- 根目录:
- fs
- logfs
- gc.c
/*
* fs/logfs/gc.c - garbage collection code
*
* As should be obvious for Linux kernel code, license is GPLv2
*
* Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
*/
#include "logfs.h"
#include <linux/sched.h>
#include <linux/slab.h>
/*
* Wear leveling needs to kick in when the difference between low erase
* counts and high erase counts gets too big. A good value for "too big"
* may be somewhat below 10% of maximum erase count for the device.
* Why not 397, to pick a nice round number with no specific meaning? :)
*
* WL_RATELIMIT is the minimum time between two wear level events. A huge
* number of segments may fulfil the requirements for wear leveling at the
* same time. If that happens we don't want to cause a latency from hell,
* but just gently pick one segment every so often and minimize overhead.
*/
#define WL_DELTA 397
#define WL_RATELIMIT 100
#define MAX_OBJ_ALIASES 2600
#define SCAN_RATIO 512 /* number of scanned segments per gc'd segment */
#define LIST_SIZE 64 /* base size of candidate lists */
#define SCAN_ROUNDS 128 /* maximum number of complete medium scans */
#define SCAN_ROUNDS_HIGH 4 /* maximum number of higher-level scans */
static int no_free_segments(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
return super->s_free_list.count;
}
/* journal has distance -1, top-most ifile layer distance 0 */
static u8 root_distance(struct super_block *sb, gc_level_t __gc_level)
{
struct logfs_super *super = logfs_super(sb);
u8 gc_level = (__force u8)__gc_level;
switch (gc_level) {
case 0: /* fall through */
case 1: /* fall through */
case 2: /* fall through */
case 3:
/* file data or indirect blocks */
return super->s_ifile_levels + super->s_iblock_levels - gc_level;
case 6: /* fall through */
case 7: /* fall through */
case 8: /* fall through */
case 9:
/* inode file data or indirect blocks */
return super->s_ifile_levels - (gc_level - 6);
default:
printk(KERN_ERR"LOGFS: segment of unknown level %x found\n",
gc_level);
WARN_ON(1);
return super->s_ifile_levels + super->s_iblock_levels;
}
}
static int segment_is_reserved(struct super_block *sb, u32 segno)
{
struct logfs_super *super = logfs_super(sb);
struct logfs_area *area;
void *reserved;
int i;
/* Some segments are reserved. Just pretend they were all valid */
reserved = btree_lookup32(&super->s_reserved_segments, segno);
if (reserved)
return 1;
/* Currently open segments */
for_each_area(i) {
area = super->s_area[i];
if (area->a_is_open && area->a_segno == segno)
return 1;
}
return 0;
}
static void logfs_mark_segment_bad(struct super_block *sb, u32 segno)
{
BUG();
}
/*
* Returns the bytes consumed by valid objects in this segment. Object headers
* are counted, the segment header is not.
*/
static u32 logfs_valid_bytes(struct super_block *sb, u32 segno, u32 *ec,
gc_level_t *gc_level)
{
struct logfs_segment_entry se;
u32 ec_level;
logfs_get_segment_entry(sb, segno, &se);
if (se.ec_level == cpu_to_be32(BADSEG) ||
se.valid == cpu_to_be32(RESERVED))
return RESERVED;
ec_level = be32_to_cpu(se.ec_level);
*ec = ec_level >> 4;
*gc_level = GC_LEVEL(ec_level & 0xf);
return be32_to_cpu(se.valid);
}
static void logfs_cleanse_block(struct super_block *sb, u64 ofs, u64 ino,
u64 bix, gc_level_t gc_level)
{
struct inode *inode;
int err, cookie;
inode = logfs_safe_iget(sb, ino, &cookie);
err = logfs_rewrite_block(inode, bix, ofs, gc_level, 0);
BUG_ON(err);
logfs_safe_iput(inode, cookie);
}
static u32 logfs_gc_segment(struct super_block *sb, u32 segno)
{
struct logfs_super *super = logfs_super(sb);
struct logfs_segment_header sh;
struct logfs_object_header oh;
