- 根目录:
- drivers
- staging
- brcm80211
- util
- hndpmu.c
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <bcmdefs.h>
#include <bcmutils.h>
#include <siutils.h>
#include <bcmdevs.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <hndpmu.h>
#include "siutils_priv.h"
#define PMU_ERROR(args)
#ifdef BCMDBG
#define PMU_MSG(args) printk args
/* debug-only definitions */
/* #define BCMDBG_FORCEHT */
/* #define CHIPC_UART_ALWAYS_ON */
#else
#define PMU_MSG(args)
#endif /* BCMDBG */
/* To check in verbose debugging messages not intended
* to be on except on private builds.
*/
#define PMU_NONE(args)
/* PLL controls/clocks */
static void si_pmu1_pllinit0(si_t *sih, chipcregs_t *cc, u32 xtal);
static u32 si_pmu1_cpuclk0(si_t *sih, chipcregs_t *cc);
static u32 si_pmu1_alpclk0(si_t *sih, chipcregs_t *cc);
/* PMU resources */
static bool si_pmu_res_depfltr_bb(si_t *sih);
static bool si_pmu_res_depfltr_ncb(si_t *sih);
static bool si_pmu_res_depfltr_paldo(si_t *sih);
static bool si_pmu_res_depfltr_npaldo(si_t *sih);
static u32 si_pmu_res_deps(si_t *sih, chipcregs_t *cc, u32 rsrcs, bool all);
static uint si_pmu_res_uptime(si_t *sih, chipcregs_t *cc, u8 rsrc);
static void si_pmu_res_masks(si_t *sih, u32 * pmin, u32 * pmax);
static void si_pmu_spuravoid_pllupdate(si_t *sih, chipcregs_t *cc,
u8 spuravoid);
static void si_pmu_set_4330_plldivs(si_t *sih);
/* FVCO frequency */
#define FVCO_880 880000 /* 880MHz */
#define FVCO_1760 1760000 /* 1760MHz */
#define FVCO_1440 1440000 /* 1440MHz */
#define FVCO_960 960000 /* 960MHz */
/* Read/write a chipcontrol reg */
u32 si_pmu_chipcontrol(si_t *sih, uint reg, u32 mask, u32 val)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, chipcontrol_addr), ~0,
reg);
return si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, chipcontrol_data), mask, val);
}
/* Read/write a regcontrol reg */
u32 si_pmu_regcontrol(si_t *sih, uint reg, u32 mask, u32 val)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_addr), ~0,
reg);
return si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, regcontrol_data), mask, val);
}
/* Read/write a pllcontrol reg */
u32 si_pmu_pllcontrol(si_t *sih, uint reg, u32 mask, u32 val)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pllcontrol_addr), ~0,
reg);
return si_corereg(sih, SI_CC_IDX,
offsetof(chipcregs_t, pllcontrol_data), mask, val);
}
/* PMU PLL update */
void si_pmu_pllupd(si_t *sih)
{
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, pmucontrol),
PCTL_PLL_PLLCTL_UPD, PCTL_PLL_PLLCTL_UPD);
}
/* Setup switcher voltage */
void si_pmu_set_switcher_voltage(si_t *sih, u8 bb_voltage, u8 rf_voltage)
{
chipcregs_t *cc;
uint origidx;
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
W_REG(&cc->regcontrol_addr, 0x01);
W_REG(&cc->regcontrol_data, (u32) (bb_voltage & 0x1f) << 22);
W_REG(&cc->regcontrol_addr, 0x00);
W_REG(&cc->regcontrol_data, (u32) (rf_voltage & 0x1f) << 14);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void si_pmu_set_ldo_voltage(si_t *sih, u8 ldo, u8 voltage)
{
u8 sr_cntl_shift = 0, rc_shift = 0, shift = 0, mask = 0;
u8 addr = 0;
ASSERT(sih->cccaps & CC_CAP_PMU);
switch (sih->chip) {
case BCM4336_CHIP_ID:
switch (ldo) {
case SET_LDO_VOLTAGE_CLDO_PWM:
addr = 4;
rc_shift = 1;
mask = 0xf;
break;
case SET_LDO_VOLTAGE_CLDO_BURST:
addr = 4;
rc_shift = 5;
mask = 0xf;
break;
case SET_LDO_VOLTAGE_LNLDO1:
addr = 4;
rc_shift = 17;
mask = 0xf;
break;
default:
ASSERT(false);
return;
}
break;
case BCM4330_CHIP_ID:
switch (ldo) {
case SET_LDO_VOLTAGE_CBUCK_PWM:
addr = 3;
rc_shift = 0;
mask = 0x1f;
break;
default:
ASSERT(false);
break;
}
break;
default:
ASSERT(false);
return;
}
shift = sr_cntl_shift + rc_shift;
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_addr),
~0, addr);
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, regcontrol_data),
mask << shift, (voltage & mask) << shift);
}
/* d11 slow to fast clock transition time in slow clock cycles */
#define D11SCC_SLOW2FAST_TRANSITION 2
u16 si_pmu_fast_pwrup_delay(si_t *sih)
{
uint delay = PMU_MAX_TRANSITION_DLY;
chipcregs_t *cc;
uint origidx;
#ifdef BCMDBG
char chn[8];
chn[0] = 0; /* to suppress compile error */
#endif
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
switch (sih->chip) {
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
case BCM4331_CHIP_ID:
case BCM6362_CHIP_ID:
case BCM4313_CHIP_ID:
delay = ISSIM_ENAB(sih) ? 70 : 3700;
break;
case BCM4329_CHIP_ID:
if (ISSIM_ENAB(sih))
delay = 70;
else {
u32 ilp = si_ilp_clock(sih);
delay =
(si_pmu_res_uptime(sih, cc, RES4329_HT_AVAIL) +
D11SCC_SLOW2FAST_TRANSITION) * ((1000000 + ilp -
1) / ilp);
delay = (11 * delay) / 10;
}
break;
case BCM4319_CHIP_ID:
delay = ISSIM_ENAB(sih) ? 70 : 3700;
break;
case BCM4336_CHIP_ID:
if (ISSIM_ENAB(sih))
delay = 70;
else {
u32 ilp = si_ilp_clock(sih);
delay =
(si_pmu_res_uptime(sih, cc, RES4336_HT_AVAIL) +
D11SCC_SLOW2FAST_TRANSITION) * ((1000000 + ilp -
1) / ilp);
delay = (11 * delay) / 10;
}
break;
case BCM4330_CHIP_ID:
if (ISSIM_ENAB(sih))
delay = 70;
else {
u32 ilp = si_ilp_clock(sih);
delay =
(si_pmu_res_uptime(sih, cc, RES4330_HT_AVAIL) +
D11SCC_SLOW2FAST_TRANSITION) * ((1000000 + ilp -
1) / ilp);
delay = (11 * delay) / 10;
}
break;
default:
break;
}
/* Return to original core */
si_setcoreidx(sih, origidx);
return (u16) delay;
}
u32 si_pmu_force_ilp(si_t *sih, bool force)
{
chipcregs_t *cc;
uint origidx;
u32 oldpmucontrol;
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
oldpmucontrol = R_REG(&cc->pmucontrol);
if (force)
W_REG(&cc->pmucontrol, oldpmucontrol &
~(PCTL_HT_REQ_EN | PCTL_ALP_REQ_EN));
else
W_REG(&cc->pmucontrol, oldpmucontrol |
(PCTL_HT_REQ_EN | PCTL_ALP_REQ_EN));
/* Return to original core */
si_setcoreidx(sih, origidx);
return oldpmucontrol;
}
/* Setup resource up/down timers */
typedef struct {
u8 resnum;
u16 updown;
} pmu_res_updown_t;
/* Change resource dependancies masks */
typedef struct {
u32 res_mask; /* resources (chip specific) */
s8 action; /* action */
u32 depend_mask; /* changes to the dependancies mask */
bool(*filter) (si_t *sih); /* action is taken when filter is NULL or return true */
} pmu_res_depend_t;
/* Resource dependancies mask change action */
#define RES_DEPEND_SET 0 /* Override the dependancies mask */
#define RES_DEPEND_ADD 1 /* Add to the dependancies mask */
#define RES_DEPEND_REMOVE -1 /* Remove from the dependancies mask */
static const pmu_res_updown_t bcm4328a0_res_updown[] = {
{
RES4328_EXT_SWITCHER_PWM, 0x0101}, {
RES4328_BB_SWITCHER_PWM, 0x1f01}, {
RES4328_BB_SWITCHER_BURST, 0x010f}, {
RES4328_BB_EXT_SWITCHER_BURST, 0x0101}, {
RES4328_ILP_REQUEST, 0x0202}, {
RES4328_RADIO_SWITCHER_PWM, 0x0f01}, {
RES4328_RADIO_SWITCHER_BURST, 0x0f01}, {
RES4328_ROM_SWITCH, 0x0101}, {
RES4328_PA_REF_LDO, 0x0f01}, {
RES4328_RADIO_LDO, 0x0f01}, {
RES4328_AFE_LDO, 0x0f01}, {
RES4328_PLL_LDO, 0x0f01}, {
RES4328_BG_FILTBYP, 0x0101}, {
RES4328_TX_FILTBYP, 0x0101}, {
RES4328_RX_FILTBYP, 0x0101}, {
RES4328_XTAL_PU, 0x0101}, {
RES4328_XTAL_EN, 0xa001}, {
RES4328_BB_PLL_FILTBYP, 0x0101}, {
RES4328_RF_PLL_FILTBYP, 0x0101}, {
RES4328_BB_PLL_PU, 0x0701}
};
static const pmu_res_depend_t bcm4328a0_res_depend[] = {
/* Adjust ILP request resource not to force ext/BB switchers into burst mode */
{
PMURES_BIT(RES4328_ILP_REQUEST),
RES_DEPEND_SET,
PMURES_BIT(RES4328_EXT_SWITCHER_PWM) |
PMURES_BIT(RES4328_BB_SWITCHER_PWM), NULL}
};
static const pmu_res_updown_t bcm4325a0_res_updown_qt[] = {
{
RES4325_HT_AVAIL, 0x0300}, {
RES4325_BBPLL_PWRSW_PU, 0x0101}, {
RES4325_RFPLL_PWRSW_PU, 0x0101}, {
RES4325_ALP_AVAIL, 0x0100}, {
RES4325_XTAL_PU, 0x1000}, {
RES4325_LNLDO1_PU, 0x0800}, {
RES4325_CLDO_CBUCK_PWM, 0x0101}, {
RES4325_CBUCK_PWM, 0x0803}
};
static const pmu_res_updown_t bcm4325a0_res_updown[] = {
