/* * mm/mmap.c * * Written by obz. * * Address space accounting code <alan@lxorguk.ukuu.org.uk> */ #include <linux/slab.h> #include <linux/backing-dev.h> #include <linux/mm.h> #include <linux/shm.h> #include <linux/mman.h> #include <linux/pagemap.h> #include <linux/swap.h> #include <linux/syscalls.h> #include <linux/capability.h> #include <linux/init.h> #include <linux/file.h> #include <linux/fs.h> #include <linux/personality.h> #include <linux/security.h> #include <linux/hugetlb.h> #include <linux/profile.h> #include <linux/module.h> #include <linux/mount.h> #include <linux/mempolicy.h> #include <linux/rmap.h> #include <linux/mmu_notifier.h> #include <linux/perf_event.h> #include <linux/audit.h> #include <linux/khugepaged.h> #include <asm/uaccess.h> #include <asm/cacheflush.h> #include <asm/tlb.h> #include <asm/mmu_context.h> #include "internal.h" #ifndef arch_mmap_check #define arch_mmap_check(addr, len, flags) (0) #endif #ifndef arch_rebalance_pgtables #define arch_rebalance_pgtables(addr, len) (addr) #endif static void unmap_region(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, unsigned long start, unsigned long end); /* * WARNING: the debugging will use recursive algorithms so never enable this * unless you know what you are doing. */ #undef DEBUG_MM_RB /* description of effects of mapping type and prot in current implementation. * this is due to the limited x86 page protection hardware. The expected * behavior is in parens: * * map_type prot * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes * w: (no) no w: (no) no w: (yes) yes w: (no) no * x: (no) no x: (no) yes x: (no) yes x: (yes) yes * * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes * w: (no) no w: (no) no w: (copy) copy w: (no) no * x: (no) no x: (no) yes x: (no) yes x: (yes) yes * */ pgprot_t protection_map[16] = { __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 }; pgprot_t vm_get_page_prot(unsigned long vm_flags) { return __pgprot(pgprot_val(protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | pgprot_val(arch_vm_get_page_prot(vm_flags))); } EXPORT_SYMBOL(vm_get_page_prot); int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ int sysctl_overcommit_ratio = 50; /* default is 50% */ int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; struct percpu_counter vm_committed_as; /* * Check that a process has enough memory to allocate a new virtual * mapping. 0 means there is enough memory for the allocation to * succeed and -ENOMEM implies there is not. * * We currently support three overcommit policies, which are set via the * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting * * Strict overcommit modes added 2002 Feb 26 by Alan Cox. * Additional code 2002 Jul 20 by Robert Love. * * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. * * Note this is a helper function intended to be used by LSMs which * wish to use this logic. */ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) { unsigned long free, allowed; vm_acct_memory(pages); /* * Sometimes we want to use more memory than we have */ if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) return 0; if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { unsigned long n; free = global_page_state(NR_FILE_PAGES); free += nr_swap_pages; /* * Any slabs which are created with the * SLAB_RECLAIM_ACCOUNT flag claim to have contents * which are reclaimable, under pressure. The dentry * cache and most inode caches should fall into this */ free += global_page_state(NR_SLAB_RECLAIMABLE); /* * Leave the last 3% for root */ if (!cap_sys_admin) free -= free / 32; if (free > pages) return 0; /* * nr_free_pages() is very expensive on large systems, * only call if we're about to fail. */ n = nr_free_pages(); /* * Leave reserved pages. The pages are not for anonymous pages. */ if (n <= totalreserve_pages) goto error; else n -= totalreserve_pages; /* * Leave the last 3% for root */ if (!cap_sys_admin) n -= n / 32; free += n; if (free > pages) return 0; goto error; } allowed = (totalram_pages - hugetlb_total_pages()) * sysctl_overcommit_ratio / 100; /* * Leave the last 3% for root */ if (!cap_sys_admin) allowed -= allowed / 32; allowed += total_swap_pages; /* Don't let a single process grow too big: leave 3% of the size of this process for other processes */ if (mm) allowed -= mm->total_vm / 32; if (percpu_counter_read_positive(&vm_committed_as) < allowed) return 0; error: vm_unacct_memory(pages); return -ENOMEM; } /* * Requires inode->i_mapping->i_mmap_lock */ static void __remove_shared_vm_struct(struct vm_area_struct *vma, struct file *file, struct address_space *mapping) { if (vma->vm_flags & VM_DENYWRITE) atomic_inc(&file->f_path.dentry->d_inode->i_writecount); if (vma->vm_flags & VM_SHARED) mapping->i_mmap_writable--; flush_dcache_mmap_lock(mapping); if (unlikely(vma->vm_flags & VM_NONLINEAR)) list_del_init(&vma->shared.vm_set.list); else vma_prio_tree_remove(vma, &mapping->i_mmap); flush_dcache_mmap_unlock(mapping); } /* * Unlink a file-based vm structure from its prio_tree, to hide * vma from rmap and vmtruncate before freeing its page tables. */ void unlink_file_vma(struct vm_area_struct *vma) { struct file *file = vma->vm_file; if (file) { struct address_space *mapping = file->f_mapping; spin_lock(&mapping->i_mmap_lock); __remove_shared_vm_struct(vma, file, mapping); spin_unlock(&mapping->i_mmap_lock); } } /* * Close a vm structure and free it, returning the next. */ static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) { struct vm_area_struct *next = vma->vm_next; might_sleep(); if (vma->vm_ops && vma->vm_ops->close) vma->vm_ops->close(vma); if (vma->vm_file) { fput(vma->vm_file); if (vma->vm_flags & VM_EXECUTABLE) removed_exe_file_vma(vma->vm_mm); } mpol_put(vma_policy(vma)); kmem_cache_free(vm_area_cachep, vma); return next; } SYSCALL_DEFINE1(brk, unsigned long, brk) { unsigned long rlim, retval; unsigned long newbrk, oldbrk; struct mm_struct *mm = current->mm; unsigned long min_brk; down_write(&mm->mmap_sem); #ifdef CONFIG_COMPAT_BRK /* * CONFIG_COMPAT_BRK can still be overridden by setting * randomize_va_space to 2, which will still cause mm->start_brk * to be arbitrarily shifted */ if (current->brk_randomized) min_brk = mm->start_brk; else min_brk = mm->end_data; #else min_brk = mm->start_brk; #endif if (brk < min_brk) goto out; /* * Check against rlimit here. If this check is done later after the test * of oldbrk with newbrk then it can escape the test and let the data * segment grow beyond its set limit the in case where the limit is * not page aligned -Ram Gupta */ rlim = rlimit(RLIMIT_DATA); if (rlim < RLIM_INFINITY && (brk - mm->start_brk) + (mm->end_data - mm->start_data) > rlim) goto out; newbrk = PAGE_ALIGN(brk); oldbrk = PAGE_ALIGN(mm->brk); if (oldbrk == newbrk) goto set_brk; /* Always allow shrinking brk. */ if (brk <= mm->brk) { if (!do_munmap(mm, newbrk, oldbrk-newbrk)) goto set_brk; goto out; } /* Check against existing mmap mappings. */ if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) goto out; /* Ok, looks good - let it rip. */ if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) goto out; set_brk: mm->brk = brk; out: retval = mm->brk; up_write(&mm->mmap_sem); return retval; } #ifdef DEBUG_MM_RB static int browse_rb(struct rb_root *root) { int i = 0, j; struct rb_node *nd, *pn = NULL; unsigned long prev = 0, pend = 0; for (nd = rb_first(root); nd; nd = rb_next(nd)) { struct vm_area_struct *vma; vma = rb_entry(nd, struct vm_area_struct, vm_rb); if (vma->vm_start < prev) printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1; if (vma->vm_start < pend) printk("vm_start %lx pend %lx\n", vma->vm_start, pend); if (vma->vm_start > vma->vm_end) printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start); i++; pn = nd; prev = vma->vm_start; pend = vma->vm_end; } j = 0; for (nd = pn; nd; nd = rb_prev(nd)) { j++; } if (i != j) printk("backwards %d, forwards %d\n", j, i), i = 0; return i; } void validate_mm(struct mm_struct *mm) { int bug = 0; int i = 0; struct vm_area_struct *tmp = mm->mmap; while (tmp) { tmp = tmp->vm_next; i++; } if (i != mm->map_count) printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1; i = browse_rb(&mm->mm_rb); if (i != mm->map_count) printk("map_count %d rb %d\n", mm->map_count, i), bug = 1; BUG_ON(bug); } #else #define validate_mm(mm) do { } while (0) #endif static struct vm_area_struct * find_vma_prepare(struct mm_struct *mm, unsigned long addr, struct vm_area_struct **pprev, struct rb_node ***rb_link, struct rb_node ** rb_parent) { struct vm_area_struct * vma; struct rb_node ** __rb_link, * __rb_parent, * rb_prev; __rb_link = &mm->mm_rb.rb_node; rb_prev = __rb_parent = NULL; vma = NULL; while (*__rb_link) { struct vm_area_struct *vma_tmp; __rb_parent = *__rb_link; vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); if (vma_tmp->vm_end > addr) { vma = vma_tmp; if (vma_tmp->vm_start <= addr) break; __rb_link = &__rb_parent->rb_left; } else { rb_prev = __rb_parent; __rb_link = &__rb_parent->rb_right; } } *pprev = NULL; if (rb_prev) *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); *rb_link = __rb_link; *rb_parent = __rb_parent; return vma; } static inline void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, struct rb_node *rb_parent) { struct vm_area_struct *next; vma->vm_prev = prev; if (prev) { next = prev->vm_next; prev->vm_next = vma; } else { mm->mmap = vma; if (rb_parent) next = rb_entry(rb_parent, struct vm_area_struct, vm_rb); else next = NULL; } vma->vm_next = next; if (next) next->vm_prev = vma; } void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, struct rb_node **rb_link, struct rb_node *rb_parent) { rb_link_node(&vma->vm_rb, rb_parent, rb_link); rb_insert_color(&vma->vm_rb, &mm->mm_rb); } static void __vma_link_file(struct vm_area_struct *vma) { struct file *file; file = vma->vm_file; if (file) { struct address_space *mapping = file->f_mapping; if (vma->vm_flags & VM_DENYWRITE) atomic_dec(&file->f_path.dentry->d_inode->i_writecount); if (vma->vm_flags & VM_SHARED) mapping->i_mmap_writable++; flush_dcache_mmap_lock(mapping); if (unlikely(vma->vm_flags & VM_NONLINEAR)) vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear); else vma_prio_tree_insert(vma, &mapping->i_mmap); flush_dcache_mmap_unlock(mapping); } } static void __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, struct rb_node **rb_link, struct rb_node *rb_parent) { __vma_link_list(mm, vma, prev, rb_parent); __vma_link_rb(mm, vma, rb_link, rb_parent); } static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, struct rb_node **rb_link, struct rb_node *rb_parent) { struct address_space *mapping = NULL; if (vma->vm_file) mapping = vma->vm_file->f_mapping; if (mapping) { spin_lock(&mapping->i_mmap_lock); vma->vm_truncate_count = mapping->truncate_count; } __vma_link(mm, vma, prev, rb_link, rb_parent); __vma_link_file(vma); if (mapping) spin_unlock(&mapping->i_mmap_lock); mm->map_count++; validate_mm(mm); } /* * Helper for vma_adjust in the split_vma insert case: * insert vm structure into list and rbtree and anon_vma, * but it has already been inserted into prio_tree earlier. */ static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) { struct vm_area_struct *__vma, *prev; struct rb_node **rb_link, *rb_parent; __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent); BUG_ON(__vma && __vma->vm_start < vma->vm_end); __vma_link(mm, vma, prev, rb_link, rb_parent); mm->map_count++; } static inline void __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev) { struct vm_area_struct *next = vma->vm_next; prev->vm_next = next; if (next) next->vm_prev = prev; rb_erase(&vma->vm_rb, &mm->mm_rb); if (mm->mmap_cache == vma) mm->mmap_cache = prev; } /* * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that * is already present in an i_mmap tree without adjusting the tree. * The following helper function should be used when such adjustments * are necessary. The "insert" vma (if any) is to be inserted * before we drop the necessary locks. */ int vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) { struct mm_struct *mm = vma->vm_mm; struct vm_area_struct *next = vma->vm_next; struct vm_area_struct *importer = NULL; struct address_space *mapping = NULL; struct prio_tree_root *root = NULL; struct anon_vma *anon_vma = NULL; struct file *file = vma->vm_file; long adjust_next = 0; int remove_next = 0; if (next && !insert) { struct vm_area_struct *exporter = NULL; if (end >= next->vm_end) { /* * vma expands, overlapping all the next, and * perhaps the one after too (mprotect case 6). */ again: remove_next = 1 + (end > next->vm_end); end = next->vm_end; exporter = next; importer = vma; } else if (end > next->vm_start) { /* * vma expands, overlapping part of the next: * mprotect case 5 shifting the boundary up. */ adjust_next = (end - next->vm_start) >> PAGE_SHIFT; exporter = next; importer = vma; } else if (end < vma->vm_end) { /* * vma shrinks, and !insert tells it's not * split_vma inserting another: so it must be * mprotect case 4 shifting the boundary down. */ adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT); exporter = vma; importer = next; } /* * Easily overlooked: when mprotect shifts the boundary, * make sure the expanding vma has anon_vma set if the * shrinking vma had, to cover any anon pages imported. */ if (exporter && exporter->anon_vma && !importer->anon_vma) { if (anon_vma_clone(importer, exporter)) return -ENOMEM; importer->anon_vma = exporter->anon_vma; } } if (file) { mapping = file->f_mapping; if (!(vma->vm_flags & VM_NONLINEAR)) root = &mapping->i_mmap; spin_lock(&mapping->i_mmap_lock); if (importer && vma->vm_truncate_count != next->vm_truncate_count) { /* * unmap_mapping_range might be in progress: * ensure that the expanding vma is rescanned. */ importer->vm_truncate_count = 0; } if (insert) { insert->vm_truncate_count = vma->vm_truncate_count; /* * Put into prio_tree now, so instantiated pages * are visible to arm/parisc __flush_dcache_page * throughout; but we cannot insert into address * space until vma start or end is updated. */ __vma_link_file(insert); } } vma_adjust_trans_huge(vma, start, end, adjust_next); /* * When changing only vma->vm_end, we don't really need anon_vma * lock. This is a fairly rare case by itself, but the anon_vma * lock may be shared between many sibling processes. Skipping * the lock for brk adjustments makes a difference sometimes. */ if (vma->anon_vma && (insert || importer || start != vma->vm_start)) { anon_vma = vma->anon_vma; anon_vma_lock(anon_vma); } if (root) { flush_dcache_mmap_lock(mapping); vma_prio_tree_remove(vma, root); if (adjust_next) vma_prio_tree_remove(next, root); } vma->vm_start = start; vma->vm_end = end; vma->vm_pgoff = pgoff; if (adjust_next) { next->vm_start += adjust_next << PAGE_SHIFT; next->vm_pgoff += adjust_next; } if (root) { if (adjust_next) vma_prio_tree_insert(next, root); vma_prio_tree_insert(vma, root); flush_dcache_mmap_unlock(mapping); } if (remove_next) { /* * vma_merge has merged next into vma, and needs * us to remove next before dropping the locks. */ __vma_unlink(mm, next, vma); if (file) __remove_shared_vm_struct(next, file, mapping); } else if (insert) { /* * split_vma has split insert from vma, and needs * us to insert it before dropping the locks * (it may either follow vma or precede it). */ __insert_vm_struct(mm, insert); } if (anon_vma) anon_vma_unlock(anon_vma); if (mapping) spin_unlock(&mapping->i_mmap_lock); if (remove_next) { if (file) { fput(file); if (next->vm_flags & VM_EXECUTABLE) removed_exe_file_vma(mm); } if (next->anon_vma) anon_vma_merge(vma, next); mm->map_count--; mpol_put(vma_policy(next)); kmem_cache_free(vm_area_cachep, next); /* * In mprotect's case 6 (see comments on vma_merge), * we must remove another next too. It would clutter * up the code too much to do both in one go. */ if (remove_next == 2) { next = vma->vm_next; goto again; } } validate_mm(mm); return 0; } /* * If the vma has a ->close operation then the driver probably needs to release * per-vma resources, so we don't attempt to merge those. */ static inline int is_mergeable_vma(struct vm_area_struct *vma, struct file *file, unsigned long vm_flags) { /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */ if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR) return 0; if (vma->vm_file != file) return 0; if (vma->vm_ops && vma->vm_ops->close) return 0; return 1; } static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, struct anon_vma *anon_vma2) { return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2); } /* * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) * in front of (at a lower virtual address and file offset than) the vma. * * We cannot merge two vmas if they have differently assigned (non-NULL) * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. * * We don't check here for the merged mmap wrapping around the end of pagecache * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which * wrap, nor mmaps which cover the final page at index -1UL. */ static int can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) { if (is_mergeable_vma(vma, file, vm_flags) && is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { if (vma->vm_pgoff == vm_pgoff) return 1; } return 0; } /* * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) * beyond (at a higher virtual address and file offset than) the vma. * * We cannot merge two vmas if they have differently assigned (non-NULL) * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. */ static int can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff) { if (is_mergeable_vma(vma, file, vm_flags) && is_mergeable_anon_vma(anon_vma, vma->anon_vma)) { pgoff_t vm_pglen; vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; if (vma->vm_pgoff + vm_pglen == vm_pgoff) return 1; } return 0; } /* * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out * whether that can be merged with its predecessor or its successor. * Or both (it neatly fills a hole). * * In most cases - when called for mmap, brk or mremap - [addr,end) is * certain not to be mapped by the time vma_merge is called; but when * called for mprotect, it is certain to be already mapped (either at * an offset within prev, or at the start of next), and the flags of * this area are about to be changed to vm_flags - and the no-change * case has already been eliminated. * * The following mprotect cases have to be considered, where AAAA is * the area passed down from mprotect_fixup, never extending beyond one * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: * * AAAA AAAA AAAA AAAA * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX * cannot merge might become might become might become * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or * mremap move: PPPPNNNNNNNN 8 * AAAA * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN * might become case 1 below case 2 below case 3 below * * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: * mprotect_fixup updates vm_flags & vm_page_prot on successful return. */ struct vm_area_struct *vma_merge(struct mm_struct *mm, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file, pgoff_t pgoff, struct mempolicy *policy) { pgoff_t pglen = (end - addr) >> PAGE_SHIFT; struct vm_area_struct *area, *next; int err; /* * We later require that vma->vm_flags == vm_flags, * so this tests vma->vm_flags & VM_SPECIAL, too. */ if (vm_flags & VM_SPECIAL) return NULL; if (prev) next = prev->vm_next; else next = mm->mmap; area = next; if (next && next->vm_end == end) /* cases 6, 7, 8 */ next = next->vm_next; /* * Can it merge with the predecessor? */ if (prev && prev->vm_end == addr && mpol_equal(vma_policy(prev), policy) && can_vma_merge_after(prev, vm_flags, anon_vma, file, pgoff)) { /* * OK, it can. Can we now merge in the successor as well? */ if (next && end == next->vm_start && mpol_equal(policy, vma_policy(next)) && can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen) && is_mergeable_anon_vma(prev->anon_vma, next->anon_vma)) { /* cases 1, 6 */ err = vma_adjust(prev, prev->vm_start, next->vm_end, prev->vm_pgoff, NULL); } else /* cases 2, 5, 7 */ err = vma_adjust(prev, prev->vm_start, end, prev->vm_pgoff, NULL); if (err) return NULL; khugepaged_enter_vma_merge(prev); return prev; } /* * Can this new request be merged in front of next? */ if (next && end == next->vm_start && mpol_equal(policy, vma_policy(next)) && can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen)) { if (prev && addr < prev->vm_end) /* case 4 */ err = vma_adjust(prev, prev->vm_start, addr, prev->vm_pgoff, NULL); else /* cases 3, 8 */ err = vma_adjust(area, addr, next->vm_end, next->vm_pgoff - pglen, NULL); if (err) return NULL; khugepaged_enter_vma_merge(area); return area; } return NULL; } /* * Rough compatbility check to quickly see if it's even worth looking * at sharing an anon_vma. * * They need to have the same vm_file, and the flags can only differ * in things that mprotect may change. * * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that * we can merge the two vma's. For example, we refuse to merge a vma if * there is a vm_ops->close() function, because that indicates that the * driver is doing some kind of reference counting. But that doesn't * really matter for the anon_vma sharing case. */ static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) { return a->vm_end == b->vm_start && mpol_equal(vma_policy(a), vma_policy(b)) && a->vm_file == b->vm_file && !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); } /* * Do some basic sanity checking to see if we can re-use the anon_vma * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be * the same as 'old', the other will be the new one that is trying * to share the anon_vma. * * NOTE! This runs with mm_sem held for reading, so it is possible that * the anon_vma of 'old' is concurrently in the process of being set up * by another page fault trying to merge _that_. But that's ok: if it * is being set up, that automatically means that it will be a singleton * acceptable for merging, so we can do all of this optimistically. But * we do that ACCESS_ONCE() to make sure that we never re-load the pointer. * * IOW: that the "list_is_singular()" test on the anon_vma_chain only * matters for the 'stable anon_vma' case (ie the thing we want to avoid * is to return an anon_vma that is "complex" due to having gone through * a fork). * * We also make sure that the two vma's are compatible (adjacent, * and with the same memory policies). That's all stable, even with just * a read lock on the mm_sem. */ static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) { if (anon_vma_compatible(a, b)) { struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma); if (anon_vma && list_is_singular(&old->anon_vma_chain)) return anon_vma; } return NULL; } /* * find_mergeable_anon_vma is used by anon_vma_prepare, to check * neighbouring vmas for a suitable anon_vma, before it goes off * to allocate a new anon_vma. It checks because a repetitive * sequence of mprotects and faults may otherwise lead to distinct * anon_vmas being allocated, preventing vma merge in subsequent * mprotect. */ struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) { struct anon_vma *anon_vma; struct vm_area_struct *near; near = vma->vm_next; if (!near) goto try_prev; anon_vma = reusable_anon_vma(near, vma, near); if (anon_vma) return anon_vma; try_prev: /* * It is potentially slow to have to call find_vma_prev here. * But it's only on the first write fault on the vma, not * every time, and we could devise a way to avoid it later * (e.g. stash info in next's anon_vma_node when assigning * an anon_vma, or when trying vma_merge). Another time. */ BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma); if (!near) goto none; anon_vma = reusable_anon_vma(near, near, vma); if (anon_vma) return anon_vma; none: /* * There's no absolute need to look only at touching neighbours: * we could search further afield for "compatible" anon_vmas. * But it would probably just be a waste of time searching, * or lead to too many vmas hanging off the same anon_vma. * We're trying to allow mprotect remerging later on, * not trying to minimize memory used for anon_vmas. */ return NULL; } #ifdef CONFIG_PROC_FS void vm_stat_account(struct mm_struct *mm, unsigned long flags, struct file *file, long pages) { const unsigned long stack_flags = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN); if (file) { mm->shared_vm += pages; if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC) mm->exec_vm += pages; } else if (flags & stack_flags) mm->stack_vm += pages; if (flags & (VM_RESERVED|VM_IO)) mm->reserved_vm += pages; } #endif /* CONFIG_PROC_FS */ /* * The caller must hold down_write(¤t->mm->mmap_sem). */ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long pgoff) { struct mm_struct * mm = current->mm; struct inode *inode; unsigned int vm_flags; int error; unsigned long reqprot = prot; /* * Does the application expect PROT_READ to imply PROT_EXEC? * * (the exception is when the underlying filesystem is noexec * mounted, in which case we dont add PROT_EXEC.) */ if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC))) prot |= PROT_EXEC; if (!len) return -EINVAL; if (!