u64 ofs, ino, bix;
u32 seg_ofs, logical_segno, cleaned = 0;
int err, len, valid;
gc_level_t gc_level;
LOGFS_BUG_ON(segment_is_reserved(sb, segno), sb);
btree_insert32(&super->s_reserved_segments, segno, (void *)1, GFP_NOFS);
err = wbuf_read(sb, dev_ofs(sb, segno, 0), sizeof(sh), &sh);
BUG_ON(err);
gc_level = GC_LEVEL(sh.level);
logical_segno = be32_to_cpu(sh.segno);
if (sh.crc != logfs_crc32(&sh, sizeof(sh), 4)) {
logfs_mark_segment_bad(sb, segno);
cleaned = -1;
goto out;
}
for (seg_ofs = LOGFS_SEGMENT_HEADERSIZE;
seg_ofs + sizeof(oh) < super->s_segsize; ) {
ofs = dev_ofs(sb, logical_segno, seg_ofs);
err = wbuf_read(sb, dev_ofs(sb, segno, seg_ofs), sizeof(oh),
&oh);
BUG_ON(err);
if (!memchr_inv(&oh, 0xff, sizeof(oh)))
break;
if (oh.crc != logfs_crc32(&oh, sizeof(oh) - 4, 4)) {
logfs_mark_segment_bad(sb, segno);
cleaned = super->s_segsize - 1;
goto out;
}
ino = be64_to_cpu(oh.ino);
bix = be64_to_cpu(oh.bix);
len = sizeof(oh) + be16_to_cpu(oh.len);
valid = logfs_is_valid_block(sb, ofs, ino, bix, gc_level);
if (valid == 1) {
logfs_cleanse_block(sb, ofs, ino, bix, gc_level);
cleaned += len;
} else if (valid == 2) {
/* Will be invalid upon journal commit */
cleaned += len;
}
seg_ofs += len;
}
out:
btree_remove32(&super->s_reserved_segments, segno);
return cleaned;
}
static struct gc_candidate *add_list(struct gc_candidate *cand,
struct candidate_list *list)
{
struct rb_node **p = &list->rb_tree.rb_node;
struct rb_node *parent = NULL;
struct gc_candidate *cur;
int comp;
cand->list = list;
while (*p) {
parent = *p;
cur = rb_entry(parent, struct gc_candidate, rb_node);
if (list->sort_by_ec)
comp = cand->erase_count < cur->erase_count;
else
comp = cand->valid < cur->valid;
if (comp)
p = &parent->rb_left;
else
p = &parent->rb_right;
}
rb_link_node(&cand->rb_node, parent, p);
rb_insert_color(&cand->rb_node, &list->rb_tree);
if (list->count <= list->maxcount) {
list->count++;
return NULL;
}
cand = rb_entry(rb_last(&list->rb_tree), struct gc_candidate, rb_node);
rb_erase(&cand->rb_node, &list->rb_tree);
cand->list = NULL;
return cand;
}
static void remove_from_list(struct gc_candidate *cand)
{
struct candidate_list *list = cand->list;
rb_erase(&cand->rb_node, &list->rb_tree);
list->count--;
}
static void free_candidate(struct super_block *sb, struct gc_candidate *cand)
{
struct logfs_super *super = logfs_super(sb);
btree_remove32(&super->s_cand_tree, cand->segno);
kfree(cand);
}
u32 get_best_cand(struct super_block *sb, struct candidate_list *list, u32 *ec)
{
struct gc_candidate *cand;
u32 segno;
BUG_ON(list->count == 0);
cand = rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node);
remove_from_list(cand);
segno = cand->segno;
if (ec)
*ec = cand->erase_count;
free_candidate(sb, cand);
return segno;
}
/*
* We have several lists to manage segments with. The reserve_list is used to
* deal with bad blocks. We try to keep the best (lowest ec) segments on this
* list.
* The free_list contains free segments for normal usage. It usually gets the
* second pick after the reserve_list. But when the free_list is running short
* it is more important to keep the free_list full than to keep a reserve.
*
* Segments that are not free are put onto a per-level low_list. If we have
* to run garbage collection, we pick a candidate from there. All segments on
* those lists should have at least some free space so GC will make progress.
*
* And last we have the ec_list, which is used to pick segments for wear
* leveling.
*
* If all appropriate lists are full, we simply free the candidate and forget
* about that segment for a while. We have better candidates for each purpose.