{
RES4325_XTAL_PU, 0x1501}
};
static const pmu_res_depend_t bcm4325a0_res_depend[] = {
/* Adjust OTP PU resource dependencies - remove BB BURST */
{
PMURES_BIT(RES4325_OTP_PU),
RES_DEPEND_REMOVE,
PMURES_BIT(RES4325_BUCK_BOOST_BURST), NULL},
/* Adjust ALP/HT Avail resource dependencies - bring up BB along if it is used. */
{
PMURES_BIT(RES4325_ALP_AVAIL) | PMURES_BIT(RES4325_HT_AVAIL),
RES_DEPEND_ADD,
PMURES_BIT(RES4325_BUCK_BOOST_BURST) |
PMURES_BIT(RES4325_BUCK_BOOST_PWM), si_pmu_res_depfltr_bb},
/* Adjust HT Avail resource dependencies - bring up RF switches along with HT. */
{
PMURES_BIT(RES4325_HT_AVAIL),
RES_DEPEND_ADD,
PMURES_BIT(RES4325_RX_PWRSW_PU) |
PMURES_BIT(RES4325_TX_PWRSW_PU) |
PMURES_BIT(RES4325_LOGEN_PWRSW_PU) |
PMURES_BIT(RES4325_AFE_PWRSW_PU), NULL},
/* Adjust ALL resource dependencies - remove CBUCK dependancies if it is not used. */
{
PMURES_BIT(RES4325_ILP_REQUEST) |
PMURES_BIT(RES4325_ABUCK_BURST) |
PMURES_BIT(RES4325_ABUCK_PWM) |
PMURES_BIT(RES4325_LNLDO1_PU) |
PMURES_BIT(RES4325C1_LNLDO2_PU) |
PMURES_BIT(RES4325_XTAL_PU) |
PMURES_BIT(RES4325_ALP_AVAIL) |
PMURES_BIT(RES4325_RX_PWRSW_PU) |
PMURES_BIT(RES4325_TX_PWRSW_PU) |
PMURES_BIT(RES4325_RFPLL_PWRSW_PU) |
PMURES_BIT(RES4325_LOGEN_PWRSW_PU) |
PMURES_BIT(RES4325_AFE_PWRSW_PU) |
PMURES_BIT(RES4325_BBPLL_PWRSW_PU) |
PMURES_BIT(RES4325_HT_AVAIL), RES_DEPEND_REMOVE,
PMURES_BIT(RES4325B0_CBUCK_LPOM) |
PMURES_BIT(RES4325B0_CBUCK_BURST) |
PMURES_BIT(RES4325B0_CBUCK_PWM), si_pmu_res_depfltr_ncb}
};
static const pmu_res_updown_t bcm4315a0_res_updown_qt[] = {
{
RES4315_HT_AVAIL, 0x0101}, {
RES4315_XTAL_PU, 0x0100}, {
RES4315_LNLDO1_PU, 0x0100}, {
RES4315_PALDO_PU, 0x0100}, {
RES4315_CLDO_PU, 0x0100}, {
RES4315_CBUCK_PWM, 0x0100}, {
RES4315_CBUCK_BURST, 0x0100}, {
RES4315_CBUCK_LPOM, 0x0100}
};
static const pmu_res_updown_t bcm4315a0_res_updown[] = {
{
RES4315_XTAL_PU, 0x2501}
};
static const pmu_res_depend_t bcm4315a0_res_depend[] = {
/* Adjust OTP PU resource dependencies - not need PALDO unless write */
{
PMURES_BIT(RES4315_OTP_PU),
RES_DEPEND_REMOVE,
PMURES_BIT(RES4315_PALDO_PU), si_pmu_res_depfltr_npaldo},
/* Adjust ALP/HT Avail resource dependencies - bring up PALDO along if it is used. */
{
PMURES_BIT(RES4315_ALP_AVAIL) | PMURES_BIT(RES4315_HT_AVAIL),
RES_DEPEND_ADD,
PMURES_BIT(RES4315_PALDO_PU), si_pmu_res_depfltr_paldo},
/* Adjust HT Avail resource dependencies - bring up RF switches along with HT. */
{
PMURES_BIT(RES4315_HT_AVAIL),
RES_DEPEND_ADD,
PMURES_BIT(RES4315_RX_PWRSW_PU) |
PMURES_BIT(RES4315_TX_PWRSW_PU) |
PMURES_BIT(RES4315_LOGEN_PWRSW_PU) |
PMURES_BIT(RES4315_AFE_PWRSW_PU), NULL},
/* Adjust ALL resource dependencies - remove CBUCK dependancies if it is not used. */
{
PMURES_BIT(RES4315_CLDO_PU) | PMURES_BIT(RES4315_ILP_REQUEST) |
PMURES_BIT(RES4315_LNLDO1_PU) |
PMURES_BIT(RES4315_OTP_PU) |
PMURES_BIT(RES4315_LNLDO2_PU) |
PMURES_BIT(RES4315_XTAL_PU) |
PMURES_BIT(RES4315_ALP_AVAIL) |
PMURES_BIT(RES4315_RX_PWRSW_PU) |
PMURES_BIT(RES4315_TX_PWRSW_PU) |
PMURES_BIT(RES4315_RFPLL_PWRSW_PU) |
PMURES_BIT(RES4315_LOGEN_PWRSW_PU) |
PMURES_BIT(RES4315_AFE_PWRSW_PU) |
PMURES_BIT(RES4315_BBPLL_PWRSW_PU) |
PMURES_BIT(RES4315_HT_AVAIL), RES_DEPEND_REMOVE,
PMURES_BIT(RES4315_CBUCK_LPOM) |
PMURES_BIT(RES4315_CBUCK_BURST) |
PMURES_BIT(RES4315_CBUCK_PWM), si_pmu_res_depfltr_ncb}
};
/* 4329 specific. needs to come back this issue later */
static const pmu_res_updown_t bcm4329_res_updown[] = {
{
RES4329_XTAL_PU, 0x1501}
};
static const pmu_res_depend_t bcm4329_res_depend[] = {
/* Adjust HT Avail resource dependencies */
{
PMURES_BIT(RES4329_HT_AVAIL),
RES_DEPEND_ADD,
PMURES_BIT(RES4329_CBUCK_LPOM) |
PMURES_BIT(RES4329_CBUCK_BURST) |
PMURES_BIT(RES4329_CBUCK_PWM) |
PMURES_BIT(RES4329_CLDO_PU) |
PMURES_BIT(RES4329_PALDO_PU) |
PMURES_BIT(RES4329_LNLDO1_PU) |
PMURES_BIT(RES4329_XTAL_PU) |
PMURES_BIT(RES4329_ALP_AVAIL) |
PMURES_BIT(RES4329_RX_PWRSW_PU) |
PMURES_BIT(RES4329_TX_PWRSW_PU) |
PMURES_BIT(RES4329_RFPLL_PWRSW_PU) |
PMURES_BIT(RES4329_LOGEN_PWRSW_PU) |
PMURES_BIT(RES4329_AFE_PWRSW_PU) |
PMURES_BIT(RES4329_BBPLL_PWRSW_PU), NULL}
};
static const pmu_res_updown_t bcm4319a0_res_updown_qt[] = {
{
RES4319_HT_AVAIL, 0x0101}, {
RES4319_XTAL_PU, 0x0100}, {
RES4319_LNLDO1_PU, 0x0100}, {
RES4319_PALDO_PU, 0x0100}, {
RES4319_CLDO_PU, 0x0100}, {
RES4319_CBUCK_PWM, 0x0100}, {
RES4319_CBUCK_BURST, 0x0100}, {
RES4319_CBUCK_LPOM, 0x0100}
};
static const pmu_res_updown_t bcm4319a0_res_updown[] = {
{
RES4319_XTAL_PU, 0x3f01}
};
static const pmu_res_depend_t bcm4319a0_res_depend[] = {
/* Adjust OTP PU resource dependencies - not need PALDO unless write */
{
PMURES_BIT(RES4319_OTP_PU),
RES_DEPEND_REMOVE,
PMURES_BIT(RES4319_PALDO_PU), si_pmu_res_depfltr_npaldo},
/* Adjust HT Avail resource dependencies - bring up PALDO along if it is used. */
{
PMURES_BIT(RES4319_HT_AVAIL),
RES_DEPEND_ADD,
PMURES_BIT(RES4319_PALDO_PU), si_pmu_res_depfltr_paldo},
/* Adjust HT Avail resource dependencies - bring up RF switches along with HT. */
{
PMURES_BIT(RES4319_HT_AVAIL),
RES_DEPEND_ADD,
PMURES_BIT(RES4319_RX_PWRSW_PU) |
PMURES_BIT(RES4319_TX_PWRSW_PU) |
PMURES_BIT(RES4319_RFPLL_PWRSW_PU) |
PMURES_BIT(RES4319_LOGEN_PWRSW_PU) |
PMURES_BIT(RES4319_AFE_PWRSW_PU), NULL}
};
static const pmu_res_updown_t bcm4336a0_res_updown_qt[] = {
{
RES4336_HT_AVAIL, 0x0101}, {
RES4336_XTAL_PU, 0x0100}, {
RES4336_CLDO_PU, 0x0100}, {
RES4336_CBUCK_PWM, 0x0100}, {
RES4336_CBUCK_BURST, 0x0100}, {
RES4336_CBUCK_LPOM, 0x0100}
};
static const pmu_res_updown_t bcm4336a0_res_updown[] = {
{
RES4336_HT_AVAIL, 0x0D01}
};
static const pmu_res_depend_t bcm4336a0_res_depend[] = {
/* Just a dummy entry for now */
{
PMURES_BIT(RES4336_RSVD), RES_DEPEND_ADD, 0, NULL}
};
static const pmu_res_updown_t bcm4330a0_res_updown_qt[] = {
{
RES4330_HT_AVAIL, 0x0101}, {
RES4330_XTAL_PU, 0x0100}, {
RES4330_CLDO_PU, 0x0100}, {
RES4330_CBUCK_PWM, 0x0100}, {
RES4330_CBUCK_BURST, 0x0100}, {
RES4330_CBUCK_LPOM, 0x0100}
};
static const pmu_res_updown_t bcm4330a0_res_updown[] = {
{
RES4330_HT_AVAIL, 0x0e02}
};
static const pmu_res_depend_t bcm4330a0_res_depend[] = {
/* Just a dummy entry for now */
{
PMURES_BIT(RES4330_HT_AVAIL), RES_DEPEND_ADD, 0, NULL}
};
/* true if the power topology uses the buck boost to provide 3.3V to VDDIO_RF and WLAN PA */
static bool si_pmu_res_depfltr_bb(si_t *sih)
{
return (sih->boardflags & BFL_BUCKBOOST) != 0;
}
/* true if the power topology doesn't use the cbuck. Key on chiprev also if the chip is BCM4325. */
static bool si_pmu_res_depfltr_ncb(si_t *sih)
{
return (sih->boardflags & BFL_NOCBUCK) != 0;
}
/* true if the power topology uses the PALDO */
static bool si_pmu_res_depfltr_paldo(si_t *sih)
{
return (sih->boardflags & BFL_PALDO) != 0;
}
/* true if the power topology doesn't use the PALDO */
static bool si_pmu_res_depfltr_npaldo(si_t *sih)
{
return (sih->boardflags & BFL_PALDO) == 0;
}
#define BCM94325_BBVDDIOSD_BOARDS(sih) (sih->boardtype == BCM94325DEVBU_BOARD || \
sih->boardtype == BCM94325BGABU_BOARD)
/* Determine min/max rsrc masks. Value 0 leaves hardware at default. */
static void si_pmu_res_masks(si_t *sih, u32 * pmin, u32 * pmax)
{
u32 min_mask = 0, max_mask = 0;
uint rsrcs;
char *val;
/* # resources */
rsrcs = (sih->pmucaps & PCAP_RC_MASK) >> PCAP_RC_SHIFT;
/* determine min/max rsrc masks */
switch (sih->chip) {
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
case BCM4331_CHIP_ID:
case BCM6362_CHIP_ID:
/* ??? */
break;
case BCM4329_CHIP_ID:
/* 4329 spedific issue. Needs to come back this issue later */
/* Down to save the power. */
min_mask =
PMURES_BIT(RES4329_CBUCK_LPOM) |
PMURES_BIT(RES4329_CLDO_PU);
/* Allow (but don't require) PLL to turn on */
max_mask = 0x3ff63e;
break;
case BCM4319_CHIP_ID:
