/* * Copyright (c) 2007 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/slab.h> #include <linux/types.h> #include <linux/rbtree.h> #include <linux/bitops.h> #include "rds.h" /* * This file implements the receive side of the unconventional congestion * management in RDS. * * Messages waiting in the receive queue on the receiving socket are accounted * against the sockets SO_RCVBUF option value. Only the payload bytes in the * message are accounted for. If the number of bytes queued equals or exceeds * rcvbuf then the socket is congested. All sends attempted to this socket's * address should return block or return -EWOULDBLOCK. * * Applications are expected to be reasonably tuned such that this situation * very rarely occurs. An application encountering this "back-pressure" is * considered a bug. * * This is implemented by having each node maintain bitmaps which indicate * which ports on bound addresses are congested. As the bitmap changes it is * sent through all the connections which terminate in the local address of the * bitmap which changed. * * The bitmaps are allocated as connections are brought up. This avoids * allocation in the interrupt handling path which queues messages on sockets. * The dense bitmaps let transports send the entire bitmap on any bitmap change * reasonably efficiently. This is much easier to implement than some * finer-grained communication of per-port congestion. The sender does a very * inexpensive bit test to test if the port it's about to send to is congested * or not. */ /* * Interaction with poll is a tad tricky. We want all processes stuck in * poll to wake up and check whether a congested destination became uncongested. * The really sad thing is we have no idea which destinations the application * wants to send to - we don't even know which rds_connections are involved. * So until we implement a more flexible rds poll interface, we have to make * do with this: * We maintain a global counter that is incremented each time a congestion map * update is received. Each rds socket tracks this value, and if rds_poll * finds that the saved generation number is smaller than the global generation * number, it wakes up the process. */ static atomic_t rds_cong_generation = ATOMIC_INIT(0); /* * Congestion monitoring */ static LIST_HEAD(rds_cong_monitor); static DEFINE_RWLOCK(rds_cong_monitor_lock); /* * Yes, a global lock. It's used so infrequently that it's worth keeping it * global to simplify the locking. It's only used in the following * circumstances: * * - on connection buildup to associate a conn with its maps * - on map changes to inform conns of a new map to send * * It's sadly ordered under the socket callback lock and the connection lock. * Receive paths can mark ports congested from interrupt context so the * lock masks interrupts. */ static DEFINE_SPINLOCK(rds_cong_lock); static struct rb_root rds_cong_tree = RB_ROOT; static struct rds_cong_map *rds_cong_tree_walk(__be32 addr, struct rds_cong_map *insert) { struct rb_node **p = &rds_cong_tree.rb_node; struct rb_node *parent = NULL; struct rds_cong_map *map; while (*p) { parent = *p; map = rb_entry(parent, struct rds_cong_map, m_rb_node); if (addr < map->m_addr) p = &(*p)->rb_left; else if (addr > map->m_addr) p = &(*p)->rb_right; else return map; } if (insert) { rb_link_node(&insert->m_rb_node, parent, p); rb_insert_color(&insert->m_rb_node, &rds_cong_tree); } return NULL; } /* * There is only ever one bitmap for