*/
static void __add_candidate(struct super_block *sb, struct gc_candidate *cand)
{
struct logfs_super *super = logfs_super(sb);
u32 full = super->s_segsize - LOGFS_SEGMENT_RESERVE;
if (cand->valid == 0) {
/* 100% free segments */
log_gc_noisy("add reserve segment %x (ec %x) at %llx\n",
cand->segno, cand->erase_count,
dev_ofs(sb, cand->segno, 0));
cand = add_list(cand, &super->s_reserve_list);
if (cand) {
log_gc_noisy("add free segment %x (ec %x) at %llx\n",
cand->segno, cand->erase_count,
dev_ofs(sb, cand->segno, 0));
cand = add_list(cand, &super->s_free_list);
}
} else {
/* good candidates for Garbage Collection */
if (cand->valid < full)
cand = add_list(cand, &super->s_low_list[cand->dist]);
/* good candidates for wear leveling,
* segments that were recently written get ignored */
if (cand)
cand = add_list(cand, &super->s_ec_list);
}
if (cand)
free_candidate(sb, cand);
}
static int add_candidate(struct super_block *sb, u32 segno, u32 valid, u32 ec,
u8 dist)
{
struct logfs_super *super = logfs_super(sb);
struct gc_candidate *cand;
cand = kmalloc(sizeof(*cand), GFP_NOFS);
if (!cand)
return -ENOMEM;
cand->segno = segno;
cand->valid = valid;
cand->erase_count = ec;
cand->dist = dist;
btree_insert32(&super->s_cand_tree, segno, cand, GFP_NOFS);
__add_candidate(sb, cand);
return 0;
}
static void remove_segment_from_lists(struct super_block *sb, u32 segno)
{
struct logfs_super *super = logfs_super(sb);
struct gc_candidate *cand;
cand = btree_lookup32(&super->s_cand_tree, segno);
if (cand) {
remove_from_list(cand);
free_candidate(sb, cand);
}
}
static void scan_segment(struct super_block *sb, u32 segno)
{
u32 valid, ec = 0;
gc_level_t gc_level = 0;
u8 dist;
if (segment_is_reserved(sb, segno))
return;
remove_segment_from_lists(sb, segno);
valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
if (valid == RESERVED)
return;
dist = root_distance(sb, gc_level);
add_candidate(sb, segno, valid, ec, dist);
}
static struct gc_candidate *first_in_list(struct candidate_list *list)
{
if (list->count == 0)
return NULL;
return rb_entry(rb_first(&list->rb_tree), struct gc_candidate, rb_node);
}
/*
* Find the best segment for garbage collection. Main criterion is
* the segment requiring the least effort to clean. Secondary
* criterion is to GC on the lowest level available.
*
* So we search the least effort segment on the lowest level first,
* then move up and pick another segment iff is requires significantly
* less effort. Hence the LOGFS_MAX_OBJECTSIZE in the comparison.
*/
static struct gc_candidate *get_candidate(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
int i, max_dist;
struct gc_candidate *cand = NULL, *this;
max_dist = min(no_free_segments(sb), LOGFS_NO_AREAS);
for (i = max_dist; i >= 0; i--) {
this = first_in_list(&super->s_low_list[i]);
if (!this)
continue;
if (!cand)
cand = this;
if (this->valid + LOGFS_MAX_OBJECTSIZE <= cand->valid)
cand = this;
}
return cand;
}
static int __logfs_gc_once(struct super_block *sb, struct gc_candidate *cand)
{
struct logfs_super *super = logfs_super(sb);
gc_level_t gc_level;
u32 cleaned, valid, segno, ec;
u8 dist;
if (!cand) {
log_gc("GC attempted, but no candidate found\n");
return 0;
}
segno = cand->segno;
dist = cand->dist;
valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
free_candidate(sb, cand);
log_gc("GC segment #%02x at %llx, %x required, %x free, %x valid, %llx free\n",
segno, (u64)segno << super->s_segshift,
dist, no_free_segments(sb), valid,
super->s_free_bytes);
cleaned = logfs_gc_segment(sb, segno);
log_gc("GC segment #%02x complete - now %x valid\n", segno,
valid - cleaned);
BUG_ON(cleaned != valid);
return 1;
}
static int logfs_gc_once(struct super_block *sb)
{
struct gc_candidate *cand;
cand = get_candidate(sb);
if (cand)
remove_from_list(cand);
return __logfs_gc_once(sb, cand);
}
/* returns 1 if a wrap occurs, 0 otherwise */
static int logfs_scan_some(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
u32 segno;
int i, ret = 0;
segno = super->s_sweeper;
for (i = SCAN_RATIO; i > 0; i--) {
segno++;
if (segno >= super->s_no_segs) {
segno = 0;
ret = 1;
/* Break out of the loop. We want to read a single
* block from the segment size on next invocation if
* SCAN_RATIO is set to match block size
*/
break;
}
scan_segment(sb, segno);
}
super->s_sweeper = segno;
return ret;
}
/*
* In principle, this function should loop forever, looking for GC candidates
* and moving data. LogFS is designed in such a way that this loop is
* guaranteed to terminate.
