protocol stack wants to start using LLD for FCoE * so the underlying device can perform whatever needed configuration or * initialization to support acceleration of FCoE traffic. * * int (*ndo_fcoe_disable)(struct net_device *dev); * Called when the FCoE protocol stack wants to stop using LLD for FCoE * so the underlying device can perform whatever needed clean-ups to * stop supporting acceleration of FCoE traffic. * * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, * struct scatterlist *sgl, unsigned int sgc); * Called when the FCoE Initiator wants to initialize an I/O that * is a possible candidate for Direct Data Placement (DDP). The LLD can * perform necessary setup and returns 1 to indicate the device is set up * successfully to perform DDP on this I/O, otherwise this returns 0. * * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); * Called when the FCoE Initiator/Target is done with the DDPed I/O as * indicated by the FC exchange id 'xid', so the underlying device can * clean up and reuse resources for later DDP requests. * * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, * struct scatterlist *sgl, unsigned int sgc); * Called when the FCoE Target wants to initialize an I/O that * is a possible candidate for Direct Data Placement (DDP). The LLD can * perform necessary setup and returns 1 to indicate the device is set up * successfully to perform DDP on this I/O, otherwise this returns 0. * * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); * Called when the underlying device wants to override default World Wide * Name (WWN) generation mechanism in FCoE protocol stack to pass its own * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE * protocol stack to use. * * RFS acceleration. * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, * u16 rxq_index, u32 flow_id); * Set hardware filter for RFS. rxq_index is the target queue index; * flow_id is a flow ID to be passed to rps_may_expire_flow() later. * Return the filter ID on success, or a negative error code. * * Slave management functions (for bridge, bonding, etc). User should * call netdev_set_master() to set dev->master properly. * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); * Called to make another netdev an underling. * * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); * Called to release previously enslaved netdev. * * Feature/offload setting functions. * u32 (*ndo_fix_features)(struct net_device *dev, u32 features); * Adjusts the requested feature flags according to device-specific * constraints, and returns the resulting flags. Must not modify * the device state. * * int (*ndo_set_features)(struct net_device *dev, u32 features); * Called to update device configuration to new features. Passed * feature set might be less than what was returned by ndo_fix_features()). * Must return >0 or -errno if it changed dev->features itself. * */ #define HAVE_NET_DEVICE_OPS struct net_device_ops { int (*ndo_init)(struct net_device *dev); void (*ndo_uninit)(struct net_device *dev); int (*ndo_open)(struct net_device *dev); int (*ndo_stop)(struct net_device *dev); netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, struct net_device *dev); u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); void (*ndo_change_rx_flags)(struct net_device *dev, int flags); void (*ndo_set_rx_mode)(struct net_device *dev); void (*ndo_set_multicast_list)(struct net_device *dev); int (*ndo_set_mac_address)(struct net_device *dev, void *addr); int (*ndo_validate_addr)(struct net_device *dev); int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); int (*ndo_neigh_setup)(struct net_device *dev, struct neigh_parms *); void (*ndo_tx_timeout) (struct net_device *dev); struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, struct rtnl_link_stats64 *storage); struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp); void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); #ifdef CONFIG_NET_POLL_CONTROLLER void (*ndo_poll_controller)(struct net_device *dev); int (*ndo_netpoll_setup)(struct net_device *dev, struct netpoll_info *info); void (*ndo_netpoll_cleanup)(struct net_device *dev); #endif int (*ndo_set_vf_mac)(struct net_device *dev, int queue, u8 *mac); int (*ndo_set_vf_vlan)(struct net_device *dev, int queue, u16 vlan, u8 qos); int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); int (*ndo_get_vf_config)(struct net_device *dev, int vf, struct ifla_vf_info *ivf); int (*ndo_set_vf_port)(struct net_device *dev, int vf, struct nlattr *port[]); int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); int (*ndo_setup_tc)(struct net_device *dev, u8 tc); #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) int (*ndo_fcoe_enable)(struct net_device *dev); int (*ndo_fcoe_disable)(struct net_device *dev); int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc); int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, struct scatterlist *sgl, unsigned int sgc); #define NETDEV_FCOE_WWNN 0 #define NETDEV_FCOE_WWPN 1 int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); #endif #ifdef CONFIG_RFS_ACCEL int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id); #endif int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); u32 (*ndo_fix_features)(struct net_device *dev, u32 features); int (*ndo_set_features)(struct net_device *dev, u32 features); }; /* * The DEVICE structure. * Actually, this whole structure is a big mistake. It mixes I/O * data with strictly "high-level" data, and it has to know about * almost every data structure used in the INET module. * * FIXME: cleanup struct net_device such that network protocol info * moves out. */ struct net_device { /* * This is the first field of the "visible" part of this structure * (i.e. as seen by users in the "Space.c" file). It is the name * of the interface. */ char name[IFNAMSIZ]; struct pm_qos_request_list pm_qos_req; /* device name hash chain */ struct hlist_node name_hlist; /* snmp alias */ char *ifalias; /* * I/O specific fields * FIXME: Merge these and struct ifmap into one */ unsigned long mem_end; /* shared mem end */ unsigned long mem_start; /* shared mem start */ unsigned long base_addr; /* device I/O address */ unsigned int irq; /* device IRQ number */ /* * Some hardware also needs these fields, but they are not * part of the usual set specified in Space.c. */ unsigned char if_port; /* Selectable AUI, TP,..