/* We only need a few resources to be kept on all the time */
min_mask = PMURES_BIT(RES4319_CBUCK_LPOM) |
PMURES_BIT(RES4319_CLDO_PU);
/* Allow everything else to be turned on upon requests */
max_mask = ~(~0 << rsrcs);
break;
case BCM4336_CHIP_ID:
/* Down to save the power. */
min_mask =
PMURES_BIT(RES4336_CBUCK_LPOM) | PMURES_BIT(RES4336_CLDO_PU)
| PMURES_BIT(RES4336_LDO3P3_PU) | PMURES_BIT(RES4336_OTP_PU)
| PMURES_BIT(RES4336_DIS_INT_RESET_PD);
/* Allow (but don't require) PLL to turn on */
max_mask = 0x1ffffff;
break;
case BCM4330_CHIP_ID:
/* Down to save the power. */
min_mask =
PMURES_BIT(RES4330_CBUCK_LPOM) | PMURES_BIT(RES4330_CLDO_PU)
| PMURES_BIT(RES4330_DIS_INT_RESET_PD) |
PMURES_BIT(RES4330_LDO3P3_PU) | PMURES_BIT(RES4330_OTP_PU);
/* Allow (but don't require) PLL to turn on */
max_mask = 0xfffffff;
break;
case BCM4313_CHIP_ID:
min_mask = PMURES_BIT(RES4313_BB_PU_RSRC) |
PMURES_BIT(RES4313_XTAL_PU_RSRC) |
PMURES_BIT(RES4313_ALP_AVAIL_RSRC) |
PMURES_BIT(RES4313_BB_PLL_PWRSW_RSRC);
max_mask = 0xffff;
break;
default:
break;
}
/* Apply nvram override to min mask */
val = getvar(NULL, "rmin");
if (val != NULL) {
PMU_MSG(("Applying rmin=%s to min_mask\n", val));
min_mask = (u32) simple_strtoul(val, NULL, 0);
}
/* Apply nvram override to max mask */
val = getvar(NULL, "rmax");
if (val != NULL) {
PMU_MSG(("Applying rmax=%s to max_mask\n", val));
max_mask = (u32) simple_strtoul(val, NULL, 0);
}
*pmin = min_mask;
*pmax = max_mask;
}
/* initialize PMU resources */
void si_pmu_res_init(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
const pmu_res_updown_t *pmu_res_updown_table = NULL;
uint pmu_res_updown_table_sz = 0;
const pmu_res_depend_t *pmu_res_depend_table = NULL;
uint pmu_res_depend_table_sz = 0;
u32 min_mask = 0, max_mask = 0;
char name[8], *val;
uint i, rsrcs;
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
switch (sih->chip) {
case BCM4329_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = NULL;
pmu_res_updown_table_sz = 0;
} else {
pmu_res_updown_table = bcm4329_res_updown;
pmu_res_updown_table_sz = ARRAY_SIZE(bcm4329_res_updown);
}
/* Optimize resources dependencies */
pmu_res_depend_table = bcm4329_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4329_res_depend);
break;
case BCM4319_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = bcm4319a0_res_updown_qt;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4319a0_res_updown_qt);
} else {
pmu_res_updown_table = bcm4319a0_res_updown;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4319a0_res_updown);
}
/* Optimize resources dependancies masks */
pmu_res_depend_table = bcm4319a0_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4319a0_res_depend);
break;
case BCM4336_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = bcm4336a0_res_updown_qt;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4336a0_res_updown_qt);
} else {
pmu_res_updown_table = bcm4336a0_res_updown;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4336a0_res_updown);
}
/* Optimize resources dependancies masks */
pmu_res_depend_table = bcm4336a0_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4336a0_res_depend);
break;
case BCM4330_CHIP_ID:
/* Optimize resources up/down timers */
if (ISSIM_ENAB(sih)) {
pmu_res_updown_table = bcm4330a0_res_updown_qt;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4330a0_res_updown_qt);
} else {
pmu_res_updown_table = bcm4330a0_res_updown;
pmu_res_updown_table_sz =
ARRAY_SIZE(bcm4330a0_res_updown);
}
/* Optimize resources dependancies masks */
pmu_res_depend_table = bcm4330a0_res_depend;
pmu_res_depend_table_sz = ARRAY_SIZE(bcm4330a0_res_depend);
break;
default:
break;
}
/* # resources */
rsrcs = (sih->pmucaps & PCAP_RC_MASK) >> PCAP_RC_SHIFT;
/* Program up/down timers */
while (pmu_res_updown_table_sz--) {
ASSERT(pmu_res_updown_table != NULL);
PMU_MSG(("Changing rsrc %d res_updn_timer to 0x%x\n",
pmu_res_updown_table[pmu_res_updown_table_sz].resnum,
pmu_res_updown_table[pmu_res_updown_table_sz].updown));
W_REG(&cc->res_table_sel,
pmu_res_updown_table[pmu_res_updown_table_sz].resnum);
W_REG(&cc->res_updn_timer,
pmu_res_updown_table[pmu_res_updown_table_sz].updown);
}
/* Apply nvram overrides to up/down timers */
for (i = 0; i < rsrcs; i++) {
snprintf(name, sizeof(name), "r%dt", i);
val = getvar(NULL, name);
if (val == NULL)
continue;
PMU_MSG(("Applying %s=%s to rsrc %d res_updn_timer\n", name,
val, i));
W_REG(&cc->res_table_sel, (u32) i);
W_REG(&cc->res_updn_timer,
(u32) simple_strtoul(val, NULL, 0));
}
/* Program resource dependencies table */
while (pmu_res_depend_table_sz--) {
ASSERT(pmu_res_depend_table != NULL);
if (pmu_res_depend_table[pmu_res_depend_table_sz].filter != NULL
&& !(pmu_res_depend_table[pmu_res_depend_table_sz].
filter) (sih))
continue;
for (i = 0; i < rsrcs; i++) {
if ((pmu_res_depend_table[pmu_res_depend_table_sz].
res_mask & PMURES_BIT(i)) == 0)
continue;
W_REG(&cc->res_table_sel, i);
switch (pmu_res_depend_table[pmu_res_depend_table_sz].
action) {
case RES_DEPEND_SET:
PMU_MSG(("Changing rsrc %d res_dep_mask to 0x%x\n", i, pmu_res_depend_table[pmu_res_depend_table_sz].depend_mask));
W_REG(&cc->res_dep_mask,
pmu_res_depend_table
[pmu_res_depend_table_sz].depend_mask);
break;
case RES_DEPEND_ADD:
PMU_MSG(("Adding 0x%x to rsrc %d res_dep_mask\n", pmu_res_depend_table[pmu_res_depend_table_sz].depend_mask, i));
OR_REG(&cc->res_dep_mask,
pmu_res_depend_table
[pmu_res_depend_table_sz].depend_mask);
break;
case RES_DEPEND_REMOVE:
PMU_MSG(("Removing 0x%x from rsrc %d res_dep_mask\n", pmu_res_depend_table[pmu_res_depend_table_sz].depend_mask, i));
AND_REG(&cc->res_dep_mask,
~pmu_res_depend_table
[pmu_res_depend_table_sz].depend_mask);
break;
default:
ASSERT(0);
break;
}
}
}
/* Apply nvram overrides to dependancies masks */
for (i = 0; i < rsrcs; i++) {
snprintf(name, sizeof(name), "r%dd", i);
val = getvar(NULL, name);
if (val == NULL)
continue;
PMU_MSG(("Applying %s=%s to rsrc %d res_dep_mask\n", name, val,
i));
W_REG(&cc->res_table_sel, (u32) i);
W_REG(&cc->res_dep_mask,
(u32) simple_strtoul(val, NULL, 0));
}
/* Determine min/max rsrc masks */
si_pmu_res_masks(sih, &min_mask, &max_mask);
/* It is required to program max_mask first and then min_mask */
/* Program max resource mask */
if (max_mask) {
PMU_MSG(("Changing max_res_mask to 0x%x\n", max_mask));
W_REG(&cc->max_res_mask, max_mask);
}
/* Program min resource mask */
if (min_mask) {
PMU_MSG(("Changing min_res_mask to 0x%x\n", min_mask));
W_REG(&cc->min_res_mask, min_mask);
}
/* Add some delay; allow resources to come up and settle. */
mdelay(2);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* setup pll and query clock speed */
typedef struct {
u16 freq;
u8 xf;
u8 wbint;
u32 wbfrac;
} pmu0_xtaltab0_t;
/* the following table is based on 880Mhz fvco */
static const pmu0_xtaltab0_t pmu0_xtaltab0[] = {
{
12000, 1, 73, 349525}, {
13000, 2, 67, 725937}, {
14400, 3, 61, 116508}, {
15360, 4, 57, 305834}, {
16200, 5, 54, 336579}, {
16800, 6, 52, 399457}, {
19200, 7, 45, 873813}, {
19800, 8, 44, 466033}, {
20000, 9, 44, 0}, {
25000, 10, 70, 419430}, {
26000, 11, 67, 725937}, {
30000, 12, 58, 699050}, {
38400, 13, 45, 873813}, {
40000, 14, 45, 0}, {
0, 0, 0, 0}
};
#define PMU0_XTAL0_DEFAULT 8
/* setup pll and query clock speed */
typedef struct {
u16 fref;
u8 xf;
u8 p1div;
u8 p2div;
u8 ndiv_int;
u32 ndiv_frac;
} pmu1_xtaltab0_t;
static const pmu1_xtaltab0_t pmu1_xtaltab0_880_4329[] = {
{
12000, 1, 3, 22, 0x9, 0xFFFFEF}, {
13000, 2, 1, 6, 0xb, 0x483483}, {
14400, 3, 1, 10, 0xa, 0x1C71C7}, {
15360, 4, 1, 5, 0xb, 0x755555}, {
16200, 5, 1, 10, 0x5, 0x6E9E06}, {
16800, 6, 1, 10, 0x5, 0x3Cf3Cf}, {
19200, 7, 1, 4, 0xb, 0x755555}, {
19800, 8, 1, 11, 0x4, 0xA57EB}, {
