/* * card driver for models with CS4398/CS4362A DACs (Xonar D1/DX) * * Copyright (c) Clemens Ladisch <clemens@ladisch.de> * * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this driver; if not, see <http://www.gnu.org/licenses/>. */ /* * Xonar D1/DX * ----------- * * CMI8788: * * I²C <-> CS4398 (addr 1001111) (front) * <-> CS4362A (addr 0011000) (surround, center/LFE, back) * * GPI 0 <- external power present (DX only) * * GPIO 0 -> enable output to speakers * GPIO 1 -> route output to front panel * GPIO 2 -> M0 of CS5361 * GPIO 3 -> M1 of CS5361 * GPIO 6 -> ? * GPIO 7 -> ? * GPIO 8 -> route input jack to line-in (0) or mic-in (1) * * CM9780: * * LINE_OUT -> input of ADC * * AUX_IN <- aux * MIC_IN <- mic * FMIC_IN <- front mic * * GPO 0 -> route line-in (0) or AC97 output (1) to CS5361 input */ #include <linux/pci.h> #include <linux/delay.h> #include <sound/ac97_codec.h> #include <sound/control.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/tlv.h> #include "xonar.h" #include "cm9780.h" #include "cs4398.h" #include "cs4362a.h" #define GPI_EXT_POWER 0x01 #define GPIO_D1_OUTPUT_ENABLE 0x0001 #define GPIO_D1_FRONT_PANEL 0x0002 #define GPIO_D1_MAGIC 0x00c0 #define GPIO_D1_INPUT_ROUTE 0x0100 #define I2C_DEVICE_CS4398 0x9e /* 10011, AD1=1, AD0=1, /W=0 */ #define I2C_DEVICE_CS4362A 0x30 /* 001100, AD0=0, /W=0 */ struct xonar_cs43xx { struct xonar_generic generic; u8 cs4398_regs[8]; u8 cs4362a_regs[15]; }; static void cs4398_write(struct oxygen *chip, u8 reg, u8 value) { struct xonar_cs43xx *data = chip->model_data; oxygen_write_i2c(chip, I2C_DEVICE_CS4398, reg, value); if (reg < ARRAY_SIZE(data->cs4398_regs)) data->cs4398_regs[reg] = value; } static void cs4398_write_cached(struct oxygen *chip, u8 reg, u8 value) { struct xonar_cs43xx *data = chip->model_data; if (value != data->cs4398_regs[reg]) cs4398_write(chip, reg, value); } static void cs4362a_write(struct oxygen *chip, u8 reg, u8 value) { struct xonar_cs43xx *data = chip->model_data; oxygen_write_i2c(chip, I2C_DEVICE_CS4362A, reg, value); if (reg < ARRAY_SIZE(data->cs4362a_regs)) data->cs4362a_regs[reg] = value; } static void cs4362a_write_cached(struct oxygen *chip, u8 reg, u8 value) { struct xonar_cs43xx *data = chip->model_data; if (value != data->cs4362a_regs[reg]) cs4362a_write(chip, reg, value); } static void cs43xx_registers_init(struct oxygen *chip) { struct xonar_cs43xx *data = chip->model_data; unsigned int i; /* set CPEN (control port mode) and power down */ cs4398_write(chip, 8, CS4398_CPEN | CS4398_PDN); cs4362a_write(chip, 0x01, CS4362A_PDN | CS4362A_CPEN); /* configure */ cs4398_write(chip, 2, data->cs4398_regs[2]); cs4398_write(chip, 3, CS4398_ATAPI_B_R | CS4398_ATAPI_A_L); cs4398_write(chip, 4, data->cs4398_regs[4]); cs4398_write(chip, 5, data->cs4398_regs[5]); cs4398_write(chip, 6, data->cs4398_regs[6]); cs4398_write(chip, 7, data->cs4398_regs[7]); cs4362a_write(chip, 