/* * Universal Interface for Intel High Definition Audio Codec * * Generic widget tree parser * * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de> * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/init.h> #include <linux/slab.h> #include <sound/core.h> #include "hda_codec.h" #include "hda_local.h" /* widget node for parsing */ struct hda_gnode { hda_nid_t nid; /* NID of this widget */ unsigned short nconns; /* number of input connections */ hda_nid_t *conn_list; hda_nid_t slist[2]; /* temporay list */ unsigned int wid_caps; /* widget capabilities */ unsigned char type; /* widget type */ unsigned char pin_ctl; /* pin controls */ unsigned char checked; /* the flag indicates that the node is already parsed */ unsigned int pin_caps; /* pin widget capabilities */ unsigned int def_cfg; /* default configuration */ unsigned int amp_out_caps; /* AMP out capabilities */ unsigned int amp_in_caps; /* AMP in capabilities */ struct list_head list; }; /* patch-specific record */ #define MAX_PCM_VOLS 2 struct pcm_vol { struct hda_gnode *node; /* Node for PCM volume */ unsigned int index; /* connection of PCM volume */ }; struct hda_gspec { struct hda_gnode *dac_node[2]; /* DAC node */ struct hda_gnode *out_pin_node[2]; /* Output pin (Line-Out) node */ struct pcm_vol pcm_vol[MAX_PCM_VOLS]; /* PCM volumes */ unsigned int pcm_vol_nodes; /* number of PCM volumes */ struct hda_gnode *adc_node; /* ADC node */ struct hda_gnode *cap_vol_node; /* Node for capture volume */ unsigned int cur_cap_src; /* current capture source */ struct hda_input_mux input_mux; unsigned int def_amp_in_caps; unsigned int def_amp_out_caps; struct hda_pcm pcm_rec; /* PCM information */ struct list_head nid_list; /* list of widgets */ #ifdef CONFIG_SND_HDA_POWER_SAVE #define MAX_LOOPBACK_AMPS 7 struct hda_loopback_check loopback; int num_loopbacks; struct hda_amp_list loopback_list[MAX_LOOPBACK_AMPS + 1]; #endif }; /* * retrieve the default device type from the default config value */ #define defcfg_type(node) (((node)->def_cfg & AC_DEFCFG_DEVICE) >> \ AC_DEFCFG_DEVICE_SHIFT) #define defcfg_location(node) (((node)->def_cfg & AC_DEFCFG_LOCATION) >> \ AC_DEFCFG_LOCATION_SHIFT) #define defcfg_port_conn(node) (((node)->def_cfg & AC_DEFCFG_PORT_CONN) >> \ AC_DEFCFG_PORT_CONN_SHIFT) /* * destructor */ static void snd_hda_generic_free(struct hda_codec *codec) { struct hda_gspec *spec = codec->spec; struct hda_gnode *node, *n; if (! spec) return; /* free all widgets */ list_for_each_entry_safe(node, n, &spec->nid_list, list) { if (node->conn_list != node->slist) kfree(node->conn_list); kfree(node); } kfree(spec); } /* * add a new widget node and read its attributes */ static int add_new_node(struct hda_codec *codec, struct hda_gspec *spec, hda_nid_t nid) { struct hda_gnode *node; int nconns; hda_nid_t conn_list[HDA_MAX_CONNECTIONS]; node = kzalloc(sizeof(*node), GFP_KERNEL); if (node == NULL) return -ENOMEM; node->nid = nid; node->wid_caps = get_wcaps(codec, nid); node->type = get_wcaps_type(node->wid_caps); if (node->wid_caps & AC_WCAP_CONN_LIST) { nconns = snd_hda_get_connections(codec, nid, conn_list, HDA_MAX_CONNECTIONS); if (nconns < 0) { kfree(node); return nconns; } } else { nconns = 0; } if (nconns <= ARRAY_SIZE(node->slist)) node->conn_list = node->slist; else { node->conn_list = kmalloc(sizeof(hda_nid_t) * nconns, GFP_KERNEL); if (! node->conn_list) { snd_printk(KERN_ERR "hda-generic: cannot malloc\n"); kfree(node); return -ENOMEM; } } memcpy(node->conn_list, conn_list, nconns * sizeof(hda_nid_t)); node->nconns = nconns; if (node->type == AC_WID_PIN) { node->pin_caps = snd_hda_query_pin_caps(codec, node->nid); node->pin_ctl = snd_hda_codec_read(codec, node->nid, 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0); node->def_cfg = snd_hda_codec_get_pincfg(codec, node->nid); } if (node->wid_caps & AC_WCAP_OUT_AMP) { if (node->wid_caps & AC_WCAP_AMP_OVRD) node->amp_out_caps = snd_hda_param_read(codec, node->nid, AC_PAR_AMP_OUT_CAP); if (! node->amp_out_caps) node->amp_out_caps = spec->def_amp_out_caps; } if (node->wid_caps & AC_WCAP_IN_AMP) { if (node->wid_caps & AC_WCAP_AMP_OVRD) node->amp_in_caps = snd_hda_param_read(codec, node->nid, AC_PAR_AMP_IN_CAP); if (! node->amp_in_caps) node->amp_in_caps = spec->def_amp_in_caps; } list_add_tail(&node->list, &spec->nid_list); return 0; } /* * build the AFG subtree */ static int build_afg_tree(struct hda_codec *codec) { struct hda_gspec *spec = codec->spec; int i, nodes, err; hda_nid_t nid; if (snd_BUG_ON(!spec)) return -EINVAL; spec->def_amp_out_caps = snd_hda_param_read(codec, codec->afg, AC_PAR_AMP_OUT_CAP); spec->def_amp_in_caps = snd_hda_param_read(codec, codec->afg, AC_PAR_AMP_IN_CAP); nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid); if (! nid || nodes < 0) { printk(KERN_ERR "Invalid AFG subtree\n"); return -EINVAL; } /* parse all nodes belonging to the AFG */ for (i = 0; i < nodes; i++, nid++) { if ((err = add_new_node(codec, spec, nid)) < 0) return err; } return 0; } /* * look for the node record for the given NID */ /* FIXME: should avoid the braindead linear search */ static struct hda_gnode *hda_get_node(struct hda_gspec *spec, hda_nid_t nid) { struct hda_gnode *node; list_for_each_entry(node, &spec->nid_list, list) { if (node->nid == nid) return node; } return NULL; } /* * unmute (and set max vol) the output amplifier */ static int unmute_output(struct hda_codec *codec, struct hda_gnode *node) { unsigned int val, ofs; snd_printdd("UNMUTE OUT: NID=0x%x\n", node->nid); val = (node->amp_out_caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; ofs = (node->amp_out_caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT; if (val >= ofs) val -= ofs; snd_hda_codec_amp_stereo(codec, node->nid, HDA_OUTPUT, 0, 0xff, val); return 0; } /* * unmute (and set max vol) the input amplifier */ static int unmute_input(struct hda_codec *codec, struct hda_gnode *node, unsigned int index) { unsigned int val, ofs; snd_printdd("UNMUTE IN: NID=0x%x IDX=0x%x\n", node->nid, index); val = (node->amp_in_caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; ofs = (node->amp_in_caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT; if (val >= ofs) val -= ofs; snd_hda_codec_amp_stereo(codec, node->nid, HDA_INPUT, index, 0xff, val); return 0; } /* * select the input connection of the given node. */ static int select_input_connection(struct hda_codec *codec, struct hda_gnode *node, unsigned int index) { snd_printdd("CONNECT: NID=0x%x IDX=0x%x\n", node->nid, index); return snd_hda_codec_write_cache(codec, node->nid, 0, AC_VERB_SET_CONNECT_SEL, index); } /* * clear checked flag of each node in the node list */ static void clear_check_flags(struct hda_gspec *spec) { struct hda_gnode *node; list_for_each_entry(node, &spec->nid_list, list) { node->checked = 0; } } /* * parse the output path recursively until reach to an audio output widget * * returns 0 if not found, 1 if found, or a negative error code. */ static int parse_output_path(struct hda_codec *codec, struct hda_gspec *spec, struct hda_gnode *node, int dac_idx) { int i, err; struct hda_gnode *child; if (node->checked) return 0; node->checked = 1; if (node->type == AC_WID_AUD_OUT) { if (node->wid_caps & AC_WCAP_DIGITAL) { snd_printdd("Skip Digital OUT node %x\n", node->nid); return 0; } snd_printdd("AUD_OUT found %x\n", node->nid); if (spec->dac_node[dac_idx]) { /* already DAC node is assigned, just unmute & connect */ return node == spec->dac_node[dac_idx]; } spec->dac_node[dac_idx] = node; if ((node->wid_caps & AC_WCAP_OUT_AMP) && spec->pcm_vol_nodes < MAX_PCM_VOLS) { spec->pcm_vol[spec->pcm_vol_nodes].node = node; spec->pcm_vol[spec->pcm_vol_nodes].index = 0; spec->pcm_vol_nodes++; } return 1; /* found */ } for (i = 0; i < node->nconns; i++) { child = hda_get_node(spec, node->conn_list[i]); if (! child) continue; err = parse_output_path(codec, spec, child, dac_idx); if (err < 0) return err; else if (err > 0) { /* found one, * select the path, unmute both input and output */ if (node->nconns > 1) select_input_connection(codec, node, i); unmute_input(codec, node, i); unmute_output(codec, node); if (spec->dac_node[dac_idx] && spec->pcm_vol_nodes < MAX_PCM_VOLS && !(spec->dac_node[dac_idx]->wid_caps & AC_WCAP_OUT_AMP)) { if ((node->wid_caps & AC_WCAP_IN_AMP) || (node->wid_caps & AC_WCAP_OUT_AMP)) { int n = spec->pcm_vol_nodes; spec->pcm_vol[n].node = node; spec->pcm_vol[n].index = i; spec->pcm_vol_nodes++; } } return 1; } } return 0; } /* * Look for the output PIN widget with the given jack type * and parse the output path to that PIN. * * Returns the PIN node when the path to DAC is established. */ static struct hda_gnode *parse_output_jack(struct hda_codec *codec, struct hda_gspec *spec, int jack_type) { struct hda_gnode *node; int err; list_for_each_entry(node, &spec->nid_list, list) { if (node->type != AC_WID_PIN) continue; /* output capable? */ if (! (node->pin_caps & AC_PINCAP_OUT)) continue; if (defcfg_port_conn(node) == AC_JACK_PORT_NONE) continue; /* unconnected */ if (jack_type >= 0) { if (jack_type != defcfg_type(node)) continue; if (node->wid_caps & AC_WCAP_DIGITAL) continue; /* skip SPDIF */ } else { /* output as default? */ if (! (node->pin_ctl & AC_PINCTL_OUT_EN)) continue; } clear_check_flags(spec); err = parse_output_path(codec, spec, node, 0); if (err < 0) return NULL; if (! err && spec->out_pin_node[0]) { err = parse_output_path(codec, spec, node, 1); if (err < 0) return NULL; } if (err > 0) { /* unmute the PIN output */ unmute_output(codec, node); /* set PIN-Out enable */ snd_hda_codec_write_cache(codec, node->nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, AC_PINCTL_OUT_EN | ((node->pin_caps & AC_PINCAP_HP_DRV) ? AC_PINCTL_HP_EN : 0)); return node; } } return NULL; } /* * parse outputs */ static int parse_output(struct hda_codec *codec) { struct hda_gspec *spec = codec->spec; struct hda_gnode *node; /* * Look for the output PIN widget */ /* first, look for the line-out pin */ node = parse_output_jack(codec, spec, AC_JACK_LINE_OUT); if (node) /* found, remember the PIN node */ spec->out_pin_node[0] = node; else { /* if no line-out is found, try speaker out */ node = parse_output_jack(codec, spec, AC_JACK_SPEAKER); if (node) spec->out_pin_node[0] = node; } /* look for the HP-out pin */ node = parse_output_jack(codec, spec, AC_JACK_HP_OUT); if (node) { if (! spec->out_pin_node[0]) spec->out_pin_node[0] = node; else spec->out_pin_node[1] = node; } if (! spec->out_pin_node[0]) { /* no line-out or HP pins found, * then choose for the first output pin */ spec->out_pin_node[0] = parse_output_jack(codec, spec, -1); if (! spec->out_pin_node[0]) snd_printd("hda_generic: no proper output path found\n"); } return 0; } /* * input MUX */ /* control callbacks */ static int capture_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct hda_gspec *spec = codec->spec; return snd_hda_input_mux_info(&spec->input_mux, uinfo); } static int capture_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct hda_gspec *spec = codec->spec; ucontrol->value.enumerated.item[0] = spec->cur_cap_src; return 0; } static int capture_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); struct hda_gspec *spec = codec->spec; return snd_hda_input_mux_put(codec, &spec->input_mux, ucontrol, spec->adc_node->nid, &spec->cur_cap_src); } /* * return the string name of the given input PIN widget */ static const char *get_input_type(struct hda_gnode *node, unsigned int *pinctl) { unsigned int location = defcfg_location(node); switch (defcfg_type(node)) { case AC_JACK_LINE_IN: if ((location & 0x0f) == AC_JACK_LOC_FRONT) return "Front Line"; return "Line"; case AC_JACK_CD: #if 0 if (pinctl) *pinctl |= AC_PINCTL_VREF_GRD; #endif return "CD"; case AC_JACK_AUX: if ((location & 0x0f) == AC_JACK_LOC_FRONT) return "Front Aux"; return "Aux"; case AC_JACK_MIC_IN: if (pinctl && (node->pin_caps & (AC_PINCAP_VREF_80 << AC_PINCAP_VREF_SHIFT))) *pinctl |= AC_PINCTL_VREF_80; if ((location & 0x0f) == AC_JACK_LOC_FRONT) return "Front Mic"; return "Mic"; case AC_JACK_SPDIF_IN: return "SPDIF"; case AC_JACK_DIG_OTHER_IN: return "Digital"; } return NULL; } /* * parse the nodes recursively until reach to the input PIN * * returns 0 if not found, 1 if found, or a negative error code. */ static int parse_adc_sub_nodes(struct hda_codec *codec, struct hda_gspec *spec, struct hda_gnode *node, int idx) { int i, err; unsigned int pinctl; const char *type; if (node->checked) return 0; node->checked = 1; if (node->type != AC_WID_PIN) { for (i = 0; i < node->nconns; i++) { struct hda_gnode *child; child = hda_get_node(spec, node->conn_list[i]); if (! child) continue; err = parse_adc_sub_nodes(codec, spec, child, idx); if (err < 0) return err; if (err > 0) { /* found one, * select the path, unmute both input and output */ if (node->nconns > 1) select_input_connection(codec, node, i); unmute_input(codec, node, i); unmute_output(codec, node); return err; } } return 0; } /* input capable? */ if (! (node->pin_caps & AC_PINCAP_IN)) return 0; if (defcfg_port_conn(node) == AC_JACK_PORT_NONE) return 0; /* unconnected */ if (node->wid_caps & AC_WCAP_DIGITAL) return 0; /* skip SPDIF */ if (spec->input_mux.num_items >= HDA_MAX_NUM_INPUTS) { snd_printk(KERN_ERR "hda_generic: Too many items for capture\n"); return -EINVAL; } pinctl = AC_PINCTL_IN_EN; /* create a proper capture source label */ type = get_input_type(node, &pinctl); if (! type) { /* input as default? */ if (! (node->pin_ctl & AC_PINCTL_IN_EN)) return 0; type = "Input"; } snd_hda_add_imux_item(&spec->input_mux, type, idx, NULL); /* unmute the PIN external input */ unmute_input(codec, node, 0); /* index = 0? */ /* set PIN-In enable */ snd_hda_codec_write_cache(codec, node->nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, pinctl); return 1; /* found */ } /* * parse input */ static int parse_input_path(struct hda_codec *codec, struct hda_gnode *adc_node) { struct hda_gspec *spec = codec->spec; struct hda_gnode *node; int i, err; snd_printdd("AUD_IN = %x\n", adc_node->nid); clear_check_flags(spec); // awk added - fixed no recording due to muted widget unmute_input(codec, adc_node, 0); /* * check each connection of the ADC * if it reaches to a proper input PIN, add the path as the * input path. */ /* first, check the direct connections to PIN widgets */ for (i = 0; i < adc_node->nconns; i++) { node = hda_get_node(spec, adc_node->conn_list[i]); if (node && node->type == AC_WID_PIN) { err = parse_adc_sub_nodes(codec, spec, node, i); if (err < 0) return err; } } /* ... then check the rests, more complicated connections */ for (i = 0; i < adc_node->nconns; i++) { node = hda_get_node(spec, adc_node->conn_list[i]); if (node && node->type != AC_WID_PIN) { err = parse_adc_sub_nodes(codec, spec, node, i); if (err < 0) return err; } } if (! spec->input_mux.num_items) return 0; /* no input path found... */ snd_printdd("[Capture Source] NID=0x%x, #SRC=%d\n", adc_node->nid, spec->input_mux.num_items); for (i = 0; i < spec->input_mux.num_items; i++) snd_printdd(" [%s] IDX=0x%x\n", spec->input_mux.items[i].label, spec->input_mux.items[i].index); spec->adc_node = adc_node; return 1; } /* * parse input */ static int parse_input(struct hda_codec *codec) { struct hda_gspec *spec = codec->spec; struct hda_gnode *node; int err; /* * At first we look for an audio input widget. * If it reaches to certain input PINs, we take it as the * input path. */ list_for_each_entry(node, &spec->nid_list, list) { if (node->wid_caps & AC_WCAP_DIGITAL) continue; /* skip SPDIF */ if (node->type == AC_WID_AUD_IN) { err = parse_input_path(codec, node); if (err < 0) return err; else if (err > 0) return 0; } } snd_printd("hda_generic: no proper input path found\n"); return 0; } #ifdef CONFIG_SND_HDA_POWER_SAVE static void add_input_loopback(struct hda_codec *codec, hda_nid_t nid, int dir, int idx) { struct hda_gspec *spec = codec->spec; struct hda_amp_list *p; if (spec->num_loopbacks >= MAX_LOOPBACK_AMPS) { snd_printk(KERN_ERR "hda_generic: Too many loopback ctls\n"); return; } p = &spec->loopback_list[spec->num_loopbacks++]; p->nid = nid; p->dir = dir; p->idx = idx; spec->loopback.amplist = spec->loopback_list; } #else #define add_input_loopback(codec,nid,dir,idx) #endif /* * create mixer controls if possible */ static int create_mixer(struct hda_codec *codec, struct hda_gnode *node, unsigned int index, const char *type, const char *dir_sfx, int is_loopback) { char name[32]; int err; int created = 0; struct snd_kcontrol_new knew; if (type) sprintf(name, "%s %s Switch", type, dir_sfx); else sprintf(name, "%s Switch", dir_sfx); if ((node->wid_caps & AC_WCAP_IN_AMP) && (node->amp_in_caps & AC_AMPCAP_MUTE)) { knew = (struct snd_kcontrol_new)HDA_CODEC_MUTE(name, node->nid, index, HDA_INPUT); if (is_loopback) add_input_loopback(codec, node->nid, HDA_INPUT, index); snd_printdd("[%s] NID=0x%x, DIR=IN, IDX=0x%x\n", name, node->nid, index); err = snd_hda_ctl_add(codec, node->nid, snd_ctl_new1(&knew, codec)); if (err < 0) return err; created = 1; } else if ((node->wid_caps & AC_WCAP_OUT_AMP) && (node->amp_out_caps & AC_AMPCAP_MUTE)) { knew = (struct snd_kcontrol_new)HDA_CODEC_MUTE(name, node->nid, 0, HDA_OUTPUT); if (is_loopback) add_input_loopback(codec, node->nid, HDA_OUTPUT, 0); snd_printdd("[%s] NID=0x%x, DIR=OUT\n", name, node->nid); err = snd_hda_ctl_add(codec, node->nid, snd_ctl_new1(&knew, codec)); if (err < 0) return err; created = 1; } if (type) sprintf(name, "%s %s Volume", type, dir_sfx); else sprintf(name, "%s Volume", dir_sfx); if ((node->wid_caps & AC_WCAP_IN_AMP) && (node->amp_in_caps & AC_AMPCAP_NUM_STEPS)) { knew = (struct snd_kcontrol_new)HDA_CODEC_VOLUME(name, node->nid, index, HDA_INPUT); snd_printdd("[%s] NID=0x%x, DIR=IN, IDX=0x%x\n", name, node->nid, index); err = snd_hda_ctl_add(codec, node->nid, snd_ctl_new1(&knew, codec)); if (err < 0) return err; created = 1; } else if ((node->wid_caps & AC_WCAP_OUT_AMP) && (node->amp_out_caps & AC_AMPCAP_NUM_STEPS)) { knew = (struct snd_kcontrol_new)HDA_CODEC_VOLUME(name, node->nid, 0, HDA_OUTPUT); snd_printdd("[%s] NID=0x%x, DIR=OUT\n", name, node->nid); err = snd_hda_ctl_add(codec, node->nid, snd_ctl_new1(&knew, codec)); if (err < 0) return err; created = 1; } return created; } /* * check whether the controls with the given name and direction suffix already exist */ static int check_existing_control(struct hda_codec *codec, const