20000, 9, 1, 11, 0x4, 0x0}, {
24000, 10, 3, 11, 0xa, 0x0}, {
25000, 11, 5, 16, 0xb, 0x0}, {
26000, 12, 1, 1, 0x21, 0xD89D89}, {
30000, 13, 3, 8, 0xb, 0x0}, {
37400, 14, 3, 1, 0x46, 0x969696}, {
38400, 15, 1, 1, 0x16, 0xEAAAAA}, {
40000, 16, 1, 2, 0xb, 0}, {
0, 0, 0, 0, 0, 0}
};
/* the following table is based on 880Mhz fvco */
static const pmu1_xtaltab0_t pmu1_xtaltab0_880[] = {
{
12000, 1, 3, 22, 0x9, 0xFFFFEF}, {
13000, 2, 1, 6, 0xb, 0x483483}, {
14400, 3, 1, 10, 0xa, 0x1C71C7}, {
15360, 4, 1, 5, 0xb, 0x755555}, {
16200, 5, 1, 10, 0x5, 0x6E9E06}, {
16800, 6, 1, 10, 0x5, 0x3Cf3Cf}, {
19200, 7, 1, 4, 0xb, 0x755555}, {
19800, 8, 1, 11, 0x4, 0xA57EB}, {
20000, 9, 1, 11, 0x4, 0x0}, {
24000, 10, 3, 11, 0xa, 0x0}, {
25000, 11, 5, 16, 0xb, 0x0}, {
26000, 12, 1, 2, 0x10, 0xEC4EC4}, {
30000, 13, 3, 8, 0xb, 0x0}, {
33600, 14, 1, 2, 0xd, 0x186186}, {
38400, 15, 1, 2, 0xb, 0x755555}, {
40000, 16, 1, 2, 0xb, 0}, {
0, 0, 0, 0, 0, 0}
};
#define PMU1_XTALTAB0_880_12000K 0
#define PMU1_XTALTAB0_880_13000K 1
#define PMU1_XTALTAB0_880_14400K 2
#define PMU1_XTALTAB0_880_15360K 3
#define PMU1_XTALTAB0_880_16200K 4
#define PMU1_XTALTAB0_880_16800K 5
#define PMU1_XTALTAB0_880_19200K 6
#define PMU1_XTALTAB0_880_19800K 7
#define PMU1_XTALTAB0_880_20000K 8
#define PMU1_XTALTAB0_880_24000K 9
#define PMU1_XTALTAB0_880_25000K 10
#define PMU1_XTALTAB0_880_26000K 11
#define PMU1_XTALTAB0_880_30000K 12
#define PMU1_XTALTAB0_880_37400K 13
#define PMU1_XTALTAB0_880_38400K 14
#define PMU1_XTALTAB0_880_40000K 15
/* the following table is based on 1760Mhz fvco */
static const pmu1_xtaltab0_t pmu1_xtaltab0_1760[] = {
{
12000, 1, 3, 44, 0x9, 0xFFFFEF}, {
13000, 2, 1, 12, 0xb, 0x483483}, {
14400, 3, 1, 20, 0xa, 0x1C71C7}, {
15360, 4, 1, 10, 0xb, 0x755555}, {
16200, 5, 1, 20, 0x5, 0x6E9E06}, {
16800, 6, 1, 20, 0x5, 0x3Cf3Cf}, {
19200, 7, 1, 18, 0x5, 0x17B425}, {
19800, 8, 1, 22, 0x4, 0xA57EB}, {
20000, 9, 1, 22, 0x4, 0x0}, {
24000, 10, 3, 22, 0xa, 0x0}, {
25000, 11, 5, 32, 0xb, 0x0}, {
26000, 12, 1, 4, 0x10, 0xEC4EC4}, {
30000, 13, 3, 16, 0xb, 0x0}, {
38400, 14, 1, 10, 0x4, 0x955555}, {
40000, 15, 1, 4, 0xb, 0}, {
0, 0, 0, 0, 0, 0}
};
/* table index */
#define PMU1_XTALTAB0_1760_12000K 0
#define PMU1_XTALTAB0_1760_13000K 1
#define PMU1_XTALTAB0_1760_14400K 2
#define PMU1_XTALTAB0_1760_15360K 3
#define PMU1_XTALTAB0_1760_16200K 4
#define PMU1_XTALTAB0_1760_16800K 5
#define PMU1_XTALTAB0_1760_19200K 6
#define PMU1_XTALTAB0_1760_19800K 7
#define PMU1_XTALTAB0_1760_20000K 8
#define PMU1_XTALTAB0_1760_24000K 9
#define PMU1_XTALTAB0_1760_25000K 10
#define PMU1_XTALTAB0_1760_26000K 11
#define PMU1_XTALTAB0_1760_30000K 12
#define PMU1_XTALTAB0_1760_38400K 13
#define PMU1_XTALTAB0_1760_40000K 14
/* the following table is based on 1440Mhz fvco */
static const pmu1_xtaltab0_t pmu1_xtaltab0_1440[] = {
{
12000, 1, 1, 1, 0x78, 0x0}, {
13000, 2, 1, 1, 0x6E, 0xC4EC4E}, {
14400, 3, 1, 1, 0x64, 0x0}, {
15360, 4, 1, 1, 0x5D, 0xC00000}, {
16200, 5, 1, 1, 0x58, 0xE38E38}, {
16800, 6, 1, 1, 0x55, 0xB6DB6D}, {
19200, 7, 1, 1, 0x4B, 0}, {
19800, 8, 1, 1, 0x48, 0xBA2E8B}, {
20000, 9, 1, 1, 0x48, 0x0}, {
25000, 10, 1, 1, 0x39, 0x999999}, {
26000, 11, 1, 1, 0x37, 0x627627}, {
30000, 12, 1, 1, 0x30, 0x0}, {
37400, 13, 2, 1, 0x4D, 0x15E76}, {
38400, 13, 2, 1, 0x4B, 0x0}, {
40000, 14, 2, 1, 0x48, 0x0}, {
48000, 15, 2, 1, 0x3c, 0x0}, {
0, 0, 0, 0, 0, 0}
};
/* table index */
#define PMU1_XTALTAB0_1440_12000K 0
#define PMU1_XTALTAB0_1440_13000K 1
#define PMU1_XTALTAB0_1440_14400K 2
#define PMU1_XTALTAB0_1440_15360K 3
#define PMU1_XTALTAB0_1440_16200K 4
#define PMU1_XTALTAB0_1440_16800K 5
#define PMU1_XTALTAB0_1440_19200K 6
#define PMU1_XTALTAB0_1440_19800K 7
#define PMU1_XTALTAB0_1440_20000K 8
#define PMU1_XTALTAB0_1440_25000K 9
#define PMU1_XTALTAB0_1440_26000K 10
#define PMU1_XTALTAB0_1440_30000K 11
#define PMU1_XTALTAB0_1440_37400K 12
#define PMU1_XTALTAB0_1440_38400K 13
#define PMU1_XTALTAB0_1440_40000K 14
#define PMU1_XTALTAB0_1440_48000K 15
#define XTAL_FREQ_24000MHZ 24000
#define XTAL_FREQ_30000MHZ 30000
#define XTAL_FREQ_37400MHZ 37400
#define XTAL_FREQ_48000MHZ 48000
static const pmu1_xtaltab0_t pmu1_xtaltab0_960[] = {
{
12000, 1, 1, 1, 0x50, 0x0}, {
13000, 2, 1, 1, 0x49, 0xD89D89}, {
14400, 3, 1, 1, 0x42, 0xAAAAAA}, {
15360, 4, 1, 1, 0x3E, 0x800000}, {
16200, 5, 1, 1, 0x39, 0x425ED0}, {
16800, 6, 1, 1, 0x39, 0x249249}, {
19200, 7, 1, 1, 0x32, 0x0}, {
19800, 8, 1, 1, 0x30, 0x7C1F07}, {
20000, 9, 1, 1, 0x30, 0x0}, {
25000, 10, 1, 1, 0x26, 0x666666}, {
26000, 11, 1, 1, 0x24, 0xEC4EC4}, {
30000, 12, 1, 1, 0x20, 0x0}, {
37400, 13, 2, 1, 0x33, 0x563EF9}, {
38400, 14, 2, 1, 0x32, 0x0}, {
40000, 15, 2, 1, 0x30, 0x0}, {
48000, 16, 2, 1, 0x28, 0x0}, {
0, 0, 0, 0, 0, 0}
};
/* table index */
#define PMU1_XTALTAB0_960_12000K 0
#define PMU1_XTALTAB0_960_13000K 1
#define PMU1_XTALTAB0_960_14400K 2
#define PMU1_XTALTAB0_960_15360K 3
#define PMU1_XTALTAB0_960_16200K 4
#define PMU1_XTALTAB0_960_16800K 5
#define PMU1_XTALTAB0_960_19200K 6
#define PMU1_XTALTAB0_960_19800K 7
#define PMU1_XTALTAB0_960_20000K 8
#define PMU1_XTALTAB0_960_25000K 9
#define PMU1_XTALTAB0_960_26000K 10
#define PMU1_XTALTAB0_960_30000K 11
#define PMU1_XTALTAB0_960_37400K 12
#define PMU1_XTALTAB0_960_38400K 13
#define PMU1_XTALTAB0_960_40000K 14
#define PMU1_XTALTAB0_960_48000K 15
/* select xtal table for each chip */
static const pmu1_xtaltab0_t *si_pmu1_xtaltab0(si_t *sih)
{
#ifdef BCMDBG
char chn[8];
#endif
switch (sih->chip) {
case BCM4329_CHIP_ID:
return pmu1_xtaltab0_880_4329;
case BCM4319_CHIP_ID:
return pmu1_xtaltab0_1440;
case BCM4336_CHIP_ID:
return pmu1_xtaltab0_960;
case BCM4330_CHIP_ID:
if (CST4330_CHIPMODE_SDIOD(sih->chipst))
return pmu1_xtaltab0_960;
else
return pmu1_xtaltab0_1440;
default:
PMU_MSG(("si_pmu1_xtaltab0: Unknown chipid %s\n",
bcm_chipname(sih->chip, chn, 8)));
break;
}
ASSERT(0);
return NULL;
}
/* select default xtal frequency for each chip */
static const pmu1_xtaltab0_t *si_pmu1_xtaldef0(si_t *sih)
{
#ifdef BCMDBG
char chn[8];
#endif
switch (sih->chip) {
case BCM4329_CHIP_ID:
/* Default to 38400Khz */
return &pmu1_xtaltab0_880_4329[PMU1_XTALTAB0_880_38400K];
case BCM4319_CHIP_ID:
/* Default to 30000Khz */
return &pmu1_xtaltab0_1440[PMU1_XTALTAB0_1440_30000K];
case BCM4336_CHIP_ID:
/* Default to 26000Khz */
return &pmu1_xtaltab0_960[PMU1_XTALTAB0_960_26000K];
case BCM4330_CHIP_ID:
/* Default to 37400Khz */
if (CST4330_CHIPMODE_SDIOD(sih->chipst))
return &pmu1_xtaltab0_960[PMU1_XTALTAB0_960_37400K];
else
return &pmu1_xtaltab0_1440[PMU1_XTALTAB0_1440_37400K];
default:
PMU_MSG(("si_pmu1_xtaldef0: Unknown chipid %s\n",
bcm_chipname(sih->chip, chn, 8)));
break;
}
ASSERT(0);
return NULL;
}
/* select default pll fvco for each chip */
static u32 si_pmu1_pllfvco0(si_t *sih)
{
#ifdef BCMDBG
char chn[8];
#endif
switch (sih->chip) {
case BCM4329_CHIP_ID:
return FVCO_880;
case BCM4319_CHIP_ID:
return FVCO_1440;
case BCM4336_CHIP_ID:
return FVCO_960;
case BCM4330_CHIP_ID:
if (CST4330_CHIPMODE_SDIOD(sih->chipst))
return FVCO_960;
else
return FVCO_1440;
default:
PMU_MSG(("si_pmu1_pllfvco0: Unknown chipid %s\n",
bcm_chipname(sih->chip, chn, 8)));
break;
}
ASSERT(0);
return 0;
}
/* query alp/xtal clock frequency */
static u32
si_pmu1_alpclk0(si_t *sih, chipcregs_t *cc)
{
const pmu1_xtaltab0_t *xt;
u32 xf;
/* Find the frequency in the table */
xf = (R_REG(&cc->pmucontrol) & PCTL_XTALFREQ_MASK) >>
PCTL_XTALFREQ_SHIFT;
for (xt = si_pmu1_xtaltab0(sih); xt != NULL && xt->fref != 0; xt++)
if (xt->xf == xf)
break;
/* Could not find it so assign a default value */
if (xt == NULL || xt->fref == 0)
xt = si_pmu1_xtaldef0(sih);
ASSERT(xt != NULL && xt->fref != 0);
return xt->fref * 1000;
}
/* Set up PLL registers in the PMU as per the crystal speed.
