/* * Copyright (C) 2010 IBM Corporation * * Author: * Mimi Zohar <zohar@us.ibm.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2 of the License. * * See Documentation/keys-trusted-encrypted.txt */ #include <linux/uaccess.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/parser.h> #include <linux/string.h> #include <linux/err.h> #include <keys/user-type.h> #include <keys/trusted-type.h> #include <keys/encrypted-type.h> #include <linux/key-type.h> #include <linux/random.h> #include <linux/rcupdate.h> #include <linux/scatterlist.h> #include <linux/crypto.h> #include <crypto/hash.h> #include <crypto/sha.h> #include <crypto/aes.h> #include "encrypted.h" static const char KEY_TRUSTED_PREFIX[] = "trusted:"; static const char KEY_USER_PREFIX[] = "user:"; static const char hash_alg[] = "sha256"; static const char hmac_alg[] = "hmac(sha256)"; static const char blkcipher_alg[] = "cbc(aes)"; static unsigned int ivsize; static int blksize; #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1) #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1) #define HASH_SIZE SHA256_DIGEST_SIZE #define MAX_DATA_SIZE 4096 #define MIN_DATA_SIZE 20 struct sdesc { struct shash_desc shash; char ctx[]; }; static struct crypto_shash *hashalg; static struct crypto_shash *hmacalg; enum { Opt_err = -1, Opt_new, Opt_load, Opt_update }; static const match_table_t key_tokens = { {Opt_new, "new"}, {Opt_load, "load"}, {Opt_update, "update"}, {Opt_err, NULL} }; static int aes_get_sizes(void) { struct crypto_blkcipher *tfm; tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { pr_err("encrypted_key: failed to alloc_cipher (%ld)\n", PTR_ERR(tfm)); return PTR_ERR(tfm); } ivsize = crypto_blkcipher_ivsize(tfm); blksize = crypto_blkcipher_blocksize(tfm); crypto_free_blkcipher(tfm); return 0; } /* * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key * * key-type:= "trusted:" | "encrypted:" * desc:= master-key description * * Verify that 'key-type' is valid and that 'desc' exists. On key update, * only the master key description is permitted to change, not the key-type. * The key-type remains constant. * * On success returns 0, otherwise -EINVAL. */ static int valid_master_desc(const char *new_desc, const char *orig_desc) { if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) { if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN) goto out; if (orig_desc) if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN)) goto out; } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) { if (strlen(new_desc) == KEY_USER_PREFIX_LEN) goto out; if (orig_desc) if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN)) goto out; } else goto out; return 0; out: return -EINVAL; } /* * datablob_parse - parse the keyctl data * * datablob format: * new <master-key name> <decrypted data length> * load <master-key name> <decrypted data length> <encrypted iv + data> * update <new-master-key name> * * Tokenizes a copy of the keyctl data, returning a pointer to each token, * which is null terminated. * * On success returns 0, otherwise -EINVAL. */ static int datablob_parse(char *datablob, char **master_desc, char **decrypted_datalen, char **hex_encoded_iv) { substring_t args[MAX_OPT_ARGS]; int ret = -EINVAL; int key_cmd; char *p; p = strsep(&datablob, " \t"); if (!p) return ret; key_cmd = match_token(p, key_tokens, args); *master_desc = strsep(&datablob, " \t"); if (!*master_desc) goto out; if (valid_master_desc(*master_desc, NULL) < 0) goto out; if (decrypted_datalen) { *decrypted_datalen = strsep(&datablob, " \t"); if (!*decrypted_datalen) goto out; } switch (key_cmd) { case Opt_new: if (!decrypted_datalen) break; ret = 0; break; case Opt_load: if (!decrypted_datalen) break; *hex_encoded_iv = strsep(&datablob, " \t"); if (!