0x02, CS4362A_DIF_LJUST); cs4362a_write(chip, 0x03, CS4362A_MUTEC_6 | CS4362A_AMUTE | CS4362A_RMP_UP | CS4362A_ZERO_CROSS | CS4362A_SOFT_RAMP); cs4362a_write(chip, 0x04, data->cs4362a_regs[0x04]); cs4362a_write(chip, 0x05, 0); for (i = 6; i <= 14; ++i) cs4362a_write(chip, i, data->cs4362a_regs[i]); /* clear power down */ cs4398_write(chip, 8, CS4398_CPEN); cs4362a_write(chip, 0x01, CS4362A_CPEN); } static void xonar_d1_init(struct oxygen *chip) { struct xonar_cs43xx *data = chip->model_data; data->generic.anti_pop_delay = 800; data->generic.output_enable_bit = GPIO_D1_OUTPUT_ENABLE; data->cs4398_regs[2] = CS4398_FM_SINGLE | CS4398_DEM_NONE | CS4398_DIF_LJUST; data->cs4398_regs[4] = CS4398_MUTEP_LOW | CS4398_MUTE_B | CS4398_MUTE_A | CS4398_PAMUTE; data->cs4398_regs[5] = 60 * 2; data->cs4398_regs[6] = 60 * 2; data->cs4398_regs[7] = CS4398_RMP_DN | CS4398_RMP_UP | CS4398_ZERO_CROSS | CS4398_SOFT_RAMP; data->cs4362a_regs[4] = CS4362A_RMP_DN | CS4362A_DEM_NONE; data->cs4362a_regs[6] = CS4362A_FM_SINGLE | CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L; data->cs4362a_regs[7] = 60 | CS4362A_MUTE; data->cs4362a_regs[8] = 60 | CS4362A_MUTE; data->cs4362a_regs[9] = data->cs4362a_regs[6]; data->cs4362a_regs[10] = 60 | CS4362A_MUTE; data->cs4362a_regs[11] = 60 | CS4362A_MUTE; data->cs4362a_regs[12] = data->cs4362a_regs[6]; data->cs4362a_regs[13] = 60 | CS4362A_MUTE; data->cs4362a_regs[14] = 60 | CS4362A_MUTE; oxygen_write16(chip, OXYGEN_2WIRE_BUS_STATUS, OXYGEN_2WIRE_LENGTH_8 | OXYGEN_2WIRE_INTERRUPT_MASK | OXYGEN_2WIRE_SPEED_FAST); cs43xx_registers_init(chip); oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_D1_FRONT_PANEL | GPIO_D1_MAGIC | GPIO_D1_INPUT_ROUTE); oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_D1_FRONT_PANEL | GPIO_D1_INPUT_ROUTE); xonar_init_cs53x1(chip); xonar_enable_output(chip); snd_component_add(chip->card, "CS4398"); snd_component_add(chip->card, "CS4362A"); snd_component_add(chip->card, "CS5361"); } static void xonar_dx_init(struct oxygen *chip) { struct xonar_cs43xx *data = chip->model_data; data->generic.ext_power_reg = OXYGEN_GPI_DATA; data->generic.ext_power_int_reg = OXYGEN_GPI_INTERRUPT_MASK; data->generic.ext_power_bit = GPI_EXT_POWER; xonar_init_ext_power(chip); xonar_d1_init(chip); } static void xonar_d1_cleanup(struct oxygen *chip) { xonar_disable_output(chip); cs4362a_write(chip, 0x01, CS4362A_PDN | CS4362A_CPEN); oxygen_clear_bits8(chip, OXYGEN_FUNCTION, OXYGEN_FUNCTION_RESET_CODEC); } static void xonar_d1_suspend(struct oxygen *chip) { xonar_d1_cleanup(chip); } static void xonar_d1_resume(struct oxygen *chip) { oxygen_set_bits8(chip, OXYGEN_FUNCTION, OXYGEN_FUNCTION_RESET_CODEC); msleep(1); cs43xx_registers_init(chip); xonar_enable_output(chip); } static void set_cs43xx_params(struct oxygen *chip, struct snd_pcm_hw_params *params) { struct xonar_cs43xx *data = chip->model_data; u8 