any address. Connections try and allocate * these bitmaps in the process getting pointers to them. The bitmaps are only * ever freed as the module is removed after all connections have been freed. */ static struct rds_cong_map *rds_cong_from_addr(__be32 addr) { struct rds_cong_map *map; struct rds_cong_map *ret = NULL; unsigned long zp; unsigned long i; unsigned long flags; map = kzalloc(sizeof(struct rds_cong_map), GFP_KERNEL); if (!map) return NULL; map->m_addr = addr; init_waitqueue_head(&map->m_waitq); INIT_LIST_HEAD(&map->m_conn_list); for (i = 0; i < RDS_CONG_MAP_PAGES; i++) { zp = get_zeroed_page(GFP_KERNEL); if (zp == 0) goto out; map->m_page_addrs[i] = zp; } spin_lock_irqsave(&rds_cong_lock, flags); ret = rds_cong_tree_walk(addr, map); spin_unlock_irqrestore(&rds_cong_lock, flags); if (!ret) { ret = map; map = NULL; } out: if (map) { for (i = 0; i < RDS_CONG_MAP_PAGES && map->m_page_addrs[i]; i++) free_page(map->m_page_addrs[i]); kfree(map); } rdsdebug("map %p for addr %x\n", ret, be32_to_cpu(addr)); return ret; } /* * Put the conn on its local map's list. This is called when the conn is * really added to the hash. It's nested under the rds_conn_lock, sadly. */ void rds_cong_add_conn(struct rds_connection *conn) { unsigned long flags; rdsdebug("conn %p now on map %p\n", conn, conn->c_lcong); spin_lock_irqsave(&rds_cong_lock, flags); list_add_tail(&conn->c_map_item, &conn->c_lcong->m_conn_list); spin_unlock_irqrestore(&rds_cong_lock, flags); } void rds_cong_remove_conn(struct rds_connection *conn) { unsigned long flags; rdsdebug("removing conn %p from map %p\n", conn, conn->c_lcong); spin_lock_irqsave(&rds_cong_lock, flags); list_del_init(&conn->c_map_item); spin_unlock_irqrestore(&rds_cong_lock, flags); } int rds_cong_get_maps(struct rds_connection *conn) { conn->c_lcong = rds_cong_from_addr(conn->c_laddr); conn->c_fcong = rds_cong_from_addr(conn->c_faddr); if (!(conn->c_lcong && conn->c_fcong)) return -ENOMEM; return 0; } void rds_cong_queue_updates(struct rds_cong_map *map) { struct rds_connection *conn; unsigned long flags; spin_lock_irqsave(&rds_cong_lock, flags); list_for_each_entry(conn, &map->m_conn_list, c_map_item) { if (!test_and_set_bit(0, &conn->c_map_queued)) { rds_stats_inc(s_cong_update_queued); rds_send_xmit(conn); } } spin_unlock_irqrestore(&rds_cong_lock, flags); } void rds_cong_map_updated(struct rds_cong_map *map, uint64_t portmask) { rdsdebug("waking map %p for %pI4\n", map, &map->m_addr); rds_stats_inc(s_cong_update_received); atomic_inc(&rds_cong_generation); if (waitqueue_active(&map->m_waitq)) wake_up(&map->m_waitq); if (waitqueue_active(&rds_poll_waitq)) wake_up_all(&rds_poll_waitq); if (portmask && !list_empty(&rds_cong_monitor)) { unsigned long flags; struct rds_sock *rs; read_lock_irqsave(&rds_cong_monitor_lock, flags); list_for_each_entry(rs, &rds_cong_monitor, rs_cong_list) { spin_lock(&rs->rs_lock); rs->rs_cong_notify |= (rs->rs_cong_mask & portmask); rs->rs_cong_mask &= ~portmask; spin_unlock(&rs->rs_lock); if (rs->rs_cong_notify) rds_wake_sk_sleep(rs); } read_unlock_irqrestore(&rds_cong_monitor_lock, flags); } } EXPORT_SYMBOL_GPL(rds_cong_map_updated); int rds_cong_updated_since(unsigned long *recent) { unsigned long gen = atomic_read(&rds_cong_generation); if (likely(*recent == gen)) return 0; *recent = gen; return 1; } /* * We're called under the locking that protects the sockets receive buffer * consumption. This makes it a lot easier for the caller to only