(flags & MAP_FIXED)) addr = round_hint_to_min(addr); /* Careful about overflows.. */ len = PAGE_ALIGN(len); if (!len) return -ENOMEM; /* offset overflow? */ if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) return -EOVERFLOW; /* Too many mappings? */ if (mm->map_count > sysctl_max_map_count) return -ENOMEM; /* Obtain the address to map to. we verify (or select) it and ensure * that it represents a valid section of the address space. */ addr = get_unmapped_area(file, addr, len, pgoff, flags); if (addr & ~PAGE_MASK) return addr; /* Do simple checking here so the lower-level routines won't have * to. we assume access permissions have been handled by the open * of the memory object, so we don't do any here. */ vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; if (flags & MAP_LOCKED) if (!can_do_mlock()) return -EPERM; /* mlock MCL_FUTURE? */ if (vm_flags & VM_LOCKED) { unsigned long locked, lock_limit; locked = len >> PAGE_SHIFT; locked += mm->locked_vm; lock_limit = rlimit(RLIMIT_MEMLOCK); lock_limit >>= PAGE_SHIFT; if (locked > lock_limit && !capable(CAP_IPC_LOCK)) return -EAGAIN; } inode = file ? file->f_path.dentry->d_inode : NULL; if (file) { switch (flags & MAP_TYPE) { case MAP_SHARED: if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) return -EACCES; /* * Make sure we don't allow writing to an append-only * file.. */ if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) return -EACCES; /* * Make sure there are no mandatory locks on the file. */ if (locks_verify_locked(inode)) return -EAGAIN; vm_flags |= VM_SHARED | VM_MAYSHARE; if (!(file->f_mode & FMODE_WRITE)) vm_flags &= ~(VM_MAYWRITE | VM_SHARED); /* fall through */ case MAP_PRIVATE: if (!(file->f_mode & FMODE_READ)) return -EACCES; if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { if (vm_flags & VM_EXEC) return -EPERM; vm_flags &= ~VM_MAYEXEC; } if (!file->f_op || !file->f_op->mmap) return -ENODEV; break; default: return -EINVAL; } } else { switch (flags & MAP_TYPE) { case MAP_SHARED: /* * Ignore pgoff. */ pgoff = 0; vm_flags |= VM_SHARED | VM_MAYSHARE; break; case MAP_PRIVATE: /* * Set pgoff according to addr for anon_vma. */ pgoff = addr >> PAGE_SHIFT; break; default: return -EINVAL; } } error = security_file_mmap(file, reqprot, prot, flags, addr, 0); if (error) return error; return mmap_region(file, addr, len, flags, vm_flags, pgoff); } EXPORT_SYMBOL(do_mmap_pgoff); SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, unsigned long, prot, unsigned long, flags, unsigned long, fd, unsigned long, pgoff) { struct file *file = NULL; unsigned long retval = -EBADF; if (!(flags & MAP_ANONYMOUS)) { audit_mmap_fd(fd, flags); if (unlikely(flags & MAP_HUGETLB)) return -EINVAL; file = fget(fd); if (!file) goto out; } else if (flags & MAP_HUGETLB) { struct user_struct *user = NULL; /* * VM_NORESERVE is used because the reservations will be * taken when vm_ops->mmap() is called * A dummy user value is used because we are not locking * memory so no accounting is necessary */ len = ALIGN(len, huge_page_size(&default_hstate)); file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE, &user, HUGETLB_ANONHUGE_INODE); if (IS_ERR(file)) return PTR_ERR(file); } flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); down_write(¤t->mm->mmap_sem); retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff); up_write(¤t->mm->mmap_sem); if (file) fput(file); out: return retval; } #ifdef __ARCH_WANT_SYS_OLD_MMAP struct mmap_arg_struct { unsigned long addr; unsigned long len; unsigned long prot; unsigned long flags; unsigned long fd; unsigned long offset; }; SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) { struct mmap_arg_struct a; if (copy_from_user(&a, arg, sizeof(a))) return -EFAULT; if (a.offset & ~PAGE_MASK) return -EINVAL; return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, a.offset >> PAGE_SHIFT); } #endif /* __ARCH_WANT_SYS_OLD_MMAP */ /* * Some shared mappigns will want the pages marked read-only * to track write events. If so, we'll downgrade vm_page_prot * to the private version (using protection_map[] without the * VM_SHARED bit). */ int vma_wants_writenotify(struct vm_area_struct *vma) { unsigned int vm_flags = vma->vm_flags; /* If it was private or non-writable, the write bit is already clear */ if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) return 0; /* The backer wishes to know when pages are first written to? */ if (vma->vm_ops && vma->vm_ops->page_mkwrite) return 1; /* The open routine did something to the protections already? */ if (pgprot_val(vma->vm_page_prot) != pgprot_val(vm_get_page_prot(vm_flags))) return 0; /* Specialty mapping? */ if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) return 0; /* Can the mapping track the dirty pages? */ return vma->vm_file && vma->vm_file->f_mapping && mapping_cap_account_dirty(vma->vm_file->f_mapping); } /* * We account for memory if it's a private writeable mapping, * not hugepages and VM_NORESERVE wasn't set. */ static inline int accountable_mapping(struct file *file, unsigned int vm_flags) { /* * hugetlb has its own accounting separate from the core VM * VM_HUGETLB may not be set yet so we cannot check for that flag. */ if (file && is_file_hugepages(file)) return 0; return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; } unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, unsigned long flags, unsigned int vm_flags, unsigned long pgoff) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma, *prev; int correct_wcount = 0; int error; struct rb_node **rb_link, *rb_parent; unsigned long charged = 0; struct inode *inode = file ? file->f_path.dentry->d_inode : NULL; /* Clear old maps */ error = -ENOMEM; munmap_back: vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); if (vma && vma->vm_start < addr + len) { if (do_munmap(mm, addr, len)) return -ENOMEM; goto munmap_back; } /* Check against address space limit. */ if (!may_expand_vm(mm, len >> PAGE_SHIFT)) return -ENOMEM; /* * Set 'VM_NORESERVE' if we should not account for the * memory use of this mapping. */ if ((flags & MAP_NORESERVE)) { /* We honor MAP_NORESERVE if allowed to overcommit */ if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) vm_flags |= VM_NORESERVE; /* hugetlb applies strict overcommit unless MAP_NORESERVE */ if (file && is_file_hugepages(file)) vm_flags |= VM_NORESERVE; } /* * Private writable mapping: check memory availability */ if (accountable_mapping(file, vm_flags)) { charged = len >> PAGE_SHIFT; if (security_vm_enough_memory(charged)) return -ENOMEM; vm_flags |= VM_ACCOUNT; } /* * Can we just expand an old mapping? */ vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL); if (vma) goto out; /* * Determine the object being mapped and call the appropriate * specific mapper. the address has already been validated, but * not unmapped, but the maps are removed from the list. */ vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); if (!vma) { error = -ENOMEM; goto unacct_error; } vma->vm_mm = mm; vma->vm_start = addr; vma->vm_end = addr + len; vma->vm_flags = vm_flags; vma->vm_page_prot = vm_get_page_prot(vm_flags); vma->vm_pgoff = pgoff; INIT_LIST_HEAD(&vma->anon_vma_chain); if (file) { error = -EINVAL; if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) goto free_vma; if (vm_flags & VM_DENYWRITE) { error = deny_write_access(file); if (error) goto free_vma; correct_wcount = 1; } vma->vm_file = file; get_file(file); error = file->f_op->mmap(file, vma); if (error) goto unmap_and_free_vma; if (vm_flags & VM_EXECUTABLE) added_exe_file_vma(mm); /* Can addr have changed?? * * Answer: Yes, several device drivers can do it in their * f_op->mmap method. -DaveM */ addr = vma->vm_start; pgoff = vma->vm_pgoff; vm_flags = vma->vm_flags; } else if (vm_flags & VM_SHARED) { error = shmem_zero_setup(vma); if (error) goto free_vma; } if (vma_wants_writenotify(vma)) { pgprot_t pprot = vma->vm_page_prot; /* Can vma->vm_page_prot have changed?? * * Answer: Yes, drivers may have changed it in their * f_op->mmap method. * * Ensures that vmas marked as uncached stay that way. */ vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED); if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot))) vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); } vma_link(mm, vma, prev, rb_link, rb_parent); file = vma->vm_file; /* Once vma denies write, undo our temporary denial count */ if (correct_wcount) atomic_inc(&inode->i_writecount); out: perf_event_mmap(vma); mm->total_vm += len >> PAGE_SHIFT; vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT); if (vm_flags & VM_LOCKED) { if (!mlock_vma_pages_range(vma, addr, addr + len)) mm->locked_vm += (len >> PAGE_SHIFT); } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK)) make_pages_present(addr, addr + len); return addr; unmap_and_free_vma: if (correct_wcount) atomic_inc(&inode->i_writecount); vma->vm_file = NULL; fput(file); /* Undo any partial mapping done by a device driver. */ unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); charged = 0; free_vma: kmem_cache_free(vm_area_cachep, vma); unacct_error: if (charged) vm_unacct_memory(charged); return error; } /* Get an address range which is currently unmapped. * For shmat() with addr=0. * * Ugly calling convention alert: * Return value with the low bits set means error value, * ie * if (ret & ~PAGE_MASK) * error = ret; * * This function "knows" that -ENOMEM has the bits set. */ #ifndef HAVE_ARCH_UNMAPPED_AREA unsigned long arch_get_unmapped_area(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; unsigned long start_addr; if (len > TASK_SIZE) return -ENOMEM; if (flags & MAP_FIXED) return addr; if (addr) { addr = PAGE_ALIGN(addr); vma = find_vma(mm, addr); if (TASK_SIZE - len >= addr && (!vma || addr + len <= vma->vm_start)) return addr; } if (len > mm->cached_hole_size) { start_addr = addr = mm->free_area_cache; } else { start_addr = addr = TASK_UNMAPPED_BASE; mm->cached_hole_size = 0; } full_search: for (vma = find_vma(mm, addr); ; vma = vma->vm_next) { /* At this point: (!vma || addr < vma->vm_end). */ if (TASK_SIZE - len < addr) { /* * Start a new search - just in case we missed * some holes. */ if (start_addr != TASK_UNMAPPED_BASE) { addr = TASK_UNMAPPED_BASE; start_addr = addr; mm->cached_hole_size = 0; goto full_search; } return -ENOMEM; } if (!vma || addr + len <= vma->vm_start) { /* * Remember the place where we stopped the search: */ mm->free_area_cache = addr + len; return addr; } if (addr + mm->cached_hole_size < vma->vm_start) mm->cached_hole_size = vma->vm_start - addr; addr = vma->vm_end; } } #endif void arch_unmap_area(struct mm_struct *mm, unsigned long addr) { /* * Is this a new hole at the lowest possible address? */ if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) { mm->free_area_cache = addr; mm->cached_hole_size = ~0UL; } } /* * This mmap-allocator allocates new areas top-down from below the * stack's low limit (the base): */ #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN unsigned long arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, const unsigned long len, const unsigned long pgoff, const unsigned long flags) { struct vm_area_struct *vma; struct mm_struct *mm = current->mm; unsigned long addr = addr0; /* requested length too big for entire address space */ if (len > TASK_SIZE) return -ENOMEM; if (flags & MAP_FIXED) return addr; /* requesting a specific address */ if (addr) { addr = PAGE_ALIGN(addr); vma = find_vma(mm, addr); if (TASK_SIZE - len >= addr && (!vma || addr + len <= vma->vm_start)) return addr; } /* check if free_area_cache is useful for us */ if (len <= mm->cached_hole_size) { mm->cached_hole_size = 0; mm->free_area_cache = mm->mmap_base; } /* either no address requested or can't fit in requested address hole */ addr = mm->free_area_cache; /* make sure it can fit in the remaining address space */ if (addr > len) { vma = find_vma(mm, addr-len); if (!vma || addr <= vma->vm_start) /* remember the address as a hint for next time */ return (mm->free_area_cache = addr-len); } if (mm->mmap_base < len) goto bottomup; addr = mm->mmap_base-len; do { /* * Lookup failure means no vma is above this address, * else if new region fits below vma->vm_start, * return with success: */ vma = find_vma(mm, addr); if (!vma || addr+len <= vma->vm_start) /* remember the address as a hint for next time */ return (mm->free_area_cache = addr); /* remember the largest hole we saw so far */ if (addr + mm->cached_hole_size < vma->vm_start) mm->cached_hole_size = vma->vm_start - addr; /* try just below the current vma->vm_start */ addr = vma->vm_start-len; } while (len < vma->vm_start); bottomup: /* * A failed mmap() very likely causes application failure, * so fall back to the bottom-up function here. This scenario * can happen with large stack limits and large mmap() * allocations. */ mm->cached_hole_size = ~0UL; mm->free_area_cache = TASK_UNMAPPED_BASE; addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags); /* * Restore the topdown base: */ mm->free_area_cache = mm->mmap_base; mm->cached_hole_size = ~0UL; return addr; } #endif void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) { /* * Is this a new hole at the highest possible address? */ if (addr > mm->free_area_cache) mm->free_area_cache = addr; /* dont allow allocations above current base */ if (mm->free_area_cache > mm->mmap_base) mm->free_area_cache = mm->mmap_base; } unsigned long get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); unsigned long error = arch_mmap_check(addr, len, flags); if (error) return error; /* Careful about overflows.. */ if (len > TASK_SIZE) return -ENOMEM; get_area = current->mm->get_unmapped_area; if (file && file->f_op && file->f_op->get_unmapped_area) get_area = file->f_op->get_unmapped_area; addr = get_area(file, addr, len, pgoff, flags); if (IS_ERR_VALUE(addr)) return addr; if (addr > TASK_SIZE - len) return -ENOMEM; if (addr & ~PAGE_MASK) return -EINVAL; return arch_rebalance_pgtables(addr, len); } EXPORT_SYMBOL(get_unmapped_area); /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) { struct vm_area_struct *vma = NULL; if (mm) { /* Check the cache first. */ /* (Cache hit rate is typically around 35%.) */ vma = mm->mmap_cache; if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) { struct rb_node * rb_node; rb_node = mm->mm_rb.rb_node; vma = NULL; while (rb_node) { struct vm_area_struct * vma_tmp; vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); if (vma_tmp->vm_end > addr) { vma = vma_tmp; if (vma_tmp->vm_start <= addr) break; rb_node = rb_node->rb_left; } else rb_node = rb_node->rb_right; } if (vma) mm->mmap_cache = vma; } } return vma; } EXPORT_SYMBOL(find_vma); /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */ struct vm_area_struct * find_vma_prev(struct mm_struct *mm, unsigned long addr, struct vm_area_struct **pprev) { struct vm_area_struct *vma = NULL, *prev = NULL; struct rb_node *rb_node; if (!mm) goto out; /* Guard against addr being lower than the first VMA */ vma = mm->mmap; /* Go through the RB tree quickly. */ rb_node = mm->mm_rb.rb_node; while (rb_node) { struct vm_area_struct *vma_tmp; vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); if (addr < vma_tmp->vm_end) { rb_node = rb_node->rb_left; } else { prev = vma_tmp; if (!prev->vm_next || (addr < prev->vm_next->vm_end)) break; rb_node = rb_node->rb_right; } } out: *pprev = prev; return prev ? prev->vm_next : vma; } /* * Verify that the stack growth is acceptable and * update accounting. This is shared with both the * grow-up and grow-down cases. */ static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) { struct