*/ unsigned char dma; /* DMA channel */ unsigned long state; struct list_head dev_list; struct list_head napi_list; struct list_head unreg_list; /* currently active device features */ u32 features; /* user-changeable features */ u32 hw_features; /* user-requested features */ u32 wanted_features; /* VLAN feature mask */ u32 vlan_features; /* Net device feature bits; if you change something, * also update netdev_features_strings[] in ethtool.c */ #define NETIF_F_SG 1 /* Scatter/gather IO. */ #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */ #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */ #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */ #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */ #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */ #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */ #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */ #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */ #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */ #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */ #define NETIF_F_GSO 2048 /* Enable software GSO. */ #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */ /* do not use LLTX in new drivers */ #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */ #define NETIF_F_GRO 16384 /* Generic receive offload */ #define NETIF_F_LRO 32768 /* large receive offload */ /* the GSO_MASK reserves bits 16 through 23 */ #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */ #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */ #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/ #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */ #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */ #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */ /* Segmentation offload features */ #define NETIF_F_GSO_SHIFT 16 #define NETIF_F_GSO_MASK 0x00ff0000 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT) #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT) #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT) #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT) #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT) #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT) /* Features valid for ethtool to change */ /* = all defined minus driver/device-class-related */ #define NETIF_F_NEVER_CHANGE (NETIF_F_HIGHDMA | NETIF_F_VLAN_CHALLENGED | \ NETIF_F_LLTX | NETIF_F_NETNS_LOCAL) #define NETIF_F_ETHTOOL_BITS (0x3f3fffff & ~NETIF_F_NEVER_CHANGE) /* List of features with software fallbacks. */ #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \ NETIF_F_TSO6 | NETIF_F_UFO) #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM) #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM) #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM) #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM) #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) #define NETIF_F_ALL_TX_OFFLOADS (NETIF_F_ALL_CSUM | NETIF_F_SG | \ NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \ NETIF_F_SCTP_CSUM | NETIF_F_FCOE_CRC) /* * If one device supports one of these features, then enable them * for all in netdev_increment_features. */ #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \ NETIF_F_SG | NETIF_F_HIGHDMA | \ NETIF_F_FRAGLIST) /* changeable features with no special hardware requirements */ #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO) /* Interface index. Unique device identifier */ int ifindex; int iflink; struct net_device_stats stats; atomic_long_t rx_dropped; /* dropped packets by core network * Do not use this in drivers. */ #ifdef CONFIG_WIRELESS_EXT /* List of functions to handle Wireless Extensions (instead of ioctl). * See <net/iw_handler.h> for details. Jean II */ const struct iw_handler_def * wireless_handlers; /* Instance data managed by the core of Wireless Extensions. */ struct iw_public_data * wireless_data; #endif /* Management operations */ const struct net_device_ops *netdev_ops; const struct ethtool_ops *ethtool_ops; /* Hardware header description */ const struct header_ops *header_ops; unsigned int flags; /* interface flags (a la BSD) */ unsigned short gflags; unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */ unsigned short padded; /* How much padding added by alloc_netdev() */ unsigned char operstate; /* RFC2863 operstate */ unsigned char link_mode; /* mapping policy to operstate */ unsigned int mtu; /* interface MTU value */ unsigned short type; /* interface hardware type */ unsigned short hard_header_len; /* hardware hdr length */ /* extra head- and tailroom the hardware may need, but not in all cases * can this be guaranteed, especially tailroom. Some cases also use * LL_MAX_HEADER instead to allocate the skb. */ unsigned short needed_headroom; unsigned short needed_tailroom; /* Interface address info. */ unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ unsigned char addr_assign_type; /* hw address assignment type */ unsigned char addr_len; /* hardware address length */ unsigned short dev_id; /* for shared network cards */ spinlock_t addr_list_lock; struct netdev_hw_addr_list uc; /* Unicast mac addresses */ struct netdev_hw_addr_list mc; /* Multicast mac addresses */ int uc_promisc; unsigned int promiscuity; unsigned int allmulti; /* Protocol specific pointers */ #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) struct vlan_group __rcu *vlgrp; /* VLAN group */ #endif #ifdef CONFIG_NET_DSA void *dsa_ptr; /* dsa specific data */ #endif void *atalk_ptr; /* AppleTalk link */ struct in_device __rcu *ip_ptr; /* IPv4 specific data */ struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ void *ec_ptr; /* Econet specific data */ void *ax25_ptr; /* AX.25 specific data */ struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, assign before registering */ /* * Cache lines mostly used on receive path (including eth_type_trans()) */ unsigned long last_rx; /* Time of last Rx * This should not be set in * drivers, unless really needed, * because network stack (bonding) * use it if/when necessary, to * avoid dirtying this cache line. */ struct net_device *master; /* Pointer to master device of a group, * which this device is member of. */ /* Interface address info used in eth_type_trans() */ unsigned char *dev_addr; /* hw address, (before bcast because most packets are unicast) */ struct netdev_hw_addr_list dev_addrs; /* list of device hw addresses */ unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ #ifdef CONFIG_RPS struct kset *queues_kset; struct netdev_rx_queue *_rx; /* Number of RX queues allocated at register_netdev() time */ unsigned int num_rx_queues; /* Number of RX queues currently active in device */ unsigned int real_num_rx_queues; #ifdef CONFIG_RFS_ACCEL /* CPU reverse-mapping for RX completion interrupts, indexed * by RX queue number. Assigned by driver. This must only be * set if the ndo_rx_flow_steer operation is defined. */ struct cpu_rmap *rx_cpu_rmap; #endif #endif rx_handler_func_t __rcu *rx_handler; void __rcu *rx_handler_data; struct netdev_queue __rcu *ingress_queue; /* * Cache lines mostly used on transmit path */ struct netdev_queue *_tx ____cacheline_aligned_in_smp; /* Number of TX queues allocated at alloc_netdev_mq() time */ unsigned int num_tx_queues; /* Number of TX queues currently active in device */ unsigned int real_num_tx_queues; /* root qdisc from userspace point of view */ struct Qdisc *qdisc; unsigned long tx_queue_len; /* Max frames per queue allowed */ spinlock_t tx_global_lock; #ifdef CONFIG_XPS struct xps_dev_maps __rcu *xps_maps; #endif /* These may be needed for future network-power-down code. */ /* * trans_start here is expensive for high speed devices on SMP, * please use netdev_queue->trans_start instead. */ unsigned long trans_start; /* Time (in jiffies) of last Tx */ int watchdog_timeo; /* used by dev_watchdog() */ struct timer_list watchdog_timer; /* Number of references to this device */ int __percpu *pcpu_refcnt; /* delayed register/unregister */ struct list_head todo_list; /* device index hash chain */ struct hlist_node index_hlist; struct list_head link_watch_list; /* register/unregister state machine */ enum { NETREG_UNINITIALIZED=0, NETREG_REGISTERED, /* completed register_netdevice */ NETREG_UNREGISTERING, /* called unregister_netdevice */ NETREG_UNREGISTERED, /* completed unregister todo */ NETREG_RELEASED, /* called free_netdev */ NETREG_DUMMY, /* dummy device for NAPI poll */ } reg_state:16; enum { RTNL_LINK_INITIALIZED, RTNL_LINK_INITIALIZING, } rtnl_link_state:16; /* Called from unregister, can be used to call free_netdev */ void (*destructor)(struct net_device *dev); #ifdef CONFIG_NETPOLL struct netpoll_info *npinfo; #endif #ifdef CONFIG_NET_NS /* Network namespace this network device is inside */ struct net *nd_net; #endif /* mid-layer private */ union { void *ml_priv; struct pcpu_lstats __percpu *lstats; /* loopback stats */ struct pcpu_tstats __percpu *tstats; /* tunnel stats */ struct pcpu_dstats __percpu *dstats; /* dummy stats */ }; /* GARP */ struct garp_port __rcu *garp_port; /* class/net/name entry */ struct device dev; /* space for optional device, statistics, and wireless sysfs groups */ const struct attribute_group *sysfs_groups[4]; /* rtnetlink link ops */ const struct rtnl_link_ops *rtnl_link_ops; /* for setting kernel sock attribute on TCP connection setup */ #define GSO_MAX_SIZE 65536 unsigned int gso_max_size; #ifdef CONFIG_DCB /* Data Center Bridging netlink ops */ const struct dcbnl_rtnl_ops *dcbnl_ops; #endif u8 num_tc; struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; u8 prio_tc_map[TC_BITMASK + 1]; #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) /* max exchange id for FCoE LRO by ddp */ unsigned int fcoe_ddp_xid; #endif /* n-tuple filter list attached to this device */ struct ethtool_rx_ntuple_list ethtool_ntuple_list; /* phy device may attach itself for hardware timestamping */ struct phy_device *phydev; /* group the device belongs to */ int group; }; #define to_net_dev(d) container_of(d, struct net_device, dev) #define NETDEV_ALIGN 32 static inline int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) { return dev->prio_tc_map[prio & TC_BITMASK]; } static inline int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) { if (tc >= dev->num_tc) return -EINVAL; dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; return 0; } static inline void netdev_reset_tc(struct net_device *dev) { dev->num_tc = 0; memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); } static inline int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) { if (tc >= dev->num_tc) return -EINVAL; dev->tc_to_txq[tc].count = count; dev->tc_to_txq[tc].offset = offset; return 0; } static inline int netdev_set_num_tc(struct net_device *dev, u8 num_tc) { if (num_tc > TC_MAX_QUEUE) return -EINVAL; dev->num_tc = num_tc; return 0; } static inline int netdev_get_num_tc(struct net_device *dev) { return dev->num_tc; } static inline struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, unsigned int index) { return &dev->_tx[index]; } static inline void netdev_for_each_tx_queue(struct net_device *dev, void (*f)(struct net_device *, struct netdev_queue *, void *), void *arg) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) f(dev, &dev->_tx[i], arg); } /* * Net namespace inlines */ static inline struct net *dev_net(const struct net_device *dev) { return read_pnet(&dev->nd_net); } static inline void dev_net_set(struct net_device *dev, struct net *net) { #ifdef CONFIG_NET_NS release_net(dev->nd_net); dev->nd_net = hold_net(net); #endif } static inline bool netdev_uses_dsa_tags(struct net_device *dev) { #ifdef CONFIG_NET_DSA_TAG_DSA if (dev->dsa_ptr != NULL) return dsa_uses_dsa_tags(dev->dsa_ptr); #endif return 0; } #ifndef CONFIG_NET_NS static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev) { skb->dev = dev; } #else /* CONFIG_NET_NS */ void skb_set_dev(struct sk_buff *skb, struct net_device *dev); #endif static inline bool netdev_uses_trailer_tags(struct net_device *dev) { #ifdef CONFIG_NET_DSA_TAG_TRAILER if (dev->dsa_ptr != NULL) return dsa_uses_trailer_tags(dev->dsa_ptr); #endif return 0; } /** * netdev_priv - access network device private data * @dev: network device * * Get network device private data */ static inline void *netdev_priv(const struct net_device *dev) { return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); } /* Set the sysfs physical device reference for the network logical device * if set prior to registration will cause a symlink during initialization. */ #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) /* Set the sysfs device type for the network logical device to allow * fin grained indentification of different network device types. For * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. */ #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) /** * netif_napi_add - initialize a napi context * @dev: network device * @napi: napi context * @poll: polling function * @weight: default weight * * netif_napi_add() must be used to initialize a napi context prior to calling * *any* of the other napi related functions. */ void netif_napi_add(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct napi_struct *, int), int weight); /** * netif_napi_del - remove a napi context * @napi: napi context * * netif_napi_del() removes a napi context from the network device napi list */ void netif_napi_del(struct napi_struct *napi); struct napi_gro_cb { /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ void *frag0; /* Length of frag0. */ unsigned int frag0_len; /* This indicates where we are processing relative to skb->data. */ int data_offset; /* This is non-zero if the packet may be of the same flow. */ int same_flow; /* This is non-zero if the packet cannot be merged with the new skb. */ int flush; /* Number of segments aggregated. */ int count; /* Free the skb? */ int free; }; #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) struct packet_type { __be16 type; /* This is really htons(ether_type). */ struct net_device *dev; /* NULL is wildcarded here */ int (*func) (struct sk_buff *, struct net_device *, struct packet_type *, struct net_device *); struct sk_buff *(*gso_segment)(struct sk_buff *skb, u32 features); int (*gso_send_check)(struct sk_buff *skb); struct sk_buff **(*gro_receive)(struct sk_buff **head, struct sk_buff *skb); int (*gro_complete)(struct sk_buff *skb); void *af_packet_priv; struct list_head list; }; #include <linux/interrupt.h> #include <linux/notifier.h> extern rwlock_t dev_base_lock; /* Device list lock */ #define for_each_netdev(net, d) \ list_for_each_entry(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_reverse(net, d) \ list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_rcu(net, d) \ list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_safe(net, d, n) \ list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) #define for_each_netdev_continue(net, d) \ list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) #define for_each_netdev_continue_rcu(net, d) \ list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) static inline struct net_device *next_net_device(struct net_device *dev) { struct list_head *lh; struct net *net; net = dev_net(dev); lh = dev->dev_list.next; return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } static inline struct net_device *next_net_device_rcu(struct net_device *dev) { struct list_head *lh; struct net *net; net = dev_net(dev); lh = rcu_dereference(list_next_rcu(&dev->dev_list)); return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } static inline struct net_device *first_net_device(struct net *net) { return list_empty(&net->dev_base_head) ? NULL : net_device_entry(net->dev_base_head.next); } static inline struct net_device *first_net_device_rcu(struct net *net) { struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); return lh == &net->dev_base_head ? NULL : net_device_entry(lh); } extern int netdev_boot_setup_check(struct net_device *dev); extern unsigned long netdev_boot_base(const char *prefix, int unit); extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, const char *hwaddr); extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); extern void dev_add_pack(struct packet_type *pt); extern void dev_remove_pack(struct packet_type *pt); extern void __dev_remove_pack(struct packet_type *pt); extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, unsigned short mask); extern struct net_device *dev_get_by_name(struct net *net, const char *name); extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); extern struct net_device *__dev_get_by_name(struct net *net, const char *name); extern int dev_alloc_name(struct net_device *dev, const char *name); extern int dev_open(struct net_device *dev); extern int dev_close(struct net_device *dev); extern void dev_disable_lro(struct net_device *dev); extern int dev_queue_xmit(struct sk_buff *skb); extern int register_netdevice(struct net_device *dev); extern void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); extern void unregister_netdevice_many(struct list_head *head); static inline void unregister_netdevice(struct net_device *dev) { unregister_netdevice_queue(dev, NULL); } extern int netdev_refcnt_read(const struct net_device *dev); extern void free_netdev(struct net_device *dev); extern void synchronize_net(void); extern int register_netdevice_notifier(struct notifier_block *nb); extern int unregister_netdevice_notifier(struct notifier_block *nb); extern int init_dummy_netdev(struct net_device *dev); extern void netdev_resync_ops(struct net_device *dev); extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); extern struct net_device *dev_get_by_index(struct net *net, int ifindex); extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); extern int dev_restart(struct net_device *dev); #ifdef CONFIG_NETPOLL_TRAP extern int netpoll_trap(void); #endif extern int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); extern void skb_gro_reset_offset(struct sk_buff *skb); static inline unsigned int skb_gro_offset(const struct sk_buff *skb) { return NAPI_GRO_CB(skb)->data_offset; } static inline unsigned int skb_gro_len(const struct sk_buff *skb) { return skb->len - NAPI_GRO_CB(skb)->data_offset; } static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) { NAPI_GRO_CB(skb)->data_offset += len; } static inline void *skb_gro_header_fast(struct sk_buff *skb, unsigned int offset) { return NAPI_GRO_CB(skb)->frag0 + offset; } static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) { return NAPI_GRO_CB(skb)->frag0_len < hlen; } static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, unsigned int offset) { if (!pskb_may_pull(skb, hlen)) return NULL; NAPI_GRO_CB(skb)->frag0 = NULL; NAPI_GRO_CB(skb)->frag0_len = 0; return skb->data + offset; } static inline void *skb_gro_mac_header(struct sk_buff *skb) { return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); } static inline void *skb_gro_network_header(struct sk_buff *skb) { return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + skb_network_offset(skb); } static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len) { if (!dev->header_ops || !dev->header_ops->create) return 0; return dev->header_ops->create(skb, dev, type, daddr, saddr, len); } static inline int dev_parse_header(const struct sk_buff *skb, unsigned char *haddr) { const struct net_device *dev = skb->dev; if (!dev->header_ops || !dev->header_ops->parse) return 0; return dev->header_ops->parse(skb, haddr); } typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); static inline int unregister_gifconf(unsigned int family) { return register_gifconf(family, NULL); } /* * Incoming packets are placed on per-cpu queues */ struct softnet_data { struct Qdisc *output_queue; struct Qdisc **output_queue_tailp; struct list_head poll_list; struct sk_buff *completion_queue; struct sk_buff_head process_queue; /* stats */ unsigned int processed; unsigned int time_squeeze; unsigned int cpu_collision; unsigned int received_rps; #ifdef CONFIG_RPS struct softnet_data *rps_ipi_list; /* Elements