call us * when it knows that an existing set bit needs to be cleared, and vice versa. * We can't block and we need to deal with concurrent sockets working against * the same per-address map. */ void rds_cong_set_bit(struct rds_cong_map *map, __be16 port) { unsigned long i; unsigned long off; rdsdebug("setting congestion for %pI4:%u in map %p\n", &map->m_addr, ntohs(port), map); i = be16_to_cpu(port) / RDS_CONG_MAP_PAGE_BITS; off = be16_to_cpu(port) % RDS_CONG_MAP_PAGE_BITS; __set_bit_le(off, (void *)map->m_page_addrs[i]); } void rds_cong_clear_bit(struct rds_cong_map *map, __be16 port) { unsigned long i; unsigned long off; rdsdebug("clearing congestion for %pI4:%u in map %p\n", &map->m_addr, ntohs(port), map); i = be16_to_cpu(port) / RDS_CONG_MAP_PAGE_BITS; off = be16_to_cpu(port) % RDS_CONG_MAP_PAGE_BITS; __clear_bit_le(off, (void *)map->m_page_addrs[i]); } static int rds_cong_test_bit(struct rds_cong_map *map, __be16 port) { unsigned long i; unsigned long off; i = be16_to_cpu(port) / RDS_CONG_MAP_PAGE_BITS; off = be16_to_cpu(port) % RDS_CONG_MAP_PAGE_BITS; return test_bit_le(off, (void *)map->m_page_addrs[i]); } void rds_cong_add_socket(struct rds_sock *rs) { unsigned long flags; write_lock_irqsave(&rds_cong_monitor_lock, flags); if (list_empty(&rs->rs_cong_list)) list_add(&rs->rs_cong_list, &rds_cong_monitor); write_unlock_irqrestore(&rds_cong_monitor_lock, flags); } void rds_cong_remove_socket(struct rds_sock *rs) { unsigned long flags; struct rds_cong_map *map; write_lock_irqsave(&rds_cong_monitor_lock, flags); list_del_init(&rs->rs_cong_list); write_unlock_irqrestore(&rds_cong_monitor_lock, flags); /* update congestion map for now-closed port */ spin_lock_irqsave(&rds_cong_lock, flags); map = rds_cong_tree_walk(rs->rs_bound_addr, NULL); spin_unlock_irqrestore(&rds_cong_lock, flags); if (map && rds_cong_test_bit(map, rs->rs_bound_port)) { rds_cong_clear_bit(map, rs->rs_bound_port); rds_cong_queue_updates(map); } } int rds_cong_wait(struct rds_cong_map *map, __be16 port, int nonblock, struct rds_sock *rs) { if (!rds_cong_test_bit(map, port)) return 0; if (nonblock) { if (rs && rs->rs_cong_monitor) { unsigned long flags; /* It would have been nice to have an atomic set_bit on * a uint64_t. */ spin_lock_irqsave(&rs->rs_lock, flags); rs->rs_cong_mask |= RDS_CONG_MONITOR_MASK(ntohs(port)); spin_unlock_irqrestore(&rs->rs_lock, flags); /* Test again - a congestion update may have arrived in * the meantime. */ if (!rds_cong_test_bit(map, port)) return 0; } rds_stats_inc(s_cong_send_error); return -ENOBUFS; } rds_stats_inc(s_cong_send_blocked); rdsdebug("waiting on map %p for port %u\n", map, be16_to_cpu(port)); return wait_event_interruptible(map->m_waitq, !rds_cong_test_bit(map, port)); } void rds_cong_exit(void) { struct rb_node *node; struct rds_cong_map *map; unsigned long i; while ((node = rb_first(&rds_cong_tree))) { map = rb_entry(node, struct rds_cong_map, m_rb_node); rdsdebug("freeing map %p\n", map); rb_erase(&map->m_rb_node, &rds_cong_tree); for (i = 0; i < RDS_CONG_MAP_PAGES && map->m_page_addrs[i]; i++) free_page(map->m_page_addrs[i]); kfree(map); } } /* * Allocate a RDS message containing a congestion update. */ struct rds_message *rds_cong_update_alloc(struct rds_connection *conn) { struct rds_cong_map *map = conn->c_lcong; struct rds_message *rm; rm = rds_message_map_pages(map->m_page_addrs, RDS_CONG_MAP_BYTES); if (!IS_ERR(rm)) rm->m_inc.i_hdr.h_flags = RDS_FLAG_CONG_BITMAP; return rm; }