mm_struct *mm = vma->vm_mm; struct rlimit *rlim = current->signal->rlim; unsigned long new_start; /* address space limit tests */ if (!may_expand_vm(mm, grow)) return -ENOMEM; /* Stack limit test */ if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur)) return -ENOMEM; /* mlock limit tests */ if (vma->vm_flags & VM_LOCKED) { unsigned long locked; unsigned long limit; locked = mm->locked_vm + grow; limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); limit >>= PAGE_SHIFT; if (locked > limit && !capable(CAP_IPC_LOCK)) return -ENOMEM; } /* Check to ensure the stack will not grow into a hugetlb-only region */ new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : vma->vm_end - size; if (is_hugepage_only_range(vma->vm_mm, new_start, size)) return -EFAULT; /* * Overcommit.. This must be the final test, as it will * update security statistics. */ if (security_vm_enough_memory_mm(mm, grow)) return -ENOMEM; /* Ok, everything looks good - let it rip */ mm->total_vm += grow; if (vma->vm_flags & VM_LOCKED) mm->locked_vm += grow; vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow); return 0; } #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) /* * PA-RISC uses this for its stack; IA64 for its Register Backing Store. * vma is the last one with address > vma->vm_end. Have to extend vma. */ int expand_upwards(struct vm_area_struct *vma, unsigned long address) { int error; if (!(vma->vm_flags & VM_GROWSUP)) return -EFAULT; /* * We must make sure the anon_vma is allocated * so that the anon_vma locking is not a noop. */ if (unlikely(anon_vma_prepare(vma))) return -ENOMEM; vma_lock_anon_vma(vma); /* * vma->vm_start/vm_end cannot change under us because the caller * is required to hold the mmap_sem in read mode. We need the * anon_vma lock to serialize against concurrent expand_stacks. * Also guard against wrapping around to address 0. */ if (address < PAGE_ALIGN(address+4)) address = PAGE_ALIGN(address+4); else { vma_unlock_anon_vma(vma); return -ENOMEM; } error = 0; /* Somebody else might have raced and expanded it already */ if (address > vma->vm_end) { unsigned long size, grow; size = address - vma->vm_start; grow = (address - vma->vm_end) >> PAGE_SHIFT; error = -ENOMEM; if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { error = acct_stack_growth(vma, size, grow); if (!error) { vma->vm_end = address; perf_event_mmap(vma); } } } vma_unlock_anon_vma(vma); khugepaged_enter_vma_merge(vma); return error; } #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ /* * vma is the first one with address < vma->vm_start. Have to extend vma. */ static int expand_downwards(struct vm_area_struct *vma, unsigned long address) { int error; /* * We must make sure the anon_vma is allocated * so that the anon_vma locking is not a noop. */ if (unlikely(anon_vma_prepare(vma))) return -ENOMEM; address &= PAGE_MASK; error = security_file_mmap(NULL, 0, 0, 0, address, 1); if (error) return error; vma_lock_anon_vma(vma); /* * vma->vm_start/vm_end cannot change under us because the caller * is required to hold the mmap_sem in read mode. We need the * anon_vma lock to serialize against concurrent expand_stacks. */ /* Somebody else might have raced and expanded it already */ if (address < vma->vm_start) { unsigned long size, grow; size = vma->vm_end - address; grow = (vma->vm_start - address) >> PAGE_SHIFT; error = -ENOMEM; if (grow <= vma->vm_pgoff) { error = acct_stack_growth(vma, size, grow); if (!error) { vma->vm_start = address; vma->vm_pgoff -= grow; perf_event_mmap(vma); } } } vma_unlock_anon_vma(vma); khugepaged_enter_vma_merge(vma); return error; } int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address) { return expand_downwards(vma, address); } #ifdef CONFIG_STACK_GROWSUP int expand_stack(struct vm_area_struct *vma, unsigned long address) { return expand_upwards(vma, address); } struct vm_area_struct * find_extend_vma(struct mm_struct *mm, unsigned long addr) { struct vm_area_struct *vma, *prev; addr &= PAGE_MASK; vma = find_vma_prev(mm, addr, &prev); if (vma && (vma->vm_start <= addr)) return vma; if (!prev || expand_stack(prev, addr)) return NULL; if (prev->vm_flags & VM_LOCKED) { mlock_vma_pages_range(prev, addr, prev->vm_end); } return prev; } #else int expand_stack(struct vm_area_struct *vma, unsigned long address) { return expand_downwards(vma, address); } struct vm_area_struct * find_extend_vma(struct mm_struct * mm, unsigned long addr) { struct vm_area_struct * vma; unsigned long start; addr &= PAGE_MASK; vma = find_vma(mm,addr); if (!vma) return NULL; if (vma->vm_start <= addr) return vma; if (!(vma->vm_flags & VM_GROWSDOWN)) return NULL; start = vma->vm_start; if (expand_stack(vma, addr)) return NULL; if (vma->vm_flags & VM_LOCKED) { mlock_vma_pages_range(vma, addr, start); } return vma; } #endif /* * Ok - we have the memory areas we should free on the vma list, * so release them, and do the vma updates. * * Called with the mm semaphore held. */ static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) { /* Update high watermark before we lower total_vm */ update_hiwater_vm(mm); do { long nrpages = vma_pages(vma); mm->total_vm -= nrpages; vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages); vma = remove_vma(vma); } while (vma); validate_mm(mm); } /* * Get rid of page table information in the indicated region. * * Called with the mm semaphore held. */ static void unmap_region(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, unsigned long start, unsigned long end) { struct vm_area_struct *next = prev? prev->vm_next: mm->mmap; struct mmu_gather *tlb; unsigned long nr_accounted = 0; lru_add_drain(); tlb = tlb_gather_mmu(mm, 0); update_hiwater_rss(mm); unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL); vm_unacct_memory(nr_accounted); free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS, next? next->vm_start: 0); tlb_finish_mmu(tlb, start, end); } /* * Create a list of vma's touched by the unmap, removing them from the mm's * vma list as we go.. */ static void detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, unsigned long end) { struct vm_area_struct **insertion_point; struct vm_area_struct *tail_vma = NULL; unsigned long addr; insertion_point = (prev ? &prev->vm_next : &mm->mmap); vma->vm_prev = NULL; do { rb_erase(&vma->vm_rb, &mm->mm_rb); mm->map_count--; tail_vma = vma; vma = vma->vm_next; } while (vma && vma->vm_start < end); *insertion_point = vma; if (vma) vma->vm_prev = prev; tail_vma->vm_next = NULL; if (mm->unmap_area == arch_unmap_area) addr = prev ? prev->vm_end : mm->mmap_base; else addr = vma ? vma->vm_start : mm->mmap_base; mm->unmap_area(mm, addr); mm->mmap_cache = NULL; /* Kill the cache. */ } /* * __split_vma() bypasses sysctl_max_map_count checking. We use this on the * munmap path where it doesn't make sense to fail. */ static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long addr, int new_below) { struct mempolicy *pol; struct vm_area_struct *new; int err = -ENOMEM; if (is_vm_hugetlb_page(vma) && (addr & ~(huge_page_mask(hstate_vma(vma))))) return -EINVAL; new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); if (!new) goto out_err; /* most fields are the same, copy all, and then fixup */ *new = *vma; INIT_LIST_HEAD(&new->anon_vma_chain); if (new_below) new->vm_end = addr; else { new->vm_start = addr; new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); } pol = mpol_dup(vma_policy(vma)); if (IS_ERR(pol)) { err = PTR_ERR(pol); goto out_free_vma; } vma_set_policy(new, pol); if (anon_vma_clone(new, vma)) goto out_free_mpol; if (new->vm_file) { get_file(new->vm_file); if (vma->vm_flags & VM_EXECUTABLE) added_exe_file_vma(mm); } if (new->vm_ops && new->vm_ops->open) new->vm_ops->open(new); if (new_below) err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + ((addr - new->vm_start) >> PAGE_SHIFT), new); else err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); /* Success. */ if (!err) return 0; /* Clean everything up if vma_adjust failed. */ if (new->vm_ops && new->vm_ops->close) new->vm_ops->close(new); if (new->vm_file) { if (vma->vm_flags & VM_EXECUTABLE) removed_exe_file_vma(mm); fput(new->vm_file); } unlink_anon_vmas(new); out_free_mpol: mpol_put(pol); out_free_vma: kmem_cache_free(vm_area_cachep, new); out_err: return err; } /* * Split a vma into two pieces at address 'addr', a new vma is allocated * either for the first part or the tail. */ int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, int new_below) { if (mm->map_count >= sysctl_max_map_count) return -ENOMEM; return __split_vma(mm, vma, addr, new_below); } /* Munmap is split into 2 main parts -- this part which finds * what needs doing, and the areas themselves, which do the * work. This now handles partial unmappings. * Jeremy Fitzhardinge <jeremy@goop.org> */ int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) { unsigned long end; struct vm_area_struct *vma, *prev, *last; if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start) return -EINVAL; if ((len = PAGE_ALIGN(len)) == 0) return -EINVAL; /* Find the first overlapping VMA */ vma = find_vma_prev(mm, start, &prev); if (!vma) return 0; /* we have start < vma->vm_end */ /* if it doesn't overlap, we have nothing.. */ end = start + len; if (vma->vm_start >= end) return 0; /* * If we need to split any vma, do it now to save pain later. * * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially * unmapped vm_area_struct will remain in use: so lower split_vma * places tmp vma above, and higher split_vma places tmp vma below. */ if (start > vma->vm_start) { int error; /* * Make sure that map_count on return from munmap() will * not exceed its limit; but let map_count go just above * its limit temporarily, to help free resources as expected. */ if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) return -ENOMEM; error = __split_vma(mm, vma, start, 0); if (error) return error; prev = vma; } /* Does it split the last one? */ last = find_vma(mm, end); if (last && end > last->vm_start) { int error = __split_vma(mm, last, end, 1); if (error) return error; } vma = prev? prev->vm_next: mm->mmap; /* * unlock any mlock()ed ranges before detaching vmas */ if (mm->locked_vm) { struct vm_area_struct *tmp = vma; while (tmp && tmp->vm_start < end) { if (tmp->vm_flags & VM_LOCKED) { mm->locked_vm -= vma_pages(tmp); munlock_vma_pages_all(tmp); } tmp = tmp->vm_next; } } /* * Remove the vma's, and unmap the actual pages */ detach_vmas_to_be_unmapped(mm, vma, prev, end); unmap_region(mm, vma, prev, start, end); /* Fix up all other VM information */ remove_vma_list(mm, vma); return 0; } EXPORT_SYMBOL(do_munmap); SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) { int ret; struct mm_struct *mm = current->mm; profile_munmap(addr); down_write(&mm->mmap_sem); ret = do_munmap(mm, addr, len); up_write(&mm->mmap_sem); return ret; } static inline void verify_mm_writelocked(struct mm_struct *mm) { #ifdef CONFIG_DEBUG_VM if (unlikely(down_read_trylock(&mm->mmap_sem))) { WARN_ON(1); up_read(&mm->mmap_sem); } #endif } /* * this is really a simplified "do_mmap". it only handles * anonymous maps. eventually we may be able to do some * brk-specific accounting here. */ unsigned long do_brk(unsigned long addr, unsigned long len) { struct mm_struct * mm = current->mm; struct vm_area_struct * vma, * prev; unsigned long flags; struct rb_node ** rb_link, * rb_parent; pgoff_t pgoff = addr >> PAGE_SHIFT; int error; len = PAGE_ALIGN(len); if (!len) return addr; error = security_file_mmap(NULL, 0, 0, 0, addr, 1); if (error) return error; flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); if (error & ~PAGE_MASK) return error; /* * mlock MCL_FUTURE? */ if (mm->def_flags & VM_LOCKED) { unsigned long locked, lock_limit; locked = len >> PAGE_SHIFT; locked += mm->locked_vm; lock_limit = rlimit(RLIMIT_MEMLOCK); lock_limit >>= PAGE_SHIFT; if (locked > lock_limit && !capable(CAP_IPC_LOCK)) return -EAGAIN; } /* * mm->mmap_sem is required to protect against another thread * changing the mappings in case we sleep. */ verify_mm_writelocked(mm); /* * Clear old maps. this also does some error checking for us */ munmap_back: vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); if (vma && vma->vm_start < addr + len) { if (do_munmap(mm, addr, len)) return -ENOMEM; goto munmap_back; } /* Check against address space limits *after* clearing old maps... */ if (!may_expand_vm(mm, len >> PAGE_SHIFT)) return -ENOMEM; if (mm->map_count > sysctl_max_map_count) return -ENOMEM; if (security_vm_enough_memory(len >> PAGE_SHIFT)) return -ENOMEM; /* Can we just expand an old private anonymous mapping? */ vma = vma_merge(mm, prev, addr, addr + len, flags, NULL, NULL, pgoff, NULL); if (vma) goto out; /* * create a vma struct for an anonymous mapping */ vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); if (!vma) { vm_unacct_memory(len >> PAGE_SHIFT); return -ENOMEM; } INIT_LIST_HEAD(&vma->anon_vma_chain); vma->vm_mm = mm; vma->vm_start = addr; vma->vm_end = addr + len; vma->vm_pgoff = pgoff; vma->vm_flags = flags; vma->vm_page_prot = vm_get_page_prot(flags); vma_link(mm, vma, prev, rb_link, rb_parent); out: perf_event_mmap(vma); mm->total_vm += len >> PAGE_SHIFT; if (flags & VM_LOCKED) { if (!mlock_vma_pages_range(vma, addr, addr + len)) mm->locked_vm += (len >> PAGE_SHIFT); } return addr; } EXPORT_SYMBOL(do_brk); /* Release all mmaps. */ void exit_mmap(struct mm_struct *mm) { struct mmu_gather *tlb; struct vm_area_struct *vma; unsigned long nr_accounted = 0; unsigned long end; /* mm's last user has gone, and its about to be pulled down */ mmu_notifier_release(mm); if (mm->locked_vm) { vma = mm->mmap; while (vma) { if (vma->vm_flags & VM_LOCKED) munlock_vma_pages_all(vma); vma = vma->vm_next; } } arch_exit_mmap(mm); vma = mm->mmap; if (!vma) /* Can happen if dup_mmap() received an OOM */ return; lru_add_drain(); flush_cache_mm(mm); tlb = tlb_gather_mmu(mm, 1); /* update_hiwater_rss(mm) here? but nobody should be looking */ /* Use -1 here to ensure all VMAs in the mm are unmapped */ end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL); vm_unacct_memory(nr_accounted); free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0); tlb_finish_mmu(tlb, 0, end); /* * Walk the list again, actually closing and freeing it, * with preemption enabled, without holding any MM locks. */ while (vma) vma = remove_vma(vma); BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT); } /* Insert vm structure into process list sorted by address * and into the inode's i_mmap tree. If vm_file is non-NULL * then i_mmap_lock is taken here. */ int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma) { struct vm_area_struct * __vma, * prev; struct rb_node ** rb_link, * rb_parent; /* * The vm_pgoff of a purely anonymous vma should be irrelevant * until its first write fault, when page's anon_vma and index * are set. But now set the vm_pgoff it will almost certainly * end up with (unless mremap moves it elsewhere before that * first wfault), so /proc/pid/maps tells a consistent story. * * By setting it to reflect the virtual start address of the * vma, merges and splits can happen in a seamless way, just * using the existing file pgoff checks and manipulations. * Similarly in do_mmap_pgoff and in do_brk. */ if (!vma->vm_file) { BUG_ON(vma->anon_vma); vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; } __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent); if (__vma && __vma->vm_start < vma->vm_end) return -ENOMEM; if ((vma->vm_flags & VM_ACCOUNT) && security_vm_enough_memory_mm(mm, vma_pages(vma))) return -ENOMEM; vma_link(mm, vma, prev, rb_link, rb_parent); return 0; } /* * Copy the vma structure to a new location in the same mm, * prior to moving page table entries, to effect an mremap move. */ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, unsigned long addr, unsigned long len, pgoff_t pgoff) { struct vm_area_struct *vma = *vmap; unsigned long vma_start = vma->vm_start; struct mm_struct *mm = vma->vm_mm; struct vm_area_struct *new_vma, *prev; struct rb_node **rb_link, *rb_parent; struct mempolicy *pol; /* * If anonymous vma has not yet been faulted, update new pgoff * to match new location, to increase its chance of merging. */ if (!vma->vm_file && !vma->anon_vma) pgoff = addr >> PAGE_SHIFT; find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent); new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma)); if (new_vma) { /* * Source vma may have been merged into new_vma */ if (vma_start >= new_vma->vm_start && vma_start < new_vma->vm_end) *vmap = new_vma; } else { new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); if (new_vma) { *new_vma = *vma; pol = mpol_dup(vma_policy(vma)); if (IS_ERR(pol)) goto out_free_vma; INIT_LIST_HEAD(&new_vma->anon_vma_chain); if (anon_vma_clone(new_vma, vma)) goto out_free_mempol; vma_set_policy(new_vma, pol); new_vma->vm_start = addr; new_vma->vm_end = addr + len; new_vma->vm_pgoff = pgoff; if (new_vma->vm_file) { get_file(new_vma->vm_file); if (vma->vm_flags & VM_EXECUTABLE) added_exe_file_vma(mm); } if (new_vma->vm_ops && new_vma->vm_ops->open) new_vma->vm_ops->open(new_vma); vma_link(mm, new_vma, prev, rb_link, rb_parent); } } return new_vma; out_free_mempol: mpol_put(pol); out_free_vma: kmem_cache_free(vm_area_cachep, new_vma); return NULL; } /* * Return true if the calling process may expand its vm space by the passed * number of pages */ int may_expand_vm(struct mm_struct *mm, unsigned long npages) { unsigned long cur = mm->total_vm; /* pages */ unsigned long lim; lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT; if (cur + npages > lim) return 0; return 1; } static int special_mapping_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { pgoff_t pgoff; struct page **pages; /* * special mappings have no vm_file, and in that case, the mm * uses vm_pgoff internally. So we have to subtract it from here. * We are allowed to do this because we are the mm; do not copy * this code into drivers! */ pgoff = vmf->pgoff - vma->vm_pgoff; for (pages = vma->vm_private_data; pgoff && *pages; ++pages) pgoff--; if (*pages) { struct page *page = *pages; get_page(page); vmf->page = page; return 0; } return VM_FAULT_SIGBUS; } /* * Having a close hook prevents vma merging regardless of flags. */ static void special_mapping_close(struct vm_area_struct *vma) { } static const struct vm_operations_struct special_mapping_vmops = { .close = special_mapping_close, .fault = special_mapping_fault, }; /* * Called with mm->mmap_sem held for writing. * Insert a new vma covering the given region, with the given flags. * Its pages are supplied by the given array of struct page *. * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. * The region past the last page supplied will always produce SIGBUS. * The array pointer and the pages it points to are assumed to stay alive * for as long as this mapping might exist. */ int install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long vm_flags, struct page **pages) { int ret; struct vm_area_struct *vma; vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); if (unlikely(vma == NULL)) return -ENOMEM; INIT_LIST_HEAD(&vma->anon_vma_chain); vma->vm_mm = mm; vma->vm_start = addr; vma->vm_end = addr + len; vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); vma->vm_ops = &special_mapping_vmops; vma->vm_private_data = pages; ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); if (ret) goto out; ret = insert_vm_struct(mm, vma); if (ret) goto out; mm->total_vm += len >> PAGE_SHIFT; perf_event_mmap(vma); return 0; out: kmem_cache_free(vm_area_cachep, vma); return ret; } static DEFINE_MUTEX(mm_all_locks_mutex); static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) { if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { /* * The LSB of head.next can't change from under us * because we hold the mm_all_locks_mutex. */ spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem); /* * We can safely modify head.next after taking the * anon_vma->root->lock. If some other vma in this mm shares * the same anon_vma we won't take it again. * * No need of atomic instructions here, head.next * can't change from under us thanks to the * anon_vma->root->lock. */ if (__test_and_set_bit(0, (unsigned long *) &anon_vma->root->head.next)) BUG(); } } static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) { if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { /* * AS_MM_ALL_LOCKS can't change from under us because * we hold the mm_all_locks_mutex. * * Operations on ->flags have to be atomic because * even if AS_MM_ALL_LOCKS is stable thanks to the * mm_all_locks_mutex, there may be other cpus * changing other bitflags in parallel to us. */ if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) BUG(); spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem); } } /* * This operation locks against the VM for all pte/vma/mm related * operations that could ever happen on a certain mm. This includes * vmtruncate, try_to_unmap, and all page faults. * * The caller must take the mmap_sem in write mode before calling * mm_take_all_locks(). The caller isn't allowed to release the * mmap_sem until mm_drop_all_locks() returns. * * mmap_sem in write mode is required in order to block all operations * that could modify pagetables and free pages without need of * altering the vma layout (for example populate_range() with * nonlinear vmas). It's also needed in write mode to avoid new * anon_vmas to be associated with existing vmas. * * A single task can't take more than one mm_take_all_locks() in a row * or it would deadlock. * * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in * mapping->flags avoid to take the same lock twice, if more than one * vma in this mm is backed by the same anon_vma or address_space. * * We can take all the locks in random order because the VM code * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never * takes more than one of them in a row. Secondly we're protected * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex. * * mm_take_all_locks() and mm_drop_all_locks are expensive operations * that may have to take thousand of locks. * * mm_take_all_locks() can fail if it's interrupted by signals. */ int mm_take_all_locks(struct mm_struct *mm) { struct vm_area_struct *vma; struct anon_vma_chain *avc; int ret = -EINTR; BUG_ON(down_read_trylock(&mm->mmap_sem)); mutex_lock(&mm_all_locks_mutex); for (vma = mm->mmap; vma; vma = vma->vm_next) { if (signal_pending(current)) goto out_unlock; if (vma->vm_file && vma->vm_file->f_mapping) vm_lock_mapping(mm, vma->vm_file->f_mapping); } for (vma = mm->mmap; vma; vma = vma->vm_next) { if (signal_pending(current)) goto out_unlock; if (vma->anon_vma) list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) vm_lock_anon_vma(mm, avc->anon_vma); } ret = 0; out_unlock: if (ret) mm_drop_all_locks(mm); return ret; } static void vm_unlock_anon_vma(struct anon_vma *anon_vma) { if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { /* * The LSB of head.next can't change to 0 from under * us because we hold the mm_all_locks_mutex. * * We must however clear the bitflag before unlocking * the vma so the users using the anon_vma->head will * never see our bitflag. * * No need of atomic instructions here, head.next * can't change from under us until we release the * anon_vma->root->lock. */ if (!__test_and_clear_bit(0, (unsigned long *) &anon_vma->root->head.next)) BUG(); anon_vma_unlock(anon_vma); } } static void vm_unlock_mapping(struct address_space *mapping) { if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { /* * AS_MM_ALL_LOCKS can't change to 0 from under us * because we hold the mm_all_locks_mutex. */ spin_unlock(&mapping->i_mmap_lock); if (!test_and_clear_bit(AS_MM_ALL_LOCKS, &mapping->flags)) BUG(); } } /* * The mmap_sem cannot be released by the caller until * mm_drop_all_locks() returns. */ void mm_drop_all_locks(struct mm_struct *mm) { struct vm_area_struct *vma; struct anon_vma_chain *avc; BUG_ON(down_read_trylock(&mm->mmap_sem)); BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); for (vma = mm->mmap; vma; vma = vma->vm_next) { if (vma->anon_vma) list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) vm_unlock_anon_vma(avc->anon_vma); if (vma->vm_file && vma->vm_file->f_mapping) vm_unlock_mapping(vma->vm_file->f_mapping); } mutex_unlock(&mm_all_locks_mutex); } /* * initialise the VMA slab */ void __init mmap_init(void) { int ret; ret = percpu_counter_init(&vm_committed_as, 0); VM_BUG_ON(ret); }