cs4398_fm, cs4362a_fm; if (params_rate(params) <= 50000) { cs4398_fm = CS4398_FM_SINGLE; cs4362a_fm = CS4362A_FM_SINGLE; } else if (params_rate(params) <= 100000) { cs4398_fm = CS4398_FM_DOUBLE; cs4362a_fm = CS4362A_FM_DOUBLE; } else { cs4398_fm = CS4398_FM_QUAD; cs4362a_fm = CS4362A_FM_QUAD; } cs4398_fm |= CS4398_DEM_NONE | CS4398_DIF_LJUST; cs4398_write_cached(chip, 2, cs4398_fm); cs4362a_fm |= data->cs4362a_regs[6] & ~CS4362A_FM_MASK; cs4362a_write_cached(chip, 6, cs4362a_fm); cs4362a_write_cached(chip, 12, cs4362a_fm); cs4362a_fm &= CS4362A_FM_MASK; cs4362a_fm |= data->cs4362a_regs[9] & ~CS4362A_FM_MASK; cs4362a_write_cached(chip, 9, cs4362a_fm); } static void update_cs4362a_volumes(struct oxygen *chip) { unsigned int i; u8 mute; mute = chip->dac_mute ? CS4362A_MUTE : 0; for (i = 0; i < 6; ++i) cs4362a_write_cached(chip, 7 + i + i / 2, (127 - chip->dac_volume[2 + i]) | mute); } static void update_cs43xx_volume(struct oxygen *chip) { cs4398_write_cached(chip, 5, (127 - chip->dac_volume[0]) * 2); cs4398_write_cached(chip, 6, (127 - chip->dac_volume[1]) * 2); update_cs4362a_volumes(chip); } static void update_cs43xx_mute(struct oxygen *chip) { u8 reg; reg = CS4398_MUTEP_LOW | CS4398_PAMUTE; if (chip->dac_mute) reg |= CS4398_MUTE_B | CS4398_MUTE_A; cs4398_write_cached(chip, 4, reg); update_cs4362a_volumes(chip); } static void update_cs43xx_center_lfe_mix(struct oxygen *chip, bool mixed) { struct xonar_cs43xx *data = chip->model_data; u8 reg; reg = data->cs4362a_regs[9] & ~CS4362A_ATAPI_MASK; if (mixed) reg |= CS4362A_ATAPI_B_LR | CS4362A_ATAPI_A_LR; else reg |= CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L; cs4362a_write_cached(chip, 9, reg); } static const struct snd_kcontrol_new front_panel_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Front Panel Playback Switch", .info = snd_ctl_boolean_mono_info, .get = xonar_gpio_bit_switch_get, .put = xonar_gpio_bit_switch_put, .private_value = GPIO_D1_FRONT_PANEL, }; static int rolloff_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info) { static const char *const names[2] = { "Fast Roll-off", "Slow Roll-off" }; return snd_ctl_enum_info(info, 1, 2, names); } static int rolloff_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; struct xonar_cs43xx *data = chip->model_data; value->value.enumerated.item[0] = (data->cs4398_regs[7] & CS4398_FILT_SEL) != 0; return 0; } static int rolloff_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; struct xonar_cs43xx *data = chip->model_data; int changed; u8 reg; mutex_lock(&chip->mutex); reg = data->cs4398_regs[7]; if (value->value.enumerated.item[0]) reg |= CS4398_FILT_SEL; else reg &= ~CS4398_FILT_SEL; changed = reg != data->cs4398_regs[7]; if (changed) { cs4398_write(chip, 7, reg); if (reg & CS4398_FILT_SEL) reg = data->cs4362a_regs[0x04] | CS4362A_FILT_SEL; else reg = data->cs4362a_regs[0x04] & ~CS4362A_FILT_SEL; cs4362a_write(chip, 