* XtalFreq field in pmucontrol register being 0 indicates the PLL
* is not programmed and the h/w default is assumed to work, in which
* case the xtal frequency is unknown to the s/w so we need to call
* si_pmu1_xtaldef0() wherever it is needed to return a default value.
*/
static void si_pmu1_pllinit0(si_t *sih, chipcregs_t *cc, u32 xtal)
{
const pmu1_xtaltab0_t *xt;
u32 tmp;
u32 buf_strength = 0;
u8 ndiv_mode = 1;
/* Use h/w default PLL config */
if (xtal == 0) {
PMU_MSG(("Unspecified xtal frequency, skip PLL configuration\n"));
return;
}
/* Find the frequency in the table */
for (xt = si_pmu1_xtaltab0(sih); xt != NULL && xt->fref != 0; xt++)
if (xt->fref == xtal)
break;
/* Check current PLL state, bail out if it has been programmed or
* we don't know how to program it.
*/
if (xt == NULL || xt->fref == 0) {
PMU_MSG(("Unsupported xtal frequency %d.%d MHz, skip PLL configuration\n", xtal / 1000, xtal % 1000));
return;
}
/* for 4319 bootloader already programs the PLL but bootloader does not program the
PLL4 and PLL5. So Skip this check for 4319
*/
if ((((R_REG(&cc->pmucontrol) & PCTL_XTALFREQ_MASK) >>
PCTL_XTALFREQ_SHIFT) == xt->xf) &&
!((sih->chip == BCM4319_CHIP_ID)
|| (sih->chip == BCM4330_CHIP_ID))) {
PMU_MSG(("PLL already programmed for %d.%d MHz\n",
xt->fref / 1000, xt->fref % 1000));
return;
}
PMU_MSG(("XTAL %d.%d MHz (%d)\n", xtal / 1000, xtal % 1000, xt->xf));
PMU_MSG(("Programming PLL for %d.%d MHz\n", xt->fref / 1000,
xt->fref % 1000));
switch (sih->chip) {
case BCM4329_CHIP_ID:
/* Change the BBPLL drive strength to 8 for all channels */
buf_strength = 0x888888;
AND_REG(&cc->min_res_mask,
~(PMURES_BIT(RES4329_BBPLL_PWRSW_PU) |
PMURES_BIT(RES4329_HT_AVAIL)));
AND_REG(&cc->max_res_mask,
~(PMURES_BIT(RES4329_BBPLL_PWRSW_PU) |
PMURES_BIT(RES4329_HT_AVAIL)));
SPINWAIT(R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL,
PMU_MAX_TRANSITION_DLY);
ASSERT(!(R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL));
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
if (xt->fref == 38400)
tmp = 0x200024C0;
else if (xt->fref == 37400)
tmp = 0x20004500;
else if (xt->fref == 26000)
tmp = 0x200024C0;
else
tmp = 0x200005C0; /* Chip Dflt Settings */
W_REG(&cc->pllcontrol_data, tmp);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
tmp =
R_REG(&cc->pllcontrol_data) & PMU1_PLL0_PC5_CLK_DRV_MASK;
if ((xt->fref == 38400) || (xt->fref == 37400)
|| (xt->fref == 26000))
tmp |= 0x15;
else
tmp |= 0x25; /* Chip Dflt Settings */
W_REG(&cc->pllcontrol_data, tmp);
break;
case BCM4319_CHIP_ID:
/* Change the BBPLL drive strength to 2 for all channels */
buf_strength = 0x222222;
/* Make sure the PLL is off */
/* WAR65104: Disable the HT_AVAIL resource first and then
* after a delay (more than downtime for HT_AVAIL) remove the
* BBPLL resource; backplane clock moves to ALP from HT.
*/
AND_REG(&cc->min_res_mask,
~(PMURES_BIT(RES4319_HT_AVAIL)));
AND_REG(&cc->max_res_mask,
~(PMURES_BIT(RES4319_HT_AVAIL)));
udelay(100);
AND_REG(&cc->min_res_mask,
~(PMURES_BIT(RES4319_BBPLL_PWRSW_PU)));
AND_REG(&cc->max_res_mask,
~(PMURES_BIT(RES4319_BBPLL_PWRSW_PU)));
udelay(100);
SPINWAIT(R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL,
PMU_MAX_TRANSITION_DLY);
ASSERT(!(R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL));
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
tmp = 0x200005c0;
W_REG(&cc->pllcontrol_data, tmp);
break;
case BCM4336_CHIP_ID:
AND_REG(&cc->min_res_mask,
~(PMURES_BIT(RES4336_HT_AVAIL) |
PMURES_BIT(RES4336_MACPHY_CLKAVAIL)));
AND_REG(&cc->max_res_mask,
~(PMURES_BIT(RES4336_HT_AVAIL) |
PMURES_BIT(RES4336_MACPHY_CLKAVAIL)));
udelay(100);
SPINWAIT(R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL,
PMU_MAX_TRANSITION_DLY);
ASSERT(!(R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL));
break;
case BCM4330_CHIP_ID:
AND_REG(&cc->min_res_mask,
~(PMURES_BIT(RES4330_HT_AVAIL) |
PMURES_BIT(RES4330_MACPHY_CLKAVAIL)));
AND_REG(&cc->max_res_mask,
~(PMURES_BIT(RES4330_HT_AVAIL) |
PMURES_BIT(RES4330_MACPHY_CLKAVAIL)));
udelay(100);
SPINWAIT(R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL,
PMU_MAX_TRANSITION_DLY);
ASSERT(!(R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL));
break;
default:
ASSERT(0);
}
PMU_MSG(("Done masking\n"));
/* Write p1div and p2div to pllcontrol[0] */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
tmp = R_REG(&cc->pllcontrol_data) &
~(PMU1_PLL0_PC0_P1DIV_MASK | PMU1_PLL0_PC0_P2DIV_MASK);
tmp |=
((xt->
p1div << PMU1_PLL0_PC0_P1DIV_SHIFT) & PMU1_PLL0_PC0_P1DIV_MASK) |
((xt->
p2div << PMU1_PLL0_PC0_P2DIV_SHIFT) & PMU1_PLL0_PC0_P2DIV_MASK);
W_REG(&cc->pllcontrol_data, tmp);
if ((sih->chip == BCM4330_CHIP_ID))
si_pmu_set_4330_plldivs(sih);
if ((sih->chip == BCM4329_CHIP_ID)
&& (sih->chiprev == 0)) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
tmp = R_REG(&cc->pllcontrol_data);
tmp = tmp & (~DOT11MAC_880MHZ_CLK_DIVISOR_MASK);
tmp = tmp | DOT11MAC_880MHZ_CLK_DIVISOR_VAL;
W_REG(&cc->pllcontrol_data, tmp);
}
if ((sih->chip == BCM4319_CHIP_ID) ||
(sih->chip == BCM4336_CHIP_ID) ||
(sih->chip == BCM4330_CHIP_ID))
ndiv_mode = PMU1_PLL0_PC2_NDIV_MODE_MFB;
else
ndiv_mode = PMU1_PLL0_PC2_NDIV_MODE_MASH;
/* Write ndiv_int and ndiv_mode to pllcontrol[2] */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
tmp = R_REG(&cc->pllcontrol_data) &
~(PMU1_PLL0_PC2_NDIV_INT_MASK | PMU1_PLL0_PC2_NDIV_MODE_MASK);
tmp |=
((xt->
ndiv_int << PMU1_PLL0_PC2_NDIV_INT_SHIFT) &
PMU1_PLL0_PC2_NDIV_INT_MASK) | ((ndiv_mode <<
PMU1_PLL0_PC2_NDIV_MODE_SHIFT) &
PMU1_PLL0_PC2_NDIV_MODE_MASK);
W_REG(&cc->pllcontrol_data, tmp);
/* Write ndiv_frac to pllcontrol[3] */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
tmp = R_REG(&cc->pllcontrol_data) & ~PMU1_PLL0_PC3_NDIV_FRAC_MASK;
tmp |= ((xt->ndiv_frac << PMU1_PLL0_PC3_NDIV_FRAC_SHIFT) &
PMU1_PLL0_PC3_NDIV_FRAC_MASK);
W_REG(&cc->pllcontrol_data, tmp);
/* Write clock driving strength to pllcontrol[5] */
if (buf_strength) {
PMU_MSG(("Adjusting PLL buffer drive strength: %x\n",
buf_strength));
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
tmp =
R_REG(&cc->pllcontrol_data) & ~PMU1_PLL0_PC5_CLK_DRV_MASK;
tmp |= (buf_strength << PMU1_PLL0_PC5_CLK_DRV_SHIFT);
W_REG(&cc->pllcontrol_data, tmp);
}
PMU_MSG(("Done pll\n"));
/* to operate the 4319 usb in 24MHz/48MHz; chipcontrol[2][84:83] needs
* to be updated.