*
* Limiting the loop to some iterations serves purely to catch cases when
* these guarantees have failed. An actual endless loop is an obvious bug
* and should be reported as such.
*/
static void __logfs_gc_pass(struct super_block *sb, int target)
{
struct logfs_super *super = logfs_super(sb);
struct logfs_block *block;
int round, progress, last_progress = 0;
/*
* Doing too many changes to the segfile at once would result
* in a large number of aliases. Write the journal before
* things get out of hand.
*/
if (super->s_shadow_tree.no_shadowed_segments >= MAX_OBJ_ALIASES)
logfs_write_anchor(sb);
if (no_free_segments(sb) >= target &&
super->s_no_object_aliases < MAX_OBJ_ALIASES)
return;
log_gc("__logfs_gc_pass(%x)\n", target);
for (round = 0; round < SCAN_ROUNDS; ) {
if (no_free_segments(sb) >= target)
goto write_alias;
/* Sync in-memory state with on-medium state in case they
* diverged */
logfs_write_anchor(sb);
round += logfs_scan_some(sb);
if (no_free_segments(sb) >= target)
goto write_alias;
progress = logfs_gc_once(sb);
if (progress)
last_progress = round;
else if (round - last_progress > 2)
break;
continue;
/*
* The goto logic is nasty, I just don't know a better way to
* code it. GC is supposed to ensure two things:
* 1. Enough free segments are available.
* 2. The number of aliases is bounded.
* When 1. is achieved, we take a look at 2. and write back
* some alias-containing blocks, if necessary. However, after
* each such write we need to go back to 1., as writes can
* consume free segments.
*/
write_alias:
if (super->s_no_object_aliases < MAX_OBJ_ALIASES)
return;
if (list_empty(&super->s_object_alias)) {
/* All aliases are still in btree */
return;
}
log_gc("Write back one alias\n");
block = list_entry(super->s_object_alias.next,
struct logfs_block, alias_list);
block->ops->write_block(block);
/*
* To round off the nasty goto logic, we reset round here. It
* is a safety-net for GC not making any progress and limited
* to something reasonably small. If incremented it for every
* single alias, the loop could terminate rather quickly.
*/
round = 0;
}
LOGFS_BUG(sb);
}
static int wl_ratelimit(struct super_block *sb, u64 *next_event)
{
struct logfs_super *super = logfs_super(sb);
if (*next_event < super->s_gec) {
*next_event = super->s_gec + WL_RATELIMIT;
return 0;
}
return 1;
}
static void logfs_wl_pass(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
struct gc_candidate *wl_cand, *free_cand;
if (wl_ratelimit(sb, &super->s_wl_gec_ostore))
return;
wl_cand = first_in_list(&super->s_ec_list);
if (!wl_cand)
return;
free_cand = first_in_list(&super->s_free_list);
if (!free_cand)
return;
if (wl_cand->erase_count < free_cand->erase_count + WL_DELTA) {
remove_from_list(wl_cand);
__logfs_gc_once(sb, wl_cand);
}
}
/*
* The journal needs wear leveling as well. But moving the journal is an
* expensive operation so we try to avoid it as much as possible. And if we
* have to do it, we move the whole journal, not individual segments.
*
* Ratelimiting is not strictly necessary here, it mainly serves to avoid the
* calculations. First we check whether moving the journal would be a
* significant improvement. That means that a) the current journal segments
* have more wear than the future journal segments and b) the current journal
* segments have more wear than normal ostore segments.
* Rationale for b) is that we don't have to move the journal if it is aging
* less than the ostore, even if the reserve segments age even less (they are
* excluded from wear leveling, after all).
* Next we check that the superblocks have less wear than the journal. Since
* moving the journal requires writing the superblocks, we have to protect the
* superblocks even more than the journal.
*
* Also we double the acceptable wear difference, compared to ostore wear
* leveling. Journal data is read and rewritten rapidly, comparatively. So
* soft errors have much less time to accumulate and we allow the journal to
* be a bit worse than the ostore.