below can be accessed between CPUs for RPS */ struct call_single_data csd ____cacheline_aligned_in_smp; struct softnet_data *rps_ipi_next; unsigned int cpu; unsigned int input_queue_head; unsigned int input_queue_tail; #endif unsigned dropped; struct sk_buff_head input_pkt_queue; struct napi_struct backlog; }; static inline void input_queue_head_incr(struct softnet_data *sd) { #ifdef CONFIG_RPS sd->input_queue_head++; #endif } static inline void input_queue_tail_incr_save(struct softnet_data *sd, unsigned int *qtail) { #ifdef CONFIG_RPS *qtail = ++sd->input_queue_tail; #endif } DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); #define HAVE_NETIF_QUEUE extern void __netif_schedule(struct Qdisc *q); static inline void netif_schedule_queue(struct netdev_queue *txq) { if (!test_bit(__QUEUE_STATE_XOFF, &txq->state)) __netif_schedule(txq->qdisc); } static inline void netif_tx_schedule_all(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) netif_schedule_queue(netdev_get_tx_queue(dev, i)); } static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) { clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state); } /** * netif_start_queue - allow transmit * @dev: network device * * Allow upper layers to call the device hard_start_xmit routine. */ static inline void netif_start_queue(struct net_device *dev) { netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); } static inline void netif_tx_start_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_start_queue(txq); } } static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) { #ifdef CONFIG_NETPOLL_TRAP if (netpoll_trap()) { netif_tx_start_queue(dev_queue); return; } #endif if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state)) __netif_schedule(dev_queue->qdisc); } /** * netif_wake_queue - restart transmit * @dev: network device * * Allow upper layers to call the device hard_start_xmit routine. * Used for flow control when transmit resources are available. */ static inline void netif_wake_queue(struct net_device *dev) { netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); } static inline void netif_tx_wake_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_wake_queue(txq); } } static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) { if (WARN_ON(!dev_queue)) { pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); return; } set_bit(__QUEUE_STATE_XOFF, &dev_queue->state); } /** * netif_stop_queue - stop transmitted packets * @dev: network device * * Stop upper layers calling the device hard_start_xmit routine. * Used for flow control when transmit resources are unavailable. */ static inline void netif_stop_queue(struct net_device *dev) { netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); } static inline void netif_tx_stop_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_stop_queue(txq); } } static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue) { return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state); } /** * netif_queue_stopped - test if transmit queue is flowblocked * @dev: network device * * Test if transmit queue on device is currently unable to send. */ static inline int netif_queue_stopped(const struct net_device *dev) { return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); } static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue) { return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN; } /** * netif_running - test if up * @dev: network device * * Test if the device has been brought up. */ static inline int netif_running(const struct net_device *dev) { return test_bit(__LINK_STATE_START, &dev->state); } /* * Routines to manage the subqueues on a device. We only need start * stop, and a check if it's stopped. All other device management is * done at the overall netdevice level. * Also test the device if we're multiqueue. */ /** * netif_start_subqueue - allow sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Start individual transmit queue of a device with multiple transmit queues. */ static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); netif_tx_start_queue(txq); } /** * netif_stop_subqueue - stop sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Stop individual transmit queue of a device with multiple transmit queues. */ static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); #ifdef CONFIG_NETPOLL_TRAP if (netpoll_trap()) return; #endif netif_tx_stop_queue(txq); } /** * netif_subqueue_stopped - test status of subqueue * @dev: network device * @queue_index: sub queue index * * Check individual transmit queue of a device with multiple transmit queues. */ static inline int __netif_subqueue_stopped(const struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); return netif_tx_queue_stopped(txq); } static inline int netif_subqueue_stopped(const struct net_device *dev, struct sk_buff *skb) { return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); } /** * netif_wake_subqueue - allow sending packets on subqueue * @dev: network device * @queue_index: sub queue index * * Resume individual transmit queue of a device with multiple transmit queues. */ static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) { struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); #ifdef CONFIG_NETPOLL_TRAP if (netpoll_trap()) return; #endif if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state)) __netif_schedule(txq->qdisc); } /* * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used * as a distribution range limit for the returned value. */ static inline u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) { return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); } /** * netif_is_multiqueue - test if device has multiple transmit queues * @dev: network device * * Check if device has multiple transmit queues */ static inline int netif_is_multiqueue(const struct net_device *dev) { return dev->num_tx_queues > 1; } extern int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); #ifdef CONFIG_RPS extern int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); #else static inline int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) { return 0; } #endif static inline int netif_copy_real_num_queues(struct net_device *to_dev, const struct net_device *from_dev) { netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues); #ifdef CONFIG_RPS return netif_set_real_num_rx_queues(to_dev, from_dev->real_num_rx_queues); #else return 0; #endif } /* Use this variant when it is known for sure that it * is executing from hardware interrupt context or with hardware interrupts * disabled. */ extern void dev_kfree_skb_irq(struct