*/
if ((sih->chip == BCM4319_CHIP_ID)
&& (xt->fref != XTAL_FREQ_30000MHZ)) {
W_REG(&cc->chipcontrol_addr, PMU1_PLL0_CHIPCTL2);
tmp =
R_REG(&cc->chipcontrol_data) & ~CCTL_4319USB_XTAL_SEL_MASK;
if (xt->fref == XTAL_FREQ_24000MHZ) {
tmp |=
(CCTL_4319USB_24MHZ_PLL_SEL <<
CCTL_4319USB_XTAL_SEL_SHIFT);
} else if (xt->fref == XTAL_FREQ_48000MHZ) {
tmp |=
(CCTL_4319USB_48MHZ_PLL_SEL <<
CCTL_4319USB_XTAL_SEL_SHIFT);
}
W_REG(&cc->chipcontrol_data, tmp);
}
/* Flush deferred pll control registers writes */
if (sih->pmurev >= 2)
OR_REG(&cc->pmucontrol, PCTL_PLL_PLLCTL_UPD);
/* Write XtalFreq. Set the divisor also. */
tmp = R_REG(&cc->pmucontrol) &
~(PCTL_ILP_DIV_MASK | PCTL_XTALFREQ_MASK);
tmp |= (((((xt->fref + 127) / 128) - 1) << PCTL_ILP_DIV_SHIFT) &
PCTL_ILP_DIV_MASK) |
((xt->xf << PCTL_XTALFREQ_SHIFT) & PCTL_XTALFREQ_MASK);
if ((sih->chip == BCM4329_CHIP_ID)
&& sih->chiprev == 0) {
/* clear the htstretch before clearing HTReqEn */
AND_REG(&cc->clkstretch, ~CSTRETCH_HT);
tmp &= ~PCTL_HT_REQ_EN;
}
W_REG(&cc->pmucontrol, tmp);
}
/* query the CPU clock frequency */
static u32
si_pmu1_cpuclk0(si_t *sih, chipcregs_t *cc)
{
u32 tmp, m1div;
#ifdef BCMDBG
u32 ndiv_int, ndiv_frac, p2div, p1div, fvco;
u32 fref;
#endif
u32 FVCO = si_pmu1_pllfvco0(sih);
/* Read m1div from pllcontrol[1] */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
tmp = R_REG(&cc->pllcontrol_data);
m1div = (tmp & PMU1_PLL0_PC1_M1DIV_MASK) >> PMU1_PLL0_PC1_M1DIV_SHIFT;
#ifdef BCMDBG
/* Read p2div/p1div from pllcontrol[0] */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
tmp = R_REG(&cc->pllcontrol_data);
p2div = (tmp & PMU1_PLL0_PC0_P2DIV_MASK) >> PMU1_PLL0_PC0_P2DIV_SHIFT;
p1div = (tmp & PMU1_PLL0_PC0_P1DIV_MASK) >> PMU1_PLL0_PC0_P1DIV_SHIFT;
/* Calculate fvco based on xtal freq and ndiv and pdiv */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
tmp = R_REG(&cc->pllcontrol_data);
ndiv_int =
(tmp & PMU1_PLL0_PC2_NDIV_INT_MASK) >> PMU1_PLL0_PC2_NDIV_INT_SHIFT;
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
tmp = R_REG(&cc->pllcontrol_data);
ndiv_frac =
(tmp & PMU1_PLL0_PC3_NDIV_FRAC_MASK) >>
PMU1_PLL0_PC3_NDIV_FRAC_SHIFT;
fref = si_pmu1_alpclk0(sih, cc) / 1000;
fvco = (fref * ndiv_int) << 8;
fvco += (fref * (ndiv_frac >> 12)) >> 4;
fvco += (fref * (ndiv_frac & 0xfff)) >> 12;
fvco >>= 8;
fvco *= p2div;
fvco /= p1div;
fvco /= 1000;
fvco *= 1000;
PMU_MSG(("si_pmu1_cpuclk0: ndiv_int %u ndiv_frac %u p2div %u p1div %u fvco %u\n", ndiv_int, ndiv_frac, p2div, p1div, fvco));
FVCO = fvco;
#endif /* BCMDBG */
/* Return ARM/SB clock */
return FVCO / m1div * 1000;
}
/* initialize PLL */
void si_pmu_pll_init(si_t *sih, uint xtalfreq)
{
chipcregs_t *cc;
uint origidx;
#ifdef BCMDBG
char chn[8];
#endif
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
switch (sih->chip) {
case BCM4329_CHIP_ID:
if (xtalfreq == 0)
xtalfreq = 38400;
si_pmu1_pllinit0(sih, cc, xtalfreq);
break;
case BCM4313_CHIP_ID:
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
case BCM4331_CHIP_ID:
case BCM6362_CHIP_ID:
/* ??? */
break;
case BCM4319_CHIP_ID:
case BCM4336_CHIP_ID:
case BCM4330_CHIP_ID:
si_pmu1_pllinit0(sih, cc, xtalfreq);
break;
default:
PMU_MSG(("No PLL init done for chip %s rev %d pmurev %d\n",
bcm_chipname(sih->chip, chn, 8), sih->chiprev,
sih->pmurev));
break;
}
#ifdef BCMDBG_FORCEHT
OR_REG(&cc->clk_ctl_st, CCS_FORCEHT);
#endif
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* query alp/xtal clock frequency */
u32 si_pmu_alp_clock(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
u32 clock = ALP_CLOCK;
#ifdef BCMDBG
char chn[8];
#endif
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
switch (sih->chip) {
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
case BCM4331_CHIP_ID:
case BCM6362_CHIP_ID:
case BCM4716_CHIP_ID:
case BCM4748_CHIP_ID:
case BCM47162_CHIP_ID:
case BCM4313_CHIP_ID:
case BCM5357_CHIP_ID:
/* always 20Mhz */
clock = 20000 * 1000;
break;
case BCM4329_CHIP_ID:
case BCM4319_CHIP_ID:
case BCM4336_CHIP_ID:
case BCM4330_CHIP_ID:
clock = si_pmu1_alpclk0(sih, cc);
break;
case BCM5356_CHIP_ID:
/* always 25Mhz */
clock = 25000 * 1000;
break;
default:
PMU_MSG(("No ALP clock specified "
"for chip %s rev %d pmurev %d, using default %d Hz\n",
bcm_chipname(sih->chip, chn, 8), sih->chiprev,
sih->pmurev, clock));
break;
}
/* Return to original core */
si_setcoreidx(sih, origidx);
return clock;
}
/* Find the output of the "m" pll divider given pll controls that start with
* pllreg "pll0" i.e. 12 for main 6 for phy, 0 for misc.
*/
static u32
si_pmu5_clock(si_t *sih, chipcregs_t *cc, uint pll0, uint m) {
u32 tmp, div, ndiv, p1, p2, fc;
if ((pll0 & 3) || (pll0 > PMU4716_MAINPLL_PLL0)) {
PMU_ERROR(("%s: Bad pll0: %d\n", __func__, pll0));
return 0;
}
/* Strictly there is an m5 divider, but I'm not sure we use it */
if ((m == 0) || (m > 4)) {
PMU_ERROR(("%s: Bad m divider: %d\n", __func__, m));
return 0;
}
if (sih->chip == BCM5357_CHIP_ID) {
/* Detect failure in clock setting */
if ((R_REG(&cc->chipstatus) & 0x40000) != 0)
return 133 * 1000000;
}
W_REG(&cc->pllcontrol_addr, pll0 + PMU5_PLL_P1P2_OFF);
(void)R_REG(&cc->pllcontrol_addr);
tmp = R_REG(&cc->pllcontrol_data);
p1 = (tmp & PMU5_PLL_P1_MASK) >> PMU5_PLL_P1_SHIFT;
p2 = (tmp & PMU5_PLL_P2_MASK) >> PMU5_PLL_P2_SHIFT;
W_REG(&cc->pllcontrol_addr, pll0 + PMU5_PLL_M14_OFF);
(void)R_REG(&cc->pllcontrol_addr);
tmp = R_REG(&cc->pllcontrol_data);
div = (tmp >> ((m - 1) * PMU5_PLL_MDIV_WIDTH)) & PMU5_PLL_MDIV_MASK;
W_REG(&cc->pllcontrol_addr, pll0 + PMU5_PLL_NM5_OFF);
(void)R_REG(&cc->pllcontrol_addr);
tmp = R_REG(&cc->pllcontrol_data);
ndiv = (tmp & PMU5_PLL_NDIV_MASK) >> PMU5_PLL_NDIV_SHIFT;
/* Do calculation in Mhz */
fc = si_pmu_alp_clock(sih) / 1000000;
fc = (p1 * ndiv * fc) / p2;
PMU_NONE(("%s: p1=%d, p2=%d, ndiv=%d(0x%x), m%d=%d; fc=%d, clock=%d\n",
__func__, p1, p2, ndiv, ndiv, m, div, fc, fc / div));
/* Return clock in Hertz */
return (fc / div) * 1000000;
}
/* query backplane clock frequency */
/* For designs that feed the same clock to both backplane
* and CPU just return the CPU clock speed.
*/
u32 si_pmu_si_clock(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
u32 clock = HT_CLOCK;
#ifdef BCMDBG
char chn[8];
#endif
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
switch (sih->chip) {
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM4331_CHIP_ID:
case BCM6362_CHIP_ID:
/* 96MHz backplane clock */
clock = 96000 * 1000;
break;
case BCM4716_CHIP_ID:
case BCM4748_CHIP_ID:
case BCM47162_CHIP_ID:
clock =
si_pmu5_clock(sih, cc, PMU4716_MAINPLL_PLL0,
PMU5_MAINPLL_SI);
break;
case BCM4329_CHIP_ID:
if (sih->chiprev == 0)
clock = 38400 * 1000;
else
clock = si_pmu1_cpuclk0(sih, cc);
break;
case BCM4319_CHIP_ID:
case BCM4336_CHIP_ID:
case BCM4330_CHIP_ID:
clock = si_pmu1_cpuclk0(sih, cc);
break;
case BCM4313_CHIP_ID:
/* 80MHz backplane clock */
clock = 80000 * 1000;
break;
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
clock =
(cc->chipstatus & CST43236_BP_CLK) ? (120000 *
1000) : (96000 *
1000);
break;
case BCM5356_CHIP_ID:
clock =
si_pmu5_clock(sih, cc, PMU5356_MAINPLL_PLL0,
PMU5_MAINPLL_SI);
break;
case BCM5357_CHIP_ID:
clock =
si_pmu5_clock(sih, cc, PMU5357_MAINPLL_PLL0,
PMU5_MAINPLL_SI);
break;
default:
PMU_MSG(("No backplane clock specified "
"for chip %s rev %d pmurev %d, using default %d Hz\n",
bcm_chipname(sih->chip, chn, 8), sih->chiprev,
sih->pmurev, clock));
break;
}
/* Return to original core */
si_setcoreidx(sih, origidx);
return clock;
}
/* query CPU clock frequency */
u32 si_pmu_cpu_clock(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
u32 clock;
ASSERT(sih->cccaps & CC_CAP_PMU);
if ((sih->pmurev >= 5) &&
!((sih->chip == BCM4329_CHIP_ID) ||
(sih->chip == BCM4319_CHIP_ID) ||
(sih->chip == BCM43236_CHIP_ID) ||
(sih->chip == BCM4336_CHIP_ID) ||
(sih->chip == BCM4330_CHIP_ID))) {
uint pll;
switch (sih->chip) {
case BCM5356_CHIP_ID:
pll = PMU5356_MAINPLL_PLL0;
break;
case BCM5357_CHIP_ID:
pll = PMU5357_MAINPLL_PLL0;
break;
default:
pll = PMU4716_MAINPLL_PLL0;
break;
}
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
clock = si_pmu5_clock(sih, cc, pll, PMU5_MAINPLL_CPU);
/* Return to original core */
si_setcoreidx(sih, origidx);
} else
clock = si_pmu_si_clock(sih);
return clock;
}
/* query memory clock frequency */
u32 si_pmu_mem_clock(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
u32 clock;
ASSERT(sih->cccaps & CC_CAP_PMU);
if ((sih->pmurev >= 5) &&
!((sih->chip == BCM4329_CHIP_ID) ||
(sih->chip == BCM4319_CHIP_ID) ||
(sih->chip == BCM4330_CHIP_ID) ||
(sih->chip == BCM4336_CHIP_ID) ||
(sih->chip == BCM43236_CHIP_ID))) {
uint pll;
switch (sih->chip) {
case BCM5356_CHIP_ID:
pll = PMU5356_MAINPLL_PLL0;
break;
case BCM5357_CHIP_ID:
pll = PMU5357_MAINPLL_PLL0;
break;
default:
pll = PMU4716_MAINPLL_PLL0;
break;
}
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
clock = si_pmu5_clock(sih, cc, pll, PMU5_MAINPLL_MEM);
/* Return to original core */
si_setcoreidx(sih, origidx);
} else {
clock = si_pmu_si_clock(sih);
}
return clock;
}
/* Measure ILP clock frequency */
#define ILP_CALC_DUR 10 /* ms, make sure 1000 can be divided by it. */
static u32 ilpcycles_per_sec;
u32 si_pmu_ilp_clock(si_t *sih)
{
if (ISSIM_ENAB(sih))
return ILP_CLOCK;
if (ilpcycles_per_sec == 0) {
u32 start, end, delta;
u32 origidx = si_coreidx(sih);
chipcregs_t *cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