0x04, reg); } mutex_unlock(&chip->mutex); return changed; } static const struct snd_kcontrol_new rolloff_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "DAC Filter Playback Enum", .info = rolloff_info, .get = rolloff_get, .put = rolloff_put, }; static void xonar_d1_line_mic_ac97_switch(struct oxygen *chip, unsigned int reg, unsigned int mute) { if (reg == AC97_LINE) { spin_lock_irq(&chip->reg_lock); oxygen_write16_masked(chip, OXYGEN_GPIO_DATA, mute ? GPIO_D1_INPUT_ROUTE : 0, GPIO_D1_INPUT_ROUTE); spin_unlock_irq(&chip->reg_lock); } } static const DECLARE_TLV_DB_SCALE(cs4362a_db_scale, -6000, 100, 0); static int xonar_d1_mixer_init(struct oxygen *chip) { int err; err = snd_ctl_add(chip->card, snd_ctl_new1(&front_panel_switch, chip)); if (err < 0) return err; err = snd_ctl_add(chip->card, snd_ctl_new1(&rolloff_control, chip)); if (err < 0) return err; return 0; } static void dump_cs4362a_registers(struct xonar_cs43xx *data, struct snd_info_buffer *buffer) { unsigned int i; snd_iprintf(buffer, "\nCS4362A:"); for (i = 1; i <= 14; ++i) snd_iprintf(buffer, " %02x", data->cs4362a_regs[i]); snd_iprintf(buffer, "\n"); } static void dump_d1_registers(struct oxygen *chip, struct snd_info_buffer *buffer) { struct xonar_cs43xx *data = chip->model_data; unsigned int i; snd_iprintf(buffer, "\nCS4398: 7?"); for (i = 2; i < 8; ++i) snd_iprintf(buffer, " %02x", data->cs4398_regs[i]); snd_iprintf(buffer, "\n"); dump_cs4362a_registers(data, buffer); } static const struct oxygen_model model_xonar_d1 = { .longname = "Asus Virtuoso 100", .chip = "AV200", .init = xonar_d1_init, .mixer_init = xonar_d1_mixer_init, .cleanup = xonar_d1_cleanup, .suspend = xonar_d1_suspend, .resume = xonar_d1_resume, .set_dac_params = set_cs43xx_params, .set_adc_params = xonar_set_cs53x1_params, .update_dac_volume = update_cs43xx_volume, .update_dac_mute = update_cs43xx_mute, .update_center_lfe_mix = update_cs43xx_center_lfe_mix, .ac97_switch = xonar_d1_line_mic_ac97_switch, .dump_registers = dump_d1_registers, .dac_tlv = cs4362a_db_scale, .model_data_size = sizeof(struct xonar_cs43xx), .device_config = PLAYBACK_0_TO_I2S | PLAYBACK_1_TO_SPDIF | CAPTURE_0_FROM_I2S_2 | AC97_FMIC_SWITCH, .dac_channels_pcm = 8, .dac_channels_mixer = 8, .dac_volume_min = 127 - 60, .dac_volume_max = 127, .function_flags = OXYGEN_FUNCTION_2WIRE, .dac_mclks = OXYGEN_MCLKS(256, 128, 128), .adc_mclks = OXYGEN_MCLKS(256, 128, 128), .dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST, .adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST, }; int __devinit get_xonar_cs43xx_model(struct oxygen *chip, const struct pci_device_id *id) { switch (id->subdevice) { case 0x834f: chip->model = model_xonar_d1; chip->model.shortname = "Xonar D1"; break; case 0x8275: case 0x8327: chip->model = model_xonar_d1; chip->model.shortname = "Xonar DX"; chip->model.init = xonar_dx_init; break; default: return -EINVAL; } return 0; }