sk_buff *skb); /* Use this variant in places where it could be invoked * from either hardware interrupt or other context, with hardware interrupts * either disabled or enabled. */ extern void dev_kfree_skb_any(struct sk_buff *skb); #define HAVE_NETIF_RX 1 extern int netif_rx(struct sk_buff *skb); extern int netif_rx_ni(struct sk_buff *skb); #define HAVE_NETIF_RECEIVE_SKB 1 extern int netif_receive_skb(struct sk_buff *skb); extern gro_result_t dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb); extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb); extern gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); extern void napi_gro_flush(struct napi_struct *napi); extern struct sk_buff * napi_get_frags(struct napi_struct *napi); extern gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, gro_result_t ret); extern struct sk_buff * napi_frags_skb(struct napi_struct *napi); extern gro_result_t napi_gro_frags(struct napi_struct *napi); static inline void napi_free_frags(struct napi_struct *napi) { kfree_skb(napi->skb); napi->skb = NULL; } extern int netdev_rx_handler_register(struct net_device *dev, rx_handler_func_t *rx_handler, void *rx_handler_data); extern void netdev_rx_handler_unregister(struct net_device *dev); extern int dev_valid_name(const char *name); extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); extern int dev_ethtool(struct net *net, struct ifreq *); extern unsigned dev_get_flags(const struct net_device *); extern int __dev_change_flags(struct net_device *, unsigned int flags); extern int dev_change_flags(struct net_device *, unsigned); extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); extern int dev_change_name(struct net_device *, const char *); extern int dev_set_alias(struct net_device *, const char *, size_t); extern int dev_change_net_namespace(struct net_device *, struct net *, const char *); extern int dev_set_mtu(struct net_device *, int); extern void dev_set_group(struct net_device *, int); extern int dev_set_mac_address(struct net_device *, struct sockaddr *); extern int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, struct netdev_queue *txq); extern int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); extern int netdev_budget; /* Called by rtnetlink.c:rtnl_unlock() */ extern void netdev_run_todo(void); /** * dev_put - release reference to device * @dev: network device * * Release reference to device to allow it to be freed. */ static inline void dev_put(struct net_device *dev) { irqsafe_cpu_dec(*dev->pcpu_refcnt); } /** * dev_hold - get reference to device * @dev: network device * * Hold reference to device to keep it from being freed. */ static inline void dev_hold(struct net_device *dev) { irqsafe_cpu_inc(*dev->pcpu_refcnt); } /* Carrier loss detection, dial on demand. The functions netif_carrier_on * and _off may be called from IRQ context, but it is caller * who is responsible for serialization of these calls. * * The name carrier is inappropriate, these functions should really be * called netif_lowerlayer_*() because they represent the state of any * kind of lower layer not just hardware media. */ extern void linkwatch_fire_event(struct net_device *dev); extern void linkwatch_forget_dev(struct net_device *dev); /** * netif_carrier_ok - test if carrier present * @dev: network device * * Check if carrier is present on device */ static inline int netif_carrier_ok(const struct net_device *dev) { return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); } extern unsigned long dev_trans_start(struct net_device *dev); extern void __netdev_watchdog_up(struct net_device *dev); extern void netif_carrier_on(struct net_device *dev); extern void netif_carrier_off(struct net_device *dev); extern void netif_notify_peers(struct net_device *dev); /** * netif_dormant_on - mark device as dormant. * @dev: network device * * Mark device as dormant (as per RFC2863). * * The dormant state indicates that the relevant interface is not * actually in a condition to pass packets (i.e., it is not 'up') but is * in a "pending" state, waiting for some external event. For "on- * demand" interfaces, this new state identifies the situation where the * interface is waiting for events to place it in the up state. * */ static inline void netif_dormant_on(struct net_device *dev) { if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) linkwatch_fire_event(dev); } /** * netif_dormant_off - set device as not dormant. * @dev: network device * * Device is not in dormant state. */ static inline void netif_dormant_off(struct net_device *dev) { if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) linkwatch_fire_event(dev); } /** * netif_dormant - test if carrier present * @dev: network device * * Check if carrier is present on device */ static inline int netif_dormant(const struct net_device *dev) { return test_bit(__LINK_STATE_DORMANT, &dev->state); } /** * netif_oper_up - test if device is operational * @dev: network device * * Check if carrier is operational */ static inline int netif_oper_up(const struct net_device *dev) { return (dev->operstate == IF_OPER_UP || dev->operstate == IF_OPER_UNKNOWN /* backward compat */); } /** * netif_device_present - is device available or removed * @dev: network device * * Check if device has not been removed from system. */ static inline int netif_device_present(struct net_device *dev) { return test_bit(__LINK_STATE_PRESENT, &dev->state); } extern void netif_device_detach(struct net_device *dev); extern void netif_device_attach(struct net_device *dev); /* * Network interface message level settings */ #define HAVE_NETIF_MSG 1 enum { NETIF_MSG_DRV = 0x0001, NETIF_MSG_PROBE = 0x0002, NETIF_MSG_LINK = 0x0004, NETIF_MSG_TIMER = 0x0008, NETIF_MSG_IFDOWN = 0x0010, NETIF_MSG_IFUP = 0x0020, NETIF_MSG_RX_ERR = 0x0040, NETIF_MSG_TX_ERR = 0x0080, NETIF_MSG_TX_QUEUED = 0x0100, NETIF_MSG_INTR = 0x0200, NETIF_MSG_TX_DONE = 0x0400, NETIF_MSG_RX_STATUS = 0x0800, NETIF_MSG_PKTDATA = 0x1000, NETIF_MSG_HW = 0x2000, NETIF_MSG_WOL = 0x4000, }; #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) { /* use default */ if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) return default_msg_enable_bits; if (debug_value == 0) /* no output */ return 0; /* set low N bits */ return (1 << debug_value) - 1; } static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) { spin_lock(&txq->_xmit_lock); txq->xmit_lock_owner = cpu; } static inline void __netif_tx_lock_bh(struct netdev_queue *txq) { spin_lock_bh(&txq->_xmit_lock); txq->xmit_lock_owner = smp_processor_id(); } static inline int __netif_tx_trylock(struct netdev_queue *txq) { int ok = spin_trylock(&txq->_xmit_lock); if (likely(ok)) txq->xmit_lock_owner = smp_processor_id(); return ok; } static inline void __netif_tx_unlock(struct netdev_queue *txq) { txq->xmit_lock_owner = -1; spin_unlock(&txq->_xmit_lock); } static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) { txq->xmit_lock_owner = -1; spin_unlock_bh(&txq->_xmit_lock); } static inline void txq_trans_update(struct netdev_queue *txq) { if (txq->xmit_lock_owner != -1) txq->trans_start = jiffies; } /** * netif_tx_lock - grab network device transmit lock * @dev: network device * * Get network device transmit lock */ static inline void netif_tx_lock(struct net_device *dev) { unsigned int i; int cpu; spin_lock(&dev->tx_global_lock); cpu = smp_processor_id(); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); /* We are the only thread of execution doing a * freeze, but we have to grab the _xmit_lock in * order to synchronize with threads which are in * the ->hard_start_xmit() handler and already * checked the frozen bit. */ __netif_tx_lock(txq, cpu); set_bit(__QUEUE_STATE_FROZEN, &txq->state); __netif_tx_unlock(txq); } } static inline void netif_tx_lock_bh(struct net_device *dev) { local_bh_disable(); netif_tx_lock(dev); } static inline void netif_tx_unlock(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); /* No need to grab the _xmit_lock here. If the * queue is not stopped for another reason, we * force a schedule. */ clear_bit(__QUEUE_STATE_FROZEN, &txq->state); netif_schedule_queue(txq); } spin_unlock(&dev->tx_global_lock); } static inline void netif_tx_unlock_bh(struct net_device *dev) { netif_tx_unlock(dev); local_bh_enable(); } #define HARD_TX_LOCK(dev, txq, cpu) { \ if ((dev->features & NETIF_F_LLTX) == 0) { \ __netif_tx_lock(txq, cpu); \ } \ } #define HARD_TX_UNLOCK(dev, txq) { \ if ((dev->features & NETIF_F_LLTX) == 0) { \ __netif_tx_unlock(txq); \ } \ } static inline void netif_tx_disable(struct net_device *dev) { unsigned int i; int cpu; local_bh_disable(); cpu = smp_processor_id(); for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); } local_bh_enable(); } static inline void netif_addr_lock(struct net_device *dev) { spin_lock(&dev->addr_list_lock); } static inline void netif_addr_lock_bh(struct net_device *dev) { spin_lock_bh(&dev->addr_list_lock); } static inline void netif_addr_unlock(struct net_device *dev) { spin_unlock(&dev->addr_list_lock); } static inline void netif_addr_unlock_bh(struct net_device *dev) { spin_unlock_bh(&dev->addr_list_lock); } /* * dev_addrs walker. Should be used only for read access. Call with * rcu_read_lock held. */ #define for_each_dev_addr(dev, ha) \ list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) /* These functions live elsewhere (drivers/net/net_init.c, but related) */ extern void ether_setup(struct net_device *dev); /* Support for loadable net-drivers */ extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, void (*setup)(struct net_device *), unsigned int txqs, unsigned int rxqs); #define alloc_netdev(sizeof_priv, name, setup) \ alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) #define alloc_netdev_mq(sizeof_priv, name, setup, count) \ alloc_netdev_mqs(sizeof_priv, name, setup, count, count) extern int register_netdev(struct net_device *dev); extern void unregister_netdev(struct net_device *dev); /* General hardware address lists handling functions */ extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, struct netdev_hw_addr_list *from_list, int addr_len, unsigned char addr_type); extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, struct netdev_hw_addr_list *from_list, int addr_len, unsigned char addr_type); extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, struct netdev_hw_addr_list *from_list, int addr_len); extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, struct netdev_hw_addr_list *from_list, int addr_len); extern void __hw_addr_flush(struct netdev_hw_addr_list *list); extern void __hw_addr_init(struct netdev_hw_addr_list *list); /* Functions used for device addresses handling */ extern int dev_addr_add(struct net_device *dev, unsigned char *addr, unsigned char addr_type); extern int dev_addr_del(struct net_device *dev, unsigned char *addr, unsigned char addr_type); extern int dev_addr_add_multiple(struct net_device *to_dev, struct net_device *from_dev, unsigned char addr_type); extern int dev_addr_del_multiple(struct net_device *to_dev, struct net_device *from_dev, unsigned char addr_type); extern void dev_addr_flush(struct net_device *dev); extern int dev_addr_init(struct net_device *dev); /* Functions used for unicast addresses handling */ extern int dev_uc_add(struct net_device *dev, unsigned char *addr); extern int dev_uc_del(struct net_device *dev, unsigned char *addr); extern int dev_uc_sync(struct net_device *to, struct net_device *from); extern void dev_uc_unsync(struct net_device *to, struct net_device *from); extern void dev_uc_flush(struct net_device *dev); extern void dev_uc_init(struct net_device *dev); /* Functions used for multicast addresses handling */ extern int dev_mc_add(struct net_device *dev, unsigned char *addr); extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr); extern int dev_mc_del(struct net_device *dev, unsigned char *addr); extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr); extern int dev_mc_sync(struct net_device *to, struct net_device *from); extern void dev_mc_unsync(struct net_device *to, struct net_device *from); extern void dev_mc_flush(struct net_device *dev); extern void dev_mc_init(struct net_device *dev); /* Functions used for secondary unicast and multicast support */ extern void dev_set_rx_mode(struct net_device *dev); extern void __dev_set_rx_mode(struct net_device *dev); extern int dev_set_promiscuity(struct net_device *dev, int inc); extern int dev_set_allmulti(struct net_device *dev, int inc); extern void netdev_state_change(struct net_device *dev); extern int netdev_bonding_change(struct net_device *dev, unsigned long event); extern void netdev_features_change(struct net_device *dev); /* Load a device via the kmod */ extern void dev_load(struct net *net, const char *name); extern void dev_mcast_init(void); extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, struct rtnl_link_stats64 *storage); extern int netdev_max_backlog; extern int netdev_tstamp_prequeue; extern int weight_p; extern int netdev_set_master(struct net_device *dev, struct net_device *master); extern int netdev_set_bond_master(struct net_device *dev, struct net_device *master); extern int skb_checksum_help(struct sk_buff *skb); extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features); #ifdef