start = R_REG(&cc->pmutimer);
mdelay(ILP_CALC_DUR);
end = R_REG(&cc->pmutimer);
delta = end - start;
ilpcycles_per_sec = delta * (1000 / ILP_CALC_DUR);
si_setcoreidx(sih, origidx);
}
return ilpcycles_per_sec;
}
/* SDIO Pad drive strength to select value mappings */
typedef struct {
u8 strength; /* Pad Drive Strength in mA */
u8 sel; /* Chip-specific select value */
} sdiod_drive_str_t;
/* SDIO Drive Strength to sel value table for PMU Rev 1 */
static const sdiod_drive_str_t sdiod_drive_strength_tab1[] = {
{
4, 0x2}, {
2, 0x3}, {
1, 0x0}, {
0, 0x0}
};
/* SDIO Drive Strength to sel value table for PMU Rev 2, 3 */
static const sdiod_drive_str_t sdiod_drive_strength_tab2[] = {
{
12, 0x7}, {
10, 0x6}, {
8, 0x5}, {
6, 0x4}, {
4, 0x2}, {
2, 0x1}, {
0, 0x0}
};
/* SDIO Drive Strength to sel value table for PMU Rev 8 (1.8V) */
static const sdiod_drive_str_t sdiod_drive_strength_tab3[] = {
{
32, 0x7}, {
26, 0x6}, {
22, 0x5}, {
16, 0x4}, {
12, 0x3}, {
8, 0x2}, {
4, 0x1}, {
0, 0x0}
};
#define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu))
void
si_sdiod_drive_strength_init(si_t *sih, u32 drivestrength) {
chipcregs_t *cc;
uint origidx, intr_val = 0;
sdiod_drive_str_t *str_tab = NULL;
u32 str_mask = 0;
u32 str_shift = 0;
#ifdef BCMDBG
char chn[8];
#endif
if (!(sih->cccaps & CC_CAP_PMU)) {
return;
}
/* Remember original core before switch to chipc */
cc = (chipcregs_t *) si_switch_core(sih, CC_CORE_ID, &origidx,
&intr_val);
switch (SDIOD_DRVSTR_KEY(sih->chip, sih->pmurev)) {
case SDIOD_DRVSTR_KEY(BCM4325_CHIP_ID, 1):
str_tab = (sdiod_drive_str_t *)&sdiod_drive_strength_tab1;
str_mask = 0x30000000;
str_shift = 28;
break;
case SDIOD_DRVSTR_KEY(BCM4325_CHIP_ID, 2):
case SDIOD_DRVSTR_KEY(BCM4325_CHIP_ID, 3):
str_tab = (sdiod_drive_str_t *)&sdiod_drive_strength_tab2;
str_mask = 0x00003800;
str_shift = 11;
break;
case SDIOD_DRVSTR_KEY(BCM4336_CHIP_ID, 8):
str_tab = (sdiod_drive_str_t *) &sdiod_drive_strength_tab3;
str_mask = 0x00003800;
str_shift = 11;
break;
default:
PMU_MSG(("No SDIO Drive strength init done for chip %s rev %d pmurev %d\n", bcm_chipname(sih->chip, chn, 8), sih->chiprev, sih->pmurev));
break;
}
if (str_tab != NULL) {
u32 drivestrength_sel = 0;
u32 cc_data_temp;
int i;
for (i = 0; str_tab[i].strength != 0; i++) {
if (drivestrength >= str_tab[i].strength) {
drivestrength_sel = str_tab[i].sel;
break;
}
}
W_REG(&cc->chipcontrol_addr, 1);
cc_data_temp = R_REG(&cc->chipcontrol_data);
cc_data_temp &= ~str_mask;
drivestrength_sel <<= str_shift;
cc_data_temp |= drivestrength_sel;
W_REG(&cc->chipcontrol_data, cc_data_temp);
PMU_MSG(("SDIO: %dmA drive strength selected, set to 0x%08x\n",
drivestrength, cc_data_temp));
}
/* Return to original core */
si_restore_core(sih, origidx, intr_val);
}
/* initialize PMU */
void si_pmu_init(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
if (sih->pmurev == 1)
AND_REG(&cc->pmucontrol, ~PCTL_NOILP_ON_WAIT);
else if (sih->pmurev >= 2)
OR_REG(&cc->pmucontrol, PCTL_NOILP_ON_WAIT);
if ((sih->chip == BCM4329_CHIP_ID) && (sih->chiprev == 2)) {
/* Fix for 4329b0 bad LPOM state. */
W_REG(&cc->regcontrol_addr, 2);
OR_REG(&cc->regcontrol_data, 0x100);
W_REG(&cc->regcontrol_addr, 3);
OR_REG(&cc->regcontrol_data, 0x4);
}
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* Return up time in ILP cycles for the given resource. */
static uint
si_pmu_res_uptime(si_t *sih, chipcregs_t *cc, u8 rsrc) {
u32 deps;
uint up, i, dup, dmax;
u32 min_mask = 0, max_mask = 0;
/* uptime of resource 'rsrc' */
W_REG(&cc->res_table_sel, rsrc);
up = (R_REG(&cc->res_updn_timer) >> 8) & 0xff;
/* direct dependancies of resource 'rsrc' */
deps = si_pmu_res_deps(sih, cc, PMURES_BIT(rsrc), false);
for (i = 0; i <= PMURES_MAX_RESNUM; i++) {
if (!(deps & PMURES_BIT(i)))
continue;
deps &= ~si_pmu_res_deps(sih, cc, PMURES_BIT(i), true);
}
si_pmu_res_masks(sih, &min_mask, &max_mask);
deps &= ~min_mask;
/* max uptime of direct dependancies */
dmax = 0;
for (i = 0; i <= PMURES_MAX_RESNUM; i++) {
if (!(deps & PMURES_BIT(i)))
continue;
dup = si_pmu_res_uptime(sih, cc, (u8) i);
if (dmax < dup)
dmax = dup;
}
PMU_MSG(("si_pmu_res_uptime: rsrc %u uptime %u(deps 0x%08x uptime %u)\n", rsrc, up, deps, dmax));
return up + dmax + PMURES_UP_TRANSITION;
}
/* Return dependancies (direct or all/indirect) for the given resources */
static u32
si_pmu_res_deps(si_t *sih, chipcregs_t *cc, u32 rsrcs,
bool all)
{
u32 deps = 0;
u32 i;
for (i = 0; i <= PMURES_MAX_RESNUM; i++) {
if (!(rsrcs & PMURES_BIT(i)))
continue;
W_REG(&cc->res_table_sel, i);
deps |= R_REG(&cc->res_dep_mask);
}
return !all ? deps : (deps
? (deps |
si_pmu_res_deps(sih, cc, deps,
true)) : 0);
}
/* power up/down OTP through PMU resources */
void si_pmu_otp_power(si_t *sih, bool on)
{
chipcregs_t *cc;
uint origidx;
u32 rsrcs = 0; /* rsrcs to turn on/off OTP power */
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Don't do anything if OTP is disabled */
if (si_is_otp_disabled(sih)) {
PMU_MSG(("si_pmu_otp_power: OTP is disabled\n"));
return;
}
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
switch (sih->chip) {
case BCM4329_CHIP_ID:
rsrcs = PMURES_BIT(RES4329_OTP_PU);
break;
case BCM4319_CHIP_ID:
rsrcs = PMURES_BIT(RES4319_OTP_PU);
break;
case BCM4336_CHIP_ID:
rsrcs = PMURES_BIT(RES4336_OTP_PU);
break;
case BCM4330_CHIP_ID:
rsrcs = PMURES_BIT(RES4330_OTP_PU);
break;
default:
break;
}
if (rsrcs != 0) {
u32 otps;
/* Figure out the dependancies (exclude min_res_mask) */
u32 deps = si_pmu_res_deps(sih, cc, rsrcs, true);
u32 min_mask = 0, max_mask = 0;
si_pmu_res_masks(sih, &min_mask, &max_mask);
deps &= ~min_mask;
/* Turn on/off the power */
if (on) {
PMU_MSG(("Adding rsrc 0x%x to min_res_mask\n",
rsrcs | deps));
OR_REG(&cc->min_res_mask, (rsrcs | deps));
SPINWAIT(!(R_REG(&cc->res_state) & rsrcs),
PMU_MAX_TRANSITION_DLY);
ASSERT(R_REG(&cc->res_state) & rsrcs);
} else {
PMU_MSG(("Removing rsrc 0x%x from min_res_mask\n",
rsrcs | deps));
AND_REG(&cc->min_res_mask, ~(rsrcs | deps));
}
SPINWAIT((((otps = R_REG(&cc->otpstatus)) & OTPS_READY) !=
(on ? OTPS_READY : 0)), 100);
ASSERT((otps & OTPS_READY) == (on ? OTPS_READY : 0));
if ((otps & OTPS_READY) != (on ? OTPS_READY : 0))
PMU_MSG(("OTP ready bit not %s after wait\n",
(on ? "ON" : "OFF")));
}
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void si_pmu_rcal(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
switch (sih->chip) {
case BCM4329_CHIP_ID:{
u8 rcal_code;
u32 val;
/* Kick RCal */
W_REG(&cc->chipcontrol_addr, 1);
/* Power Down RCAL Block */
AND_REG(&cc->chipcontrol_data, ~0x04);
/* Power Up RCAL block */
OR_REG(&cc->chipcontrol_data, 0x04);
/* Wait for completion */
SPINWAIT(0 == (R_REG(&cc->chipstatus) & 0x08),
10 * 1000 * 1000);
ASSERT(R_REG(&cc->chipstatus) & 0x08);
/* Drop the LSB to convert from 5 bit code to 4 bit code */
rcal_code =
(u8) (R_REG(&cc->chipstatus) >> 5) & 0x0f;
PMU_MSG(("RCal completed, status 0x%x, code 0x%x\n",
R_REG(&cc->chipstatus), rcal_code));
/* Write RCal code into pmu_vreg_ctrl[32:29] */
W_REG(&cc->regcontrol_addr, 0);
val =
R_REG(&cc->regcontrol_data) & ~((u32) 0x07 << 29);
val |= (u32) (rcal_code & 0x07) << 29;
W_REG(&cc->regcontrol_data, val);
W_REG(&cc->regcontrol_addr, 1);
val = R_REG(&cc->regcontrol_data) & ~(u32) 0x01;
val |= (u32) ((rcal_code >> 3) & 0x01);
W_REG(&cc->regcontrol_data, val);
/* Write RCal code into pmu_chip_ctrl[33:30] */
W_REG(&cc->chipcontrol_addr, 0);
val =
R_REG(&cc->chipcontrol_data) & ~((u32) 0x03 << 30);
val |= (u32) (rcal_code & 0x03) << 30;
W_REG(&cc->chipcontrol_data, val);
W_REG(&cc->chipcontrol_addr, 1);
val =
R_REG(&cc->chipcontrol_data) & ~(u32) 0x03;
val |= (u32) ((rcal_code >> 2) & 0x03);
W_REG(&cc->chipcontrol_data, val);
/* Set override in pmu_chip_ctrl[29] */
W_REG(&cc->chipcontrol_addr, 0);
OR_REG(&cc->chipcontrol_data, (0x01 << 29));
/* Power off RCal block */
W_REG(&cc->chipcontrol_addr, 1);
AND_REG(&cc->chipcontrol_data, ~0x04);
break;
}
default:
break;
}
/* Return to original core */
si_setcoreidx(sih, origidx);
}
void si_pmu_spuravoid(si_t *sih, u8 spuravoid)
{
chipcregs_t *cc;
uint origidx, intr_val;
u32 tmp = 0;
/* Remember original core before switch to chipc */
cc = (chipcregs_t *) si_switch_core(sih, CC_CORE_ID, &origidx,
&intr_val);
ASSERT(cc != NULL);
/* force the HT off */
if (sih->chip == BCM4336_CHIP_ID) {
tmp = R_REG(&cc->max_res_mask);
tmp &= ~RES4336_HT_AVAIL;
W_REG(&cc->max_res_mask, tmp);
/* wait for the ht to really go away */
SPINWAIT(((R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL) == 0),
10000);
ASSERT((R_REG(&cc->clk_ctl_st) & CCS_HTAVAIL) == 0);
}
/* update the pll changes */
si_pmu_spuravoid_pllupdate(sih, cc, spuravoid);
/* enable HT back on */
if (sih->chip == BCM4336_CHIP_ID) {
tmp = R_REG(&cc->max_res_mask);
tmp |= RES4336_HT_AVAIL;
W_REG(&cc->max_res_mask, tmp);
}
/* Return to original core */
si_restore_core(sih, origidx, intr_val);
}
static void
si_pmu_spuravoid_pllupdate(si_t *sih, chipcregs_t *cc, u8 spuravoid)
{
u32 tmp = 0;
u8 phypll_offset = 0;
u8 bcm5357_bcm43236_p1div[] = { 0x1, 0x5, 0x5 };
u8 bcm5357_bcm43236_ndiv[] = { 0x30, 0xf6, 0xfc };
switch (sih->chip) {
case BCM5357_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43238_CHIP_ID:
/* BCM5357 needs to touch PLL1_PLLCTL[02], so offset PLL0_PLLCTL[02] by 6 */
phypll_offset = (sih->chip == BCM5357_CHIP_ID) ? 6 : 0;
/* RMW only the P1 divider */
W_REG(&cc->pllcontrol_addr,