*hex_encoded_iv) break; ret = 0; break; case Opt_update: if (decrypted_datalen) break; ret = 0; break; case Opt_err: break; } out: return ret; } /* * datablob_format - format as an ascii string, before copying to userspace */ static char *datablob_format(struct encrypted_key_payload *epayload, size_t asciiblob_len) { char *ascii_buf, *bufp; u8 *iv = epayload->iv; int len; int i; ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL); if (!ascii_buf) goto out; ascii_buf[asciiblob_len] = '\0'; /* copy datablob master_desc and datalen strings */ len = sprintf(ascii_buf, "%s %s ", epayload->master_desc, epayload->datalen); /* convert the hex encoded iv, encrypted-data and HMAC to ascii */ bufp = &ascii_buf[len]; for (i = 0; i < (asciiblob_len - len) / 2; i++) bufp = pack_hex_byte(bufp, iv[i]); out: return ascii_buf; } /* * request_trusted_key - request the trusted key * * Trusted keys are sealed to PCRs and other metadata. Although userspace * manages both trusted/encrypted key-types, like the encrypted key type * data, trusted key type data is not visible decrypted from userspace. */ static struct key *request_trusted_key(const char *trusted_desc, u8 **master_key, size_t *master_keylen) { struct trusted_key_payload *tpayload; struct key *tkey; tkey = request_key(&key_type_trusted, trusted_desc, NULL); if (IS_ERR(tkey)) goto error; down_read(&tkey->sem); tpayload = rcu_dereference(tkey->payload.data); *master_key = tpayload->key; *master_keylen = tpayload->key_len; error: return tkey; } /* * request_user_key - request the user key * * Use a user provided key to encrypt/decrypt an encrypted-key. */ static struct key *request_user_key(const char *master_desc, u8 **master_key, size_t *master_keylen) { struct user_key_payload *upayload; struct key *ukey; ukey = request_key(&key_type_user, master_desc, NULL); if (IS_ERR(ukey)) goto error; down_read(&ukey->sem); upayload = rcu_dereference(ukey->payload.data); *master_key = upayload->data; *master_keylen = upayload->datalen; error: return ukey; } static struct sdesc *alloc_sdesc(struct crypto_shash *alg) { struct sdesc *sdesc; int size; size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); sdesc = kmalloc(size, GFP_KERNEL); if (!sdesc) return ERR_PTR(-ENOMEM); sdesc->shash.tfm = alg; sdesc->shash.flags = 0x0; return sdesc; } static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen, const u8 *buf, unsigned int buflen) { struct sdesc *sdesc; int ret; sdesc = alloc_sdesc(hmacalg); if (IS_ERR(sdesc)) { pr_info("encrypted_key: can't alloc %s\n", hmac_alg); return PTR_ERR(sdesc); } ret = crypto_shash_setkey(hmacalg, key, keylen); if (!ret) ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); kfree(sdesc); return ret; } static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen) { struct sdesc *sdesc; int ret; sdesc = alloc_sdesc(hashalg); if (IS_ERR(sdesc)) { pr_info("encrypted_key: can't alloc %s\n", hash_alg); return PTR_ERR(sdesc); } ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest); kfree(sdesc); return ret; } enum derived_key_type { ENC_KEY, AUTH_KEY }; /* Derive authentication/encryption key from trusted key */ static int get_derived_key(u8 *derived_key, enum derived_key_type key_type, const u8 *master_key, size_t master_keylen) { u8 *derived_buf; unsigned int derived_buf_len; int ret; derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen; if (derived_buf_len < HASH_SIZE) derived_buf_len = HASH_SIZE; derived_buf = kzalloc(derived_buf_len, GFP_KERNEL); if (!derived_buf) { pr_err("encrypted_key: out of memory\n"); return -ENOMEM; } if (key_type) strcpy(derived_buf, "AUTH_KEY"); else strcpy(derived_buf, "ENC_KEY"); memcpy(derived_buf + strlen(derived_buf) + 1, master_key, master_keylen); ret = calc_hash(derived_key, derived_buf, derived_buf_len); kfree(derived_buf); return ret; } static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key, unsigned int key_len, const u8 *iv, unsigned int ivsize) { int ret; desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(desc->tfm)) { pr_err("encrypted_key: failed to load %s transform (%ld)\n", blkcipher_alg, PTR_ERR(desc->tfm)); return PTR_ERR(desc->tfm); } desc->flags = 0; ret = crypto_blkcipher_setkey(desc->tfm, key, key_len); if (ret < 0) { pr_err("encrypted_key: failed to setkey (%d)\n", ret); crypto_free_blkcipher(desc->tfm); return ret; } crypto_blkcipher_set_iv(desc->tfm, iv, ivsize); return 0; } static struct key *request_master_key(struct encrypted_key_payload *epayload, u8 **master_key, size_t *master_keylen) { struct key *mkey = NULL; if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) { mkey = request_trusted_key(epayload->master_desc + KEY_TRUSTED_PREFIX_LEN, master_key, master_keylen); } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) { mkey = request_user_key(epayload->master_desc + KEY_USER_PREFIX_LEN, master_key, master_keylen); } else goto out; if (IS_ERR(mkey)) pr_info("encrypted_key: key %s not found", epayload->master_desc); if (mkey) dump_master_key(*master_key, *master_keylen); out: return mkey; } /* Before returning data to userspace, encrypt decrypted data. */ static int derived_key_encrypt(struct encrypted_key_payload *epayload, const u8 *derived_key, unsigned int derived_keylen) { struct scatterlist sg_in[2]; struct scatterlist sg_out[1]; struct blkcipher_desc desc; unsigned int encrypted_datalen; unsigned int padlen; char pad[16]; int ret; encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); padlen = encrypted_datalen - epayload->decrypted_datalen; ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, epayload->iv, ivsize); if (ret < 0) goto out; dump_decrypted_data(epayload); memset(pad, 0, sizeof pad); sg_init_table(sg_in, 2); sg_set_buf(&sg_in[0], epayload->decrypted_data, epayload->decrypted_datalen); sg_set_buf(&sg_in[1], pad, padlen); sg_init_table(sg_out, 1); sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen); ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen); crypto_free_blkcipher(desc.tfm); if (ret < 0) pr_err("encrypted_key: failed to encrypt (%d)\n", ret); else dump_encrypted_data(epayload, encrypted_datalen); out: return ret; } static int datablob_hmac_append(struct encrypted_key_payload *epayload, const u8 *master_key, size_t master_keylen) { u8 derived_key[HASH_SIZE]; u8 *digest; int ret; ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); if (ret < 0) goto out; digest = epayload->master_desc + epayload->datablob_len; ret = calc_hmac(digest, derived_key, sizeof derived_key, epayload->master_desc, epayload->datablob_len); if (!ret) dump_hmac(NULL, digest, HASH_SIZE); out: return ret; } /* verify HMAC before decrypting encrypted key */ static int datablob_hmac_verify(struct encrypted_key_payload *epayload, const u8 *master_key, size_t master_keylen) { u8 derived_key[HASH_SIZE]; u8 digest[HASH_SIZE]; int ret; ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen); if (ret < 0) goto out; ret = calc_hmac(digest, derived_key, sizeof derived_key, epayload->master_desc, epayload->datablob_len); if (ret < 0) goto out; ret = memcmp(digest, epayload->master_desc + epayload->datablob_len, sizeof digest); if (ret) { ret = -EINVAL; dump_hmac("datablob", epayload->master_desc + epayload->datablob_len, HASH_SIZE); dump_hmac("calc", digest, HASH_SIZE); } out: return ret; } static int derived_key_decrypt(struct encrypted_key_payload *epayload, const u8 *derived_key, unsigned int derived_keylen) { struct scatterlist sg_in[1]; struct scatterlist sg_out[2]; struct blkcipher_desc desc; unsigned int encrypted_datalen; char pad[16]; int ret; encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); ret = init_blkcipher_desc(&desc, derived_key, derived_keylen, epayload->iv, ivsize); if (ret < 0) goto out; dump_encrypted_data(epayload, encrypted_datalen); memset(pad, 0, sizeof pad); sg_init_table(sg_in, 1); sg_init_table(sg_out, 2); sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen); sg_set_buf(&sg_out[0], epayload->decrypted_data, epayload->decrypted_datalen); sg_set_buf(&sg_out[1], pad, sizeof pad); ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen); crypto_free_blkcipher(desc.tfm); if (ret < 0) goto out; dump_decrypted_data(epayload); out: return ret; } /* Allocate memory for decrypted key and datablob. */ static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, const char *master_desc, const char *datalen) { struct encrypted_key_payload *epayload = NULL; unsigned short datablob_len; unsigned short decrypted_datalen; unsigned int encrypted_datalen; long dlen; int ret; ret = strict_strtol(datalen, 10, &dlen); if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE) return ERR_PTR(-EINVAL); decrypted_datalen = dlen; encrypted_datalen = roundup(decrypted_datalen, blksize); datablob_len = strlen(master_desc) + 1 + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen; ret = key_payload_reserve(key, decrypted_datalen + datablob_len + HASH_SIZE + 