*/
static void logfs_journal_wl_pass(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
struct gc_candidate *cand;
u32 min_journal_ec = -1, max_reserve_ec = 0;
int i;
if (wl_ratelimit(sb, &super->s_wl_gec_journal))
return;
if (super->s_reserve_list.count < super->s_no_journal_segs) {
/* Reserve is not full enough to move complete journal */
return;
}
journal_for_each(i)
if (super->s_journal_seg[i])
min_journal_ec = min(min_journal_ec,
super->s_journal_ec[i]);
cand = rb_entry(rb_first(&super->s_free_list.rb_tree),
struct gc_candidate, rb_node);
max_reserve_ec = cand->erase_count;
for (i = 0; i < 2; i++) {
struct logfs_segment_entry se;
u32 segno = seg_no(sb, super->s_sb_ofs[i]);
u32 ec;
logfs_get_segment_entry(sb, segno, &se);
ec = be32_to_cpu(se.ec_level) >> 4;
max_reserve_ec = max(max_reserve_ec, ec);
}
if (min_journal_ec > max_reserve_ec + 2 * WL_DELTA) {
do_logfs_journal_wl_pass(sb);
}
}
void logfs_gc_pass(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
//BUG_ON(mutex_trylock(&logfs_super(sb)->s_w_mutex));
/* Write journal before free space is getting saturated with dirty
* objects.
*/
if (super->s_dirty_used_bytes + super->s_dirty_free_bytes
+ LOGFS_MAX_OBJECTSIZE >= super->s_free_bytes)
logfs_write_anchor(sb);
__logfs_gc_pass(sb, super->s_total_levels);
logfs_wl_pass(sb);
logfs_journal_wl_pass(sb);
}
static int check_area(struct super_block *sb, int i)
{
struct logfs_super *super = logfs_super(sb);
struct logfs_area *area = super->s_area[i];
gc_level_t gc_level;
u32 cleaned, valid, ec;
u32 segno = area->a_segno;
u64 ofs = dev_ofs(sb, area->a_segno, area->a_written_bytes);
if (!area->a_is_open)
return 0;
if (super->s_devops->can_write_buf(sb, ofs) == 0)
return 0;
printk(KERN_INFO"LogFS: Possibly incomplete write at %llx\n", ofs);
/*
* The device cannot write back the write buffer. Most likely the
* wbuf was already written out and the system crashed at some point
* before the journal commit happened. In that case we wouldn't have
* to do anything. But if the crash happened before the wbuf was
* written out correctly, we must GC this segment. So assume the
* worst and always do the GC run.
*/
area->a_is_open = 0;
valid = logfs_valid_bytes(sb, segno, &ec, &gc_level);
cleaned = logfs_gc_segment(sb, segno);
if (cleaned != valid)
return -EIO;
return 0;
}
int logfs_check_areas(struct super_block *sb)
{
int i, err;
for_each_area(i) {
err = check_area(sb, i);
if (err)
return err;
}
return 0;
}
static void logfs_init_candlist(struct candidate_list *list, int maxcount,
int sort_by_ec)
{
list->count = 0;
list->maxcount = maxcount;
list->sort_by_ec = sort_by_ec;
list->rb_tree = RB_ROOT;
}
int logfs_init_gc(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
int i;
btree_init_mempool32(&super->s_cand_tree, super->s_btree_pool);
logfs_init_candlist(&super->s_free_list, LIST_SIZE + SCAN_RATIO, 1);
logfs_init_candlist(&super->s_reserve_list,
super->s_bad_seg_reserve, 1);
for_each_area(i)
logfs_init_candlist(&super->s_low_list[i], LIST_SIZE, 0);
logfs_init_candlist(&super->s_ec_list, LIST_SIZE, 1);
return 0;
}
static void logfs_cleanup_list(struct super_block *sb,
struct candidate_list *list)
{
struct gc_candidate *cand;
while (list->count) {
cand = rb_entry(list->rb_tree.rb_node, struct gc_candidate,
rb_node);
remove_from_list(cand);
free_candidate(sb, cand);
}
BUG_ON(list->rb_tree.rb_node);
}
void logfs_cleanup_gc(struct super_block *sb)
{
struct logfs_super *super = logfs_super(sb);
int i;
if (!super->s_free_list.count)
return;
/*
* FIXME: The btree may still contain a single empty node. So we
* call the grim visitor to clean up that mess. Btree code should
* do it for us, really.
*/
btree_grim_visitor32(&super->s_cand_tree, 0, NULL);
logfs_cleanup_list(sb, &super->s_free_list);
logfs_cleanup_list(sb, &super->s_reserve_list);
for_each_area(i)
logfs_cleanup_list(sb, &super->s_low_list[i]);
logfs_cleanup_list(sb, &super->s_ec_list);
}