PMU1_PLL0_PLLCTL0 + phypll_offset);
tmp = R_REG(&cc->pllcontrol_data);
tmp &= (~(PMU1_PLL0_PC0_P1DIV_MASK));
tmp |=
(bcm5357_bcm43236_p1div[spuravoid] <<
PMU1_PLL0_PC0_P1DIV_SHIFT);
W_REG(&cc->pllcontrol_data, tmp);
/* RMW only the int feedback divider */
W_REG(&cc->pllcontrol_addr,
PMU1_PLL0_PLLCTL2 + phypll_offset);
tmp = R_REG(&cc->pllcontrol_data);
tmp &= ~(PMU1_PLL0_PC2_NDIV_INT_MASK);
tmp |=
(bcm5357_bcm43236_ndiv[spuravoid]) <<
PMU1_PLL0_PC2_NDIV_INT_SHIFT;
W_REG(&cc->pllcontrol_data, tmp);
tmp = 1 << 10;
break;
case BCM4331_CHIP_ID:
if (spuravoid == 2) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500014);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0FC00a08);
} else if (spuravoid == 1) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500014);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0F600a08);
} else {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100014);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000a08);
}
tmp = 1 << 10;
break;
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM6362_CHIP_ID:
if (spuravoid == 1) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500010);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x000C0C06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0F600a08);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x2001E920);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
} else {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100010);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x000c0c06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000a08);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x200005c0);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
}
tmp = 1 << 10;
break;
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100008);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x0c000c06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000a08);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x200005c0);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888855);
tmp = 1 << 10;
break;
case BCM4716_CHIP_ID:
case BCM4748_CHIP_ID:
case BCM47162_CHIP_ID:
if (spuravoid == 1) {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11500060);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x080C0C06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x0F600000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x2001E924);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
} else {
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100060);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x080c0c06);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x03000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
W_REG(&cc->pllcontrol_data, 0x00000000);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x200005c0);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888815);
}
tmp = 3 << 9;
break;
case BCM4319_CHIP_ID:
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x11100070);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x1014140a);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888854);
if (spuravoid == 1) { /* spur_avoid ON, enable 41/82/164Mhz clock mode */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x05201828);
} else { /* enable 40/80/160Mhz clock mode */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x05001828);
}
break;
case BCM4336_CHIP_ID:
/* Looks like these are only for default xtal freq 26MHz */
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL0);
W_REG(&cc->pllcontrol_data, 0x02100020);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL1);
W_REG(&cc->pllcontrol_data, 0x0C0C0C0C);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL2);
W_REG(&cc->pllcontrol_data, 0x01240C0C);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL4);
W_REG(&cc->pllcontrol_data, 0x202C2820);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL5);
W_REG(&cc->pllcontrol_data, 0x88888825);
W_REG(&cc->pllcontrol_addr, PMU1_PLL0_PLLCTL3);
if (spuravoid == 1) {
W_REG(&cc->pllcontrol_data, 0x00EC4EC4);
} else {
W_REG(&cc->pllcontrol_data, 0x00762762);
}
tmp = PCTL_PLL_PLLCTL_UPD;
break;
default:
PMU_ERROR(("%s: unknown spuravoidance settings for chip %s, not changing PLL\n", __func__, bcm_chipname(sih->chip, chn, 8)));
break;
}
tmp |= R_REG(&cc->pmucontrol);
W_REG(&cc->pmucontrol, tmp);
}
bool si_pmu_is_otp_powered(si_t *sih)
{
uint idx;
chipcregs_t *cc;
bool st;
/* Remember original core before switch to chipc */
idx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
switch (sih->chip) {
case BCM4329_CHIP_ID:
st = (R_REG(&cc->res_state) & PMURES_BIT(RES4329_OTP_PU))
!= 0;
break;
case BCM4319_CHIP_ID:
st = (R_REG(&cc->res_state) & PMURES_BIT(RES4319_OTP_PU))
!= 0;
break;
case BCM4336_CHIP_ID:
st = (R_REG(&cc->res_state) & PMURES_BIT(RES4336_OTP_PU))
!= 0;
break;
case BCM4330_CHIP_ID:
st = (R_REG(&cc->res_state) & PMURES_BIT(RES4330_OTP_PU))
!= 0;
break;
/* These chip doesn't use PMU bit to power up/down OTP. OTP always on.
* Use OTP_INIT command to reset/refresh state.
*/
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM43421_CHIP_ID:
case BCM43236_CHIP_ID:
case BCM43235_CHIP_ID:
case BCM43238_CHIP_ID:
st = true;
break;
default:
st = true;
break;
}
/* Return to original core */
si_setcoreidx(sih, idx);
return st;
}
void si_pmu_sprom_enable(si_t *sih, bool enable)
{
chipcregs_t *cc;
uint origidx;
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* initialize PMU chip controls and other chip level stuff */
void si_pmu_chip_init(si_t *sih)
{
uint origidx;
ASSERT(sih->cccaps & CC_CAP_PMU);
#ifdef CHIPC_UART_ALWAYS_ON
si_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, clk_ctl_st),
CCS_FORCEALP, CCS_FORCEALP);
#endif /* CHIPC_UART_ALWAYS_ON */
/* Gate off SPROM clock and chip select signals */
si_pmu_sprom_enable(sih, false);
/* Remember original core */
origidx = si_coreidx(sih);
/* Return to original core */
si_setcoreidx(sih, origidx);
}
/* initialize PMU switch/regulators */
void si_pmu_swreg_init(si_t *sih)
{
ASSERT(sih->cccaps & CC_CAP_PMU);
switch (sih->chip) {
case BCM4336_CHIP_ID:
/* Reduce CLDO PWM output voltage to 1.2V */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_CLDO_PWM, 0xe);
/* Reduce CLDO BURST output voltage to 1.2V */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_CLDO_BURST,
0xe);
/* Reduce LNLDO1 output voltage to 1.2V */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_LNLDO1, 0xe);
if (sih->chiprev == 0)
si_pmu_regcontrol(sih, 2, 0x400000, 0x400000);
break;
case BCM4330_CHIP_ID:
/* CBUCK Voltage is 1.8 by default and set that to 1.5 */
si_pmu_set_ldo_voltage(sih, SET_LDO_VOLTAGE_CBUCK_PWM, 0);
break;
default:
break;
}
}
void si_pmu_radio_enable(si_t *sih, bool enable)
{
ASSERT(sih->cccaps & CC_CAP_PMU);
switch (sih->chip) {
case BCM4319_CHIP_ID:
if (enable)
si_write_wrapperreg(sih, AI_OOBSELOUTB74,
(u32) 0x868584);
else
si_write_wrapperreg(sih, AI_OOBSELOUTB74,
(u32) 0x060584);
break;
}
}
/* Wait for a particular clock level to be on the backplane */
u32
si_pmu_waitforclk_on_backplane(si_t *sih, u32 clk, u32 delay)
{
chipcregs_t *cc;
uint origidx;
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
if (delay)
SPINWAIT(((R_REG(&cc->pmustatus) & clk) != clk), delay);
/* Return to original core */
si_setcoreidx(sih, origidx);
return R_REG(&cc->pmustatus) & clk;
}
/*
* Measures the ALP clock frequency in KHz. Returns 0 if not possible.
* Possible only if PMU rev >= 10 and there is an external LPO 32768Hz crystal.
*/
#define EXT_ILP_HZ 32768
u32 si_pmu_measure_alpclk(si_t *sih)
{
chipcregs_t *cc;
uint origidx;
u32 alp_khz;
if (sih->pmurev < 10)
return 0;
ASSERT(sih->cccaps & CC_CAP_PMU);
/* Remember original core before switch to chipc */
origidx = si_coreidx(sih);
cc = si_setcoreidx(sih, SI_CC_IDX);
ASSERT(cc != NULL);
if (R_REG(&cc->pmustatus) & PST_EXTLPOAVAIL) {
u32 ilp_ctr, alp_hz;
/* Enable the reg to measure the freq, in case disabled before */
W_REG(&cc->pmu_xtalfreq,
1U << PMU_XTALFREQ_REG_MEASURE_SHIFT);
/* Delay for well over 4 ILP clocks */
udelay(1000);
/* Read the latched number of ALP ticks per 4 ILP ticks */
ilp_ctr =
R_REG(&cc->pmu_xtalfreq) & PMU_XTALFREQ_REG_ILPCTR_MASK;
/* Turn off the PMU_XTALFREQ_REG_MEASURE_SHIFT bit to save power */
W_REG(&cc->pmu_xtalfreq, 0);
/* Calculate ALP frequency */
alp_hz = (ilp_ctr * EXT_ILP_HZ) / 4;
/* Round to nearest 100KHz, and at the same time convert to KHz */
alp_khz = (alp_hz + 50000) / 100000 * 100;
} else
alp_khz = 0;
/* Return to original core */
si_setcoreidx(sih, origidx);
return alp_khz;
}
static void si_pmu_set_4330_plldivs(si_t *sih)
{
u32 FVCO = si_pmu1_pllfvco0(sih) / 1000;
u32 m1div, m2div, m3div, m4div, m5div, m6div;
u32 pllc1, pllc2;
m2div = m3div = m4div = m6div = FVCO / 80;
m5div = FVCO / 160;
if (CST4330_CHIPMODE_SDIOD(sih->chipst))
m1div = FVCO / 80;
else
m1div = FVCO / 90;
pllc1 =
(m1div << PMU1_PLL0_PC1_M1DIV_SHIFT) | (m2div <<
PMU1_PLL0_PC1_M2DIV_SHIFT) |
(m3div << PMU1_PLL0_PC1_M3DIV_SHIFT) | (m4div <<
PMU1_PLL0_PC1_M4DIV_SHIFT);
si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL1, ~0, pllc1);
pllc2 = si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL1, 0, 0);
pllc2 &= ~(PMU1_PLL0_PC2_M5DIV_MASK | PMU1_PLL0_PC2_M6DIV_MASK);
pllc2 |=
((m5div << PMU1_PLL0_PC2_M5DIV_SHIFT) |
(m6div << PMU1_PLL0_PC2_M6DIV_SHIFT));
si_pmu_pllcontrol(sih, PMU1_PLL0_PLLCTL2, ~0, pllc2);
}