char *type, const char *dir) { struct snd_ctl_elem_id id; memset(&id, 0, sizeof(id)); sprintf(id.name, "%s %s Volume", type, dir); id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; if (snd_ctl_find_id(codec->bus->card, &id)) return 1; sprintf(id.name, "%s %s Switch", type, dir); id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; if (snd_ctl_find_id(codec->bus->card, &id)) return 1; return 0; } /* * build output mixer controls */ static int create_output_mixers(struct hda_codec *codec, const char * const *names) { struct hda_gspec *spec = codec->spec; int i, err; for (i = 0; i < spec->pcm_vol_nodes; i++) { err = create_mixer(codec, spec->pcm_vol[i].node, spec->pcm_vol[i].index, names[i], "Playback", 0); if (err < 0) return err; } return 0; } static int build_output_controls(struct hda_codec *codec) { struct hda_gspec *spec = codec->spec; static const char * const types_speaker[] = { "Speaker", "Headphone" }; static const char * const types_line[] = { "Front", "Headphone" }; switch (spec->pcm_vol_nodes) { case 1: return create_mixer(codec, spec->pcm_vol[0].node, spec->pcm_vol[0].index, "Master", "Playback", 0); case 2: if (defcfg_type(spec->out_pin_node[0]) == AC_JACK_SPEAKER) return create_output_mixers(codec, types_speaker); else return create_output_mixers(codec, types_line); } return 0; } /* create capture volume/switch */ static int build_input_controls(struct hda_codec *codec) { struct hda_gspec *spec = codec->spec; struct hda_gnode *adc_node = spec->adc_node; int i, err; static struct snd_kcontrol_new cap_sel = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Source", .info = capture_source_info, .get = capture_source_get, .put = capture_source_put, }; if (! adc_node || ! spec->input_mux.num_items) return 0; /* not found */ spec->cur_cap_src = 0; select_input_connection(codec, adc_node, spec->input_mux.items[0].index); /* create capture volume and switch controls if the ADC has an amp */ /* do we have only a single item? */ if (spec->input_mux.num_items == 1) { err = create_mixer(codec, adc_node, spec->input_mux.items[0].index, NULL, "Capture", 0); if (err < 0) return err; return 0; } /* create input MUX if multiple sources are available */ err = snd_hda_ctl_add(codec, spec->adc_node->nid, snd_ctl_new1(&cap_sel, codec)); if (err < 0) return err; /* no volume control? */ if (! (adc_node->wid_caps & AC_WCAP_IN_AMP) || ! (adc_node->amp_in_caps & AC_AMPCAP_NUM_STEPS)) return 0; for (i = 0; i < spec->input_mux.num_items; i++) { struct snd_kcontrol_new knew; char name[32]; sprintf(name, "%s Capture Volume", spec->input_mux.items[i].label); knew = (struct snd_kcontrol_new) HDA_CODEC_VOLUME(name, adc_node->nid, spec->input_mux.items[i].index, HDA_INPUT); err = snd_hda_ctl_add(codec, adc_node->nid, snd_ctl_new1(&knew, codec)); if (err < 0) return err; } return 0; } /* * parse the nodes recursively until reach to the output PIN. * * returns 0 - if not found, * 1 - if found, but no mixer is created * 2 - if found and mixer was already created, (just skip) * a negative error code */ static int parse_loopback_path(struct hda_codec *codec, struct hda_gspec *spec, struct hda_gnode *node, struct hda_gnode *dest_node, const char *type) { int i, err; if (node->checked) return 0; node->checked = 1; if (node == dest_node) { /* loopback connection found */ return 1; } for (i = 0; i < node->nconns; i++) { struct hda_gnode *child = hda_get_node(spec, node->conn_list[i]); if (! child) continue; err = parse_loopback_path(codec, spec, child, dest_node, type); if (err < 0) return err; else if (err >= 1) { if (err == 1) { err = create_mixer(codec, node, i, type, "Playback", 1); if (err < 0) return err; if (err > 0) return 2; /* ok, created */ /* not created, maybe in the lower path */ err = 1; } /* connect and unmute */ if (node->nconns > 1) select_input_connection(codec, node, i); unmute_input(codec, node, i); unmute_output(codec, node); return err; } } return 0; } /* * parse the tree and build the loopback controls */ static int build_loopback_controls(struct hda_codec *codec) { struct hda_gspec *spec = codec->spec; struct hda_gnode *node; int err; const char *type; if (! spec->out_pin_node[0]) return 0; list_for_each_entry(node, &spec->nid_list, list) { if (node->type != AC_WID_PIN) continue; /* input capable? */ if (! (node->pin_caps & AC_PINCAP_IN)) return 0; type = get_input_type(node, NULL); if (type) { if (check_existing_control(codec, type, "Playback")) continue; clear_check_flags(spec); err = parse_loopback_path(codec, spec, spec->out_pin_node[0], node, type); if (err < 0) return err; if (! err) continue; } } return 0; } /* * build mixer controls */ static int build_generic_controls(struct hda_codec *codec) { int err; if ((err = build_input_controls(codec)) < 0 || (err = build_output_controls(codec)) < 0 || (err = build_loopback_controls(codec)) < 0) return err; return 0; } /* * PCM */ static struct hda_pcm_stream generic_pcm_playback = { .substreams = 1, .channels_min = 2, .channels_max = 2, }; static int generic_pcm2_prepare(struct hda_pcm_stream *hinfo, struct hda_codec *codec, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { struct hda_gspec *spec = codec->spec; snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format); snd_hda_codec_setup_stream(codec, spec->dac_node[1]->nid, stream_tag, 0, format); return 0; } static int generic_pcm2_cleanup(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { struct hda_gspec *spec = codec->spec; snd_hda_codec_cleanup_stream(codec, hinfo->nid); snd_hda_codec_cleanup_stream(codec, spec->dac_node[1]->nid); return 0; } static int build_generic_pcms(struct hda_codec *codec) { struct hda_gspec *spec = codec->spec; struct hda_pcm *info = &spec->pcm_rec; if (! spec->dac_node[0] && ! spec->adc_node) { snd_printd("hda_generic: no PCM found\n"); return 0; } codec->num_pcms = 1; codec->pcm_info = info; info->name = "HDA Generic"; if (spec->dac_node[0]) { info->stream[0] = generic_pcm_playback; info->stream[0].nid = spec->dac_node[0]->nid; if (spec->dac_node[1]) { info->stream[0].ops.prepare = generic_pcm2_prepare; info->stream[0].ops.cleanup = generic_pcm2_cleanup; } } if (spec->adc_node) { info->stream[1] = generic_pcm_playback; info->stream[1].nid = spec->adc_node->nid; } return 0; } #ifdef CONFIG_SND_HDA_POWER_SAVE static int generic_check_power_status(struct hda_codec *codec, hda_nid_t nid) { struct hda_gspec *spec = codec->spec; return snd_hda_check_amp_list_power(codec, &spec->loopback, nid); } #endif /* */ static struct hda_codec_ops generic_patch_ops = { .build_controls = build_generic_controls, .build_pcms = build_generic_pcms, .free = snd_hda_generic_free, #ifdef CONFIG_SND_HDA_POWER_SAVE .check_power_status = generic_check_power_status, #endif }; /* * the generic parser */ int snd_hda_parse_generic_codec(struct hda_codec *codec) { struct hda_gspec *spec; int err; if(!codec->afg) return 0; spec = kzalloc(sizeof(*spec), GFP_KERNEL); if (spec == NULL) { printk(KERN_ERR "hda_generic: can't allocate spec\n"); return -ENOMEM; } codec->spec = spec; INIT_LIST_HEAD(&spec->nid_list); if ((err = build_afg_tree(codec)) < 0) goto error; if ((err = parse_input(codec)) < 0 || (err = parse_output(codec)) < 0) goto error; codec->patch_ops = generic_patch_ops; return 0; error: snd_hda_generic_free(codec); return err; } EXPORT_SYMBOL(snd_hda_parse_generic_codec);