/* * Copyright 2001, 2007-2008 MontaVista Software Inc. * Author: MontaVista Software, Inc. <source@mvista.com> * * Copyright (C) 2007 Ralf Baechle (ralf@linux-mips.org) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/bitops.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/slab.h> #include <linux/syscore_ops.h> #include <asm/irq_cpu.h> #include <asm/mipsregs.h> #include <asm/mach-au1x00/au1000.h> #ifdef CONFIG_MIPS_PB1000 #include <asm/mach-pb1x00/pb1000.h> #endif /* Interrupt Controller register offsets */ #define IC_CFG0RD 0x40 #define IC_CFG0SET 0x40 #define IC_CFG0CLR 0x44 #define IC_CFG1RD 0x48 #define IC_CFG1SET 0x48 #define IC_CFG1CLR 0x4C #define IC_CFG2RD 0x50 #define IC_CFG2SET 0x50 #define IC_CFG2CLR 0x54 #define IC_REQ0INT 0x54 #define IC_SRCRD 0x58 #define IC_SRCSET 0x58 #define IC_SRCCLR 0x5C #define IC_REQ1INT 0x5C #define IC_ASSIGNRD 0x60 #define IC_ASSIGNSET 0x60 #define IC_ASSIGNCLR 0x64 #define IC_WAKERD 0x68 #define IC_WAKESET 0x68 #define IC_WAKECLR 0x6C #define IC_MASKRD 0x70 #define IC_MASKSET 0x70 #define IC_MASKCLR 0x74 #define IC_RISINGRD 0x78 #define IC_RISINGCLR 0x78 #define IC_FALLINGRD 0x7C #define IC_FALLINGCLR 0x7C #define IC_TESTBIT 0x80 static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type); /* NOTE on interrupt priorities: The original writers of this code said: * * Because of the tight timing of SETUP token to reply transactions, * the USB devices-side packet complete interrupt (USB_DEV_REQ_INT) * needs the highest priority. */ /* per-processor fixed function irqs */ struct au1xxx_irqmap { int im_irq; int im_type; int im_request; /* set 1 to get higher priority */ }; struct au1xxx_irqmap au1000_irqmap[] __initdata = { { AU1000_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_UART2_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 }, { AU1000_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 }, { AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1000_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 }, { -1, }, }; struct au1xxx_irqmap au1500_irqmap[] __initdata = { { AU1500_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1500_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1500_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1500_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1500_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 }, { AU1500_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 }, { AU1500_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1500_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1500_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1500_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 }, { -1, }, }; struct au1xxx_irqmap au1100_irqmap[] __initdata = { { AU1100_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 }, { AU1100_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 }, { AU1100_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1100_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1100_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1100_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 }, { -1, }, }; struct au1xxx_irqmap au1550_irqmap[] __initdata = { { AU1550_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_CRYPTO_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_PCI_RST_INT, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PSC2_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_PSC3_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 }, { AU1550_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 }, { AU1550_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1550_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 }, { AU1550_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1550_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { -1, }, }; struct au1xxx_irqmap au1200_irqmap[] __initdata = { { AU1200_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_SWT_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_MAE_BE_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_MAE_FE_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_AES_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_CAMERA_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 }, { AU1200_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 }, { AU1200_USB_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { AU1200_MAE_BOTH_INT, IRQ_TYPE_LEVEL_HIGH, 0 }, { -1, }, }; static void au1x_ic0_unmask(struct irq_data *d) { unsigned int bit = d->irq - AU1000_INTC0_INT_BASE; void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR); __raw_writel(1 << bit, base + IC_MASKSET); __raw_writel(1 << bit, base + IC_WAKESET); wmb(); } static void au1x_ic1_unmask(struct irq_data *d) { unsigned int bit = d->irq - AU1000_INTC1_INT_BASE; void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR); __raw_writel(1 << bit, base + IC_MASKSET); __raw_writel(1 << bit, base + IC_WAKESET); /* very hacky. does the pb1000 cpld auto-disable this int? * nowhere in the current kernel sources is it disabled. --mlau */ #if defined(CONFIG_MIPS_PB1000) if (d->irq == AU1000_GPIO15_INT) __raw_writel(0x4000, (void __iomem *)PB1000_MDR); /* enable int */ #endif wmb(); } static void au1x_ic0_mask(struct irq_data *d) { unsigned int bit = d->irq - AU1000_INTC0_INT_BASE; void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR); __raw_writel(1 << bit, base + IC_MASKCLR); __raw_writel(1 << bit, base + IC_WAKECLR); wmb(); } static void au1x_ic1_mask(struct irq_data *d) { unsigned int bit = d->irq - AU1000_INTC1_INT_BASE; void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR); __raw_writel(1 << bit, base + IC_MASKCLR); __raw_writel(1 << bit, base + IC_WAKECLR); wmb(); } static void au1x_ic0_ack(struct irq_data *d) { unsigned int bit = d->irq - AU1000_INTC0_INT_BASE; void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR); /* * This may assume that we don't get interrupts from * both edges at once, or if we do, that we don't care. */ __raw_writel(1 << bit, base + IC_FALLINGCLR); __raw_writel(1 << bit, base + IC_RISINGCLR); wmb(); } static void au1x_ic1_ack(struct irq_data *d) { unsigned int bit = d->irq - AU1000_INTC1_INT_BASE; void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR); /* * This may assume that we don't get interrupts from * both edges at once, or if we do, that we don't care. */ __raw_writel(1 << bit, base + IC_FALLINGCLR); __raw_writel(1 << bit, base + IC_RISINGCLR); wmb(); } static void au1x_ic0_maskack(struct irq_data *d) { unsigned int bit = d->irq - AU1000_INTC0_INT_BASE; void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR); __raw_writel(1 << bit, base + IC_WAKECLR); __raw_writel(1 << bit, base + IC_MASKCLR); __raw_writel(1 << bit, base + IC_RISINGCLR); __raw_writel(1 << bit, base + IC_FALLINGCLR); wmb(); } static void au1x_ic1_maskack(struct irq_data *d) { unsigned int bit = d->irq - AU1000_INTC1_INT_BASE; void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR); __raw_writel(1 << bit, base + IC_WAKECLR); __raw_writel(1 << bit, base + IC_MASKCLR); __raw_writel(1 << bit, base + IC_RISINGCLR); __raw_writel(1 << bit, base + IC_FALLINGCLR); wmb(); } static int au1x_ic1_setwake(struct irq_data *d, unsigned int on) { int bit = d->irq - AU1000_INTC1_INT_BASE; unsigned long wakemsk, flags; /* only GPIO 0-7 can act as wakeup source. Fortunately these * are wired up identically on all supported variants. */ if ((bit < 0) || (bit > 7)) return -EINVAL; local_irq_save(flags); wakemsk = __raw_readl((void __iomem *)SYS_WAKEMSK); if (on) wakemsk |= 1 << bit; else wakemsk &= ~(1 << bit); __raw_writel(wakemsk, (void __iomem *)SYS_WAKEMSK); wmb(); local_irq_restore(flags); return 0; } /* * irq_chips for both ICs; this way the mask handlers can be * as short as possible. */ static struct irq_chip au1x_ic0_chip = { .name = "Alchemy-IC0", .irq_ack = au1x_ic0_ack, .irq_mask = au1x_ic0_mask, .irq_mask_ack = au1x_ic0_maskack, .irq_unmask = au1x_ic0_unmask, .irq_set_type = au1x_ic_settype, }; static struct irq_chip au1x_ic1_chip = { .name = "Alchemy-IC1", .irq_ack = au1x_ic1_ack, .irq_mask = au1x_ic1_mask, .irq_mask_ack = au1x_ic1_maskack, .irq_unmask = au1x_ic1_unmask, .irq_set_type = au1x_ic_settype, .irq_set_wake = au1x_ic1_setwake, }; static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type) { struct irq_chip *chip; unsigned int bit, irq = d->irq; irq_flow_handler_t handler = NULL; unsigned char *name = NULL; void __iomem *base; int ret; if (irq >= AU1000_INTC1_INT_BASE) { bit = irq - AU1000_INTC1_INT_BASE; chip = &au1x_ic1_chip; base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR); } else { bit = irq - AU1000_INTC0_INT_BASE; chip = &au1x_ic0_chip; base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR); } if (bit > 31) return -EINVAL; ret = 0; switch (flow_type) { /* cfgregs 2:1:0 */ case IRQ_TYPE_EDGE_RISING: /* 0:0:1 */ __raw_writel(1 << bit, base + IC_CFG2CLR); __raw_writel(1 << bit, base + IC_CFG1CLR); __raw_writel(1 << bit, base + IC_CFG0SET); handler = handle_edge_irq; name = "riseedge"; break; case IRQ_TYPE_EDGE_FALLING: /* 0:1:0 */ __raw_writel(1 << bit, base + IC_CFG2CLR); __raw_writel(1 << bit, base + IC_CFG1SET); __raw_writel(1 << bit, base + IC_CFG0CLR); handler = handle_edge_irq; name = "falledge"; break; case IRQ_TYPE_EDGE_BOTH: /* 0:1:1 */ __raw_writel(1 << bit, base + IC_CFG2CLR); __raw_writel(1 << bit, base + IC_CFG1SET); __raw_writel(1 << bit, base + IC_CFG0SET); handler = handle_edge_irq; name = "bothedge"; break; case IRQ_TYPE_LEVEL_HIGH: /* 1:0:1 */ __raw_writel(1 << bit, base + IC_CFG2SET); __raw_writel(1 << bit, base + IC_CFG1CLR); __raw_writel(1 << bit, base + IC_CFG0SET); handler = handle_level_irq; name = "hilevel"; break; case IRQ_TYPE_LEVEL_LOW: /* 1:1:0 */ __raw_writel(1 << bit, base + IC_CFG2SET); __raw_writel(1 << bit, base + IC_CFG1SET); __raw_writel(1 << bit, base + IC_CFG0CLR); handler = handle_level_irq; name = "lowlevel"; break; case IRQ_TYPE_NONE: /* 0:0:0 */ __raw_writel(1 << bit, base + IC_CFG2CLR); __raw_writel(1 << bit, base + IC_CFG1CLR); __raw_writel(1 << bit, base + IC_CFG0CLR); break; default: ret = -EINVAL; } __irq_set_chip_handler_name_locked(d->irq, chip, handler, name); wmb(); return ret; } asmlinkage void plat_irq_dispatch(void) { unsigned int pending = read_c0_status() & read_c0_cause(); unsigned long s, off; if (pending & CAUSEF_IP7) { off = MIPS_CPU_IRQ_BASE + 7; goto handle; } else if (pending & CAUSEF_IP2) { s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ0INT; off = AU1000_INTC0_INT_BASE; } else if (pending & CAUSEF_IP3) { s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ1INT; off = AU1000_INTC0_INT_BASE; } else if (pending & CAUSEF_IP4) { s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ0INT; off = AU1000_INTC1_INT_BASE; } else if (pending & CAUSEF_IP5) { s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ1INT; off = AU1000_INTC1_INT_BASE; } else goto spurious; s = __raw_readl((void __iomem *)s); if (unlikely(!s)) { spurious: spurious_interrupt(); return; } off += __ffs(s); handle: do_IRQ(off); } static inline void ic_init(void __iomem *base) { /* initialize interrupt controller to a safe state */ __raw_writel(0xffffffff, base + IC_CFG0CLR); __raw_writel(0xffffffff, base + IC_CFG1CLR); __raw_writel(0xffffffff, base + IC_CFG2CLR); __raw_writel(0xffffffff, base + IC_MASKCLR); __raw_writel(0xffffffff, base + IC_ASSIGNCLR); __raw_writel(0xffffffff, base + IC_WAKECLR); __raw_writel(0xffffffff, base + IC_SRCSET); __raw_writel(0xffffffff, base + IC_FALLINGCLR); __raw_writel(0xffffffff, base + IC_RISINGCLR); __raw_writel(0x00000000, base + IC_TESTBIT); wmb(); } static void __init au1000_init_irq(struct au1xxx_irqmap *map) { unsigned int bit, irq_nr; void __iomem *base