/* * linux/kernel/time/tick-common.c * * This file contains the base functions to manage periodic tick * related events. * * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner * * This code is licenced under the GPL version 2. For details see * kernel-base/COPYING. */ #include <linux/cpu.h> #include <linux/err.h> #include <linux/hrtimer.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/profile.h> #include <linux/sched.h> #include <asm/irq_regs.h> #include "tick-internal.h" /* * Tick devices */ DEFINE_PER_CPU(struct tick_device, tick_cpu_device); /* * Tick next event: keeps track of the tick time */ ktime_t tick_next_period; ktime_t tick_period; int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; static DEFINE_RAW_SPINLOCK(tick_device_lock); /* * Debugging: see timer_list.c */ struct tick_device *tick_get_device(int cpu) { return &per_cpu(tick_cpu_device, cpu); } /** * tick_is_oneshot_available - check for a oneshot capable event device */ int tick_is_oneshot_available(void) { struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) return 0; if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) return 1; return tick_broadcast_oneshot_available(); } /* * Periodic tick */ static void tick_periodic(int cpu) { if (tick_do_timer_cpu == cpu) { write_seqlock(&xtime_lock); /* Keep track of the next tick event */ tick_next_period = ktime_add(tick_next_period, tick_period); do_timer(1); write_sequnlock(&xtime_lock); } update_process_times(user_mode(get_irq_regs())); profile_tick(CPU_PROFILING); } /* * Event handler for periodic ticks */ void tick_handle_periodic(struct clock_event_device *dev) { int cpu = smp_processor_id(); ktime_t next; tick_periodic(cpu); if (dev->mode != CLOCK_EVT_MODE_ONESHOT) return; /* * Setup the next period for devices, which do not have * periodic mode: */ next = ktime_add(dev->next_event, tick_period); for (;;) { if (!clockevents_program_event(dev, next, ktime_get())) return; /* * Have to be careful here. If we're in oneshot mode, * before we call tick_periodic() in a loop, we need * to be sure we're using a real hardware clocksource. * Otherwise we could get trapped in an infinite * loop, as the tick_periodic() increments jiffies, * when then will increment time, posibly causing * the loop to trigger again and again. */ if (timekeeping_valid_for_hres()) tick_periodic(cpu); next = ktime_add(next, tick_period); } } /* * Setup the device for a periodic tick */ void tick_setup_periodic(struct clock_event_device *dev, int broadcast) { tick_set_periodic_handler(dev, broadcast); /* Broadcast setup ? */ if (!tick_device_is_functional(dev)) return; if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && !tick_broadcast_oneshot_active()) { clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC); } else { unsigned long seq; ktime_t next; do { seq = read_seqbegin(&xtime_lock); next = tick_next_period; } while (read_seqretry(&xtime_lock, seq)); clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); for (;;) { if (!clockevents_program_event(dev, next, ktime_get())) return; next = ktime_add(next, tick_period); } } } /* * Setup the tick device */ static void tick_setup_device(struct tick_device *td, struct clock_event_device *newdev, int cpu, const struct cpumask *cpumask) { ktime_t next_event; void (*handler)(struct clock_event_device *) = NULL; /* * First device setup ? */ if (!td->evtdev) { /* * If no cpu took the do_timer update, assign it to * this cpu: */ if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { tick_do_timer_cpu = cpu; tick_next_period = ktime_get(); tick_period = ktime_set(0, NSEC_PER_SEC / HZ); } /* * Startup in periodic mode first. */ td->mode = TICKDEV_MODE_PERIODIC; } else { handler = td->evtdev->event_handler; next_event = td->evtdev->next_event; td->evtdev->event_handler = clockevents_handle_noop; } td->evtdev = newdev; /* * When the device is not per cpu, pin the interrupt to the * current cpu: */ if (!cpumask_equal(newdev->cpumask, cpumask)) irq_set_affinity(newdev->irq, cpumask); /* * When global broadcasting is active, check if the current * device is registered as a placeholder for broadcast mode. * This allows us to handle this x86 misfeature in a generic * way. */ if (tick_device_uses_broadcast(newdev, cpu)) return; if (td->mode == TICKDEV_MODE_PERIODIC) tick_setup_periodic(newdev, 0); else tick_setup_oneshot(newdev, handler, next_event); } /* * Check, if the new registered device should be used. */ static int tick_check_new_device(struct clock_event_device *newdev) { struct clock_event_device *curdev; struct tick_device *td; int cpu, ret = NOTIFY_OK; unsigned long flags; raw_spin_lock_irqsave(&tick_device_lock, flags); cpu = smp_processor_id(); if (!cpumask_test_cpu(cpu, newdev->cpumask)) goto out_bc; td = &per_cpu(tick_cpu_device, cpu); curdev = td->evtdev; /* cpu local device ? */ if (!cpumask_equal(newdev->cpumask, cpumask_of(cpu))) { /* * If the cpu affinity of the device interrupt can not * be set, ignore it. */ if (!irq_can_set_affinity(newdev->irq)) goto out_bc; /* * If we have a cpu local device already, do not replace it * by a non cpu local device */ if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) goto out_bc; } /* * If we have an active device, then check the rating and the oneshot * feature. */ if (curdev) { /* * Prefer one shot capable devices ! */ if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) && !(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) goto out_bc; /* * Check the rating */ if (curdev->rating >= newdev->rating) goto out_bc; } /* * Replace the eventually existing device by the new * device. If the current device is the broadcast device, do * not give it back to the clockevents layer ! */ if (tick_is_broadcast_device(curdev)) { clockevents_shutdown(curdev); curdev = NULL; } clockevents_exchange_device(curdev, newdev); tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) tick_oneshot_notify(); raw_spin_unlock_irqrestore(&tick_device_lock, flags); return NOTIFY_STOP; out_bc: /* * Can the new device be used as a broadcast device ? */ if (tick_check_broadcast_device(newdev)) ret = NOTIFY_STOP; raw_spin_unlock_irqrestore(&tick_device_lock, flags); return ret; } /* * Transfer the do_timer job away from a dying cpu. * * Called with interrupts disabled. */ static void tick_handover_do_timer(int *cpup) { if (*cpup == tick_do_timer_cpu) { int cpu = cpumask_first(cpu_online_mask); tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : TICK_DO_TIMER_NONE; } } /* * Shutdown an event device on a given cpu: * * This is called on a life CPU, when a CPU is dead. So we cannot * access the hardware device itself. * We just set the mode and remove it from the lists. */ static void tick_shutdown(unsigned int *cpup) { struct tick_device *td = &per_cpu(tick_cpu_device, *cpup); struct clock_event_device *dev = td->evtdev; unsigned long flags; raw_spin_lock_irqsave(&tick_device_lock, flags); td->mode = TICKDEV_MODE_PERIODIC; if (dev) { /* * Prevent that the clock events layer tries to call * the set mode function! */ dev->mode = CLOCK_EVT_MODE_UNUSED; clockevents_exchange_device(dev, NULL); td->evtdev = NULL; } raw_spin_unlock_irqrestore(&tick_device_lock, flags); } static void tick_suspend(void) { struct tick_device *td = &__get_cpu_var(tick_cpu_device); unsigned long flags; raw_spin_lock_irqsave(&tick_device_lock, flags); clockevents_shutdown(td->evtdev); raw_spin_unlock_irqrestore(&tick_device_lock, flags); } static void tick_resume(void) { struct tick_device *td = &__get_cpu_var(tick_cpu_device); unsigned long flags; int broadcast = tick_resume_broadcast(); raw_spin_lock_irqsave(&tick_device_lock, flags); clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME); if (!broadcast) { if (td->mode == TICKDEV_MODE_PERIODIC) tick_setup_periodic(td->evtdev, 0); else tick_resume_oneshot(); } raw_spin_unlock_irqrestore(&tick_device_lock, flags); } /* * Notification about clock event devices */ static int tick_notify(struct notifier_block *nb, unsigned long reason, void *dev) { switch (reason) { case CLOCK_EVT_NOTIFY_ADD: return tick_check_new_device(dev); case CLOCK_EVT_NOTIFY_BROADCAST_ON: case CLOCK_EVT_NOTIFY_BROADCAST_OFF: case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: tick_broadcast_on_off(reason, dev); break; case CLOCK_EVT_NOTIFY_BROADCAST_ENTER: case CLOCK_EVT_NOTIFY_BROADCAST_EXIT: tick_broadcast_oneshot_control(reason); break; case CLOCK_EVT_NOTIFY_CPU_DYING: tick_handover_do_timer(dev); break; case CLOCK_EVT_NOTIFY_CPU_DEAD: tick_shutdown_broadcast_oneshot(dev); tick_shutdown_broadcast(dev); tick_shutdown(dev); break; case CLOCK_EVT_NOTIFY_SUSPEND: tick_suspend(); tick_suspend_broadcast(); break; case CLOCK_EVT_NOTIFY_RESUME: tick_resume(); break; default: break; } return NOTIFY_OK; } static struct notifier_block tick_notifier = { .notifier_call = tick_notify, }; /** * tick_init - initialize the tick control * * Register the notifier with the clockevents framework */ void __init tick_init(void) { clockevents_register_notifier(&tick_notifier); }