CONFIG_BUG extern void netdev_rx_csum_fault(struct net_device *dev); #else static inline void netdev_rx_csum_fault(struct net_device *dev) { } #endif /* rx skb timestamps */ extern void net_enable_timestamp(void); extern void net_disable_timestamp(void); #ifdef CONFIG_PROC_FS extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); extern void dev_seq_stop(struct seq_file *seq, void *v); #endif extern int netdev_class_create_file(struct class_attribute *class_attr); extern void netdev_class_remove_file(struct class_attribute *class_attr); extern struct kobj_ns_type_operations net_ns_type_operations; extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len); extern void linkwatch_run_queue(void); static inline u32 netdev_get_wanted_features(struct net_device *dev) { return (dev->features & ~dev->hw_features) | dev->wanted_features; } u32 netdev_increment_features(u32 all, u32 one, u32 mask); u32 netdev_fix_features(struct net_device *dev, u32 features); void netdev_update_features(struct net_device *dev); void netif_stacked_transfer_operstate(const struct net_device *rootdev, struct net_device *dev); u32 netif_skb_features(struct sk_buff *skb); static inline int net_gso_ok(u32 features, int gso_type) { int feature = gso_type << NETIF_F_GSO_SHIFT; return (features & feature) == feature; } static inline int skb_gso_ok(struct sk_buff *skb, u32 features) { return net_gso_ok(features, skb_shinfo(skb)->gso_type) && (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); } static inline int netif_needs_gso(struct sk_buff *skb, int features) { return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || unlikely(skb->ip_summed != CHECKSUM_PARTIAL)); } static inline void netif_set_gso_max_size(struct net_device *dev, unsigned int size) { dev->gso_max_size = size; } static inline int netif_is_bond_slave(struct net_device *dev) { return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; } extern struct pernet_operations __net_initdata loopback_net_ops; static inline int dev_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings) return -EOPNOTSUPP; return dev->ethtool_ops->get_settings(dev, cmd); } static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev) { if (dev->features & NETIF_F_RXCSUM) return 1; if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum) return 0; return dev->ethtool_ops->get_rx_csum(dev); } static inline u32 dev_ethtool_get_flags(struct net_device *dev) { if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags) return 0; return dev->ethtool_ops->get_flags(dev); } /* Logging, debugging and troubleshooting/diagnostic helpers. */ /* netdev_printk helpers, similar to dev_printk */ static inline const char *netdev_name(const struct net_device *dev) { if (dev->reg_state != NETREG_REGISTERED) return "(unregistered net_device)"; return dev->name; } extern int netdev_printk(const char *level, const struct net_device *dev, const char *format, ...) __attribute__ ((format (printf, 3, 4))); extern int netdev_emerg(const struct net_device *dev, const char *format, ...) __attribute__ ((format (printf, 2, 3))); extern int netdev_alert(const struct net_device *dev, const char *format, ...) __attribute__ ((format (printf, 2, 3))); extern int netdev_crit(const struct net_device *dev, const char *format, ...) __attribute__ ((format (printf, 2, 3))); extern int netdev_err(const struct net_device *dev, const char *format, ...) __attribute__ ((format (printf, 2, 3))); extern int netdev_warn(const struct net_device *dev, const char *format, ...) __attribute__ ((format (printf, 2, 3))); extern int netdev_notice(const struct net_device *dev, const char *format, ...) __attribute__ ((format (printf, 2, 3))); extern int netdev_info(const struct net_device *dev, const char *format, ...) __attribute__ ((format (printf, 2, 3))); #define MODULE_ALIAS_NETDEV(device) \ MODULE_ALIAS("netdev-" device) #if defined(DEBUG) #define netdev_dbg(__dev, format, args...) \ netdev_printk(KERN_DEBUG, __dev, format, ##args) #elif defined(CONFIG_DYNAMIC_DEBUG) #define netdev_dbg(__dev, format, args...) \ do { \ dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \ netdev_name(__dev), ##args); \ } while (0) #else #define netdev_dbg(__dev, format, args...) \ ({ \ if (0) \ netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 0; \ }) #endif #if defined(VERBOSE_DEBUG) #define netdev_vdbg netdev_dbg #else #define netdev_vdbg(dev, format, args...) \ ({ \ if (0) \ netdev_printk(KERN_DEBUG, dev, format, ##args); \ 0; \ }) #endif /* * netdev_WARN() acts like dev_printk(), but with the key difference * of using a WARN/WARN_ON to get the message out, including the * file/line information and a backtrace. */ #define netdev_WARN(dev, format, args...) \ WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); /* netif printk helpers, similar to netdev_printk */ #define netif_printk(priv, type, level, dev, fmt, args...) \ do { \ if (netif_msg_##type(priv)) \ netdev_printk(level, (dev), fmt, ##args); \ } while (0) #define netif_level(level, priv, type, dev, fmt, args...) \ do { \ if (netif_msg_##type(priv)) \ netdev_##level(dev, fmt, ##args); \ } while (0) #define netif_emerg(priv, type, dev, fmt, args...) \ netif_level(emerg, priv, type, dev, fmt, ##args) #define netif_alert(priv, type, dev, fmt, args...) \ netif_level(alert, priv, type, dev, fmt, ##args) #define netif_crit(priv, type, dev, fmt, args...) \ netif_level(crit, priv, type, dev, fmt, ##args) #define netif_err(priv, type, dev, fmt, args...) \ netif_level(err, priv, type, dev, fmt, ##args) #define netif_warn(priv, type, dev, fmt, args...) \ netif_level(warn, priv, type, dev, fmt, ##args) #define netif_notice(priv, type, dev, fmt, args...) \ netif_level(notice, priv, type, dev, fmt, ##args) #define netif_info(priv, type, dev, fmt, args...) \ netif_level(info, priv, type, dev, fmt, ##args) #if defined(DEBUG) #define netif_dbg(priv, type, dev, format, args...) \ netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) #elif defined(CONFIG_DYNAMIC_DEBUG) #define netif_dbg(priv, type, netdev, format, args...) \ do { \ if (netif_msg_##type(priv)) \ dynamic_dev_dbg((netdev)->dev.parent, \ "%s: " format, \ netdev_name(netdev), ##args); \ } while (0) #else #define netif_dbg(priv, type, dev, format, args...) \ ({ \ if (0) \ netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 0; \ }) #endif #if defined(VERBOSE_DEBUG) #define netif_vdbg netif_dbg #else #define netif_vdbg(priv, type, dev, format, args...) \ ({ \ if (0) \ netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 0; \ }) #endif #endif /* __KERNEL__ */ #endif /* _LINUX_NETDEVICE_H */