1); if (ret < 0) return ERR_PTR(ret); epayload = kzalloc(sizeof(*epayload) + decrypted_datalen + datablob_len + HASH_SIZE + 1, GFP_KERNEL); if (!epayload) return ERR_PTR(-ENOMEM); epayload->decrypted_datalen = decrypted_datalen; epayload->datablob_len = datablob_len; return epayload; } static int encrypted_key_decrypt(struct encrypted_key_payload *epayload, const char *hex_encoded_iv) { struct key *mkey; u8 derived_key[HASH_SIZE]; u8 *master_key; u8 *hmac; const char *hex_encoded_data; unsigned int encrypted_datalen; size_t master_keylen; size_t asciilen; int ret; encrypted_datalen = roundup(epayload->decrypted_datalen, blksize); asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2; if (strlen(hex_encoded_iv) != asciilen) return -EINVAL; hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2; hex2bin(epayload->iv, hex_encoded_iv, ivsize); hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen); hmac = epayload->master_desc + epayload->datablob_len; hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE); mkey = request_master_key(epayload, &master_key, &master_keylen); if (IS_ERR(mkey)) return PTR_ERR(mkey); ret = datablob_hmac_verify(epayload, master_key, master_keylen); if (ret < 0) { pr_err("encrypted_key: bad hmac (%d)\n", ret); goto out; } ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); if (ret < 0) goto out; ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key); if (ret < 0) pr_err("encrypted_key: failed to decrypt key (%d)\n", ret); out: up_read(&mkey->sem); key_put(mkey); return ret; } static void __ekey_init(struct encrypted_key_payload *epayload, const char *master_desc, const char *datalen) { epayload->master_desc = epayload->decrypted_data + epayload->decrypted_datalen; epayload->datalen = epayload->master_desc + strlen(master_desc) + 1; epayload->iv = epayload->datalen + strlen(datalen) + 1; epayload->encrypted_data = epayload->iv + ivsize + 1; memcpy(epayload->master_desc, master_desc, strlen(master_desc)); memcpy(epayload->datalen, datalen, strlen(datalen)); } /* * encrypted_init - initialize an encrypted key * * For a new key, use a random number for both the iv and data * itself. For an old key, decrypt the hex encoded data. */ static int encrypted_init(struct encrypted_key_payload *epayload, const char *master_desc, const char *datalen, const char *hex_encoded_iv) { int ret = 0; __ekey_init(epayload, master_desc, datalen); if (!hex_encoded_iv) { get_random_bytes(epayload->iv, ivsize); get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen); } else ret = encrypted_key_decrypt(epayload, hex_encoded_iv); return ret; } /* * encrypted_instantiate - instantiate an encrypted key * * Decrypt an existing encrypted datablob or create a new encrypted key * based on a kernel random number. * * On success, return 0. Otherwise return errno. */ static int encrypted_instantiate(struct key *key, const void *data, size_t datalen) { struct encrypted_key_payload *epayload = NULL; char *datablob = NULL; char *master_desc = NULL; char *decrypted_datalen = NULL; char *hex_encoded_iv = NULL; int ret; if (datalen <= 0 || datalen > 32767 || !data) return -EINVAL; datablob = kmalloc(datalen + 1, GFP_KERNEL); if (!datablob) return -ENOMEM; datablob[datalen] = 0; memcpy(datablob, data, datalen); ret = datablob_parse(datablob, &master_desc, &decrypted_datalen, &hex_encoded_iv); if (ret < 0) goto out; epayload = encrypted_key_alloc(key, master_desc, decrypted_datalen); if (IS_ERR(epayload)) { ret = PTR_ERR(epayload); goto out; } ret = encrypted_init(epayload, master_desc, decrypted_datalen, hex_encoded_iv); if (ret < 0) { kfree(epayload); goto out; } rcu_assign_pointer(key->payload.data, epayload); out: kfree(datablob); return ret; } static void encrypted_rcu_free(struct rcu_head *rcu) { struct encrypted_key_payload *epayload; epayload = container_of(rcu, struct encrypted_key_payload, rcu); memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); kfree(epayload); } /* * encrypted_update - update the master key description * * Change the master key description for an existing encrypted key. * The next read will return an encrypted datablob using the new * master key description. * * On success, return 0. Otherwise return errno. */ static int encrypted_update(struct key *key, const void *data, size_t datalen) { struct encrypted_key_payload *epayload = key->payload.data; struct encrypted_key_payload *new_epayload; char *buf; char *new_master_desc = NULL; int ret = 0; if (datalen <= 0 || datalen > 32767 || !data) return -EINVAL; buf = kmalloc(datalen + 1, GFP_KERNEL); if (!buf) return -ENOMEM; buf[datalen] = 0; memcpy(buf, data, datalen); ret = datablob_parse(buf, &new_master_desc, NULL, NULL); if (ret < 0) goto out; ret = valid_master_desc(new_master_desc, epayload->master_desc); if (ret < 0) goto out; new_epayload = encrypted_key_alloc(key, new_master_desc, epayload->datalen); if (IS_ERR(new_epayload)) { ret = PTR_ERR(new_epayload); goto out; } __ekey_init(new_epayload, new_master_desc, epayload->datalen); memcpy(new_epayload->iv, epayload->iv, ivsize); memcpy(new_epayload->decrypted_data, epayload->decrypted_data, epayload->decrypted_datalen); rcu_assign_pointer(key->payload.data, new_epayload); call_rcu(&epayload->rcu, encrypted_rcu_free); out: kfree(buf); return ret; } /* * encrypted_read - format and copy the encrypted data to userspace * * The resulting datablob format is: * <master-key name> <decrypted data length> <encrypted iv> <encrypted data> * * On success, return to userspace the encrypted key datablob size. */ static long encrypted_read(const struct key *key, char __user *buffer, size_t buflen) { struct encrypted_key_payload *epayload; struct key *mkey; u8 *master_key; size_t master_keylen; char derived_key[HASH_SIZE]; char *ascii_buf; size_t asciiblob_len; int ret; epayload = rcu_dereference_key(key); /* returns the hex encoded iv, encrypted-data, and hmac as ascii */ asciiblob_len = epayload->datablob_len + ivsize + 1 + roundup(epayload->decrypted_datalen, blksize) + (HASH_SIZE * 2); if (!buffer || buflen < asciiblob_len) return asciiblob_len; mkey = request_master_key(epayload, &master_key, &master_keylen); if (IS_ERR(mkey)) return PTR_ERR(mkey); ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen); if (ret < 0) goto out; ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key); if (ret < 0) goto out; ret = datablob_hmac_append(epayload, master_key, master_keylen); if (ret < 0) goto out; ascii_buf = datablob_format(epayload, asciiblob_len); if (!ascii_buf) { ret = -ENOMEM; goto out; } up_read(&mkey->sem); key_put(mkey); if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0) ret = -EFAULT; kfree(ascii_buf); return asciiblob_len; out: up_read(&mkey->sem); key_put(mkey); return ret; } /* * encrypted_destroy - before freeing the key, clear the decrypted data * * Before freeing the key, clear the memory containing the decrypted * key data. */ static void encrypted_destroy(struct key *key) { struct encrypted_key_payload *epayload = key->payload.data; if (!epayload) return; memset(epayload->decrypted_data, 0, epayload->decrypted_datalen); kfree(key->payload.data); } struct key_type key_type_encrypted = { .name = "encrypted", .instantiate = encrypted_instantiate, .update = encrypted_update, .match = user_match, .destroy = encrypted_destroy, .describe = user_describe, .read = encrypted_read, }; EXPORT_SYMBOL_GPL(key_type_encrypted); static void encrypted_shash_release(void) { if (hashalg) crypto_free_shash(hashalg); if (hmacalg) crypto_free_shash(hmacalg); } static int __init encrypted_shash_alloc(void) { int ret; hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(hmacalg)) { pr_info("encrypted_key: could not allocate crypto %s\n", hmac_alg); return PTR_ERR(hmacalg); } hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(hashalg)) { pr_info("encrypted_key: could not allocate crypto %s\n", hash_alg); ret = PTR_ERR(hashalg); goto hashalg_fail; } return 0; hashalg_fail: crypto_free_shash(hmacalg); return ret; } static int __init init_encrypted(void) { int ret; ret = encrypted_shash_alloc(); if (ret < 0) return ret; ret = register_key_type(&key_type_encrypted); if (ret < 0) goto out; return aes_get_sizes(); out: encrypted_shash_release(); return ret; } static void __exit cleanup_encrypted(void) { encrypted_shash_release(); unregister_key_type(&key_type_encrypted); } late_initcall(init_encrypted); module_exit(cleanup_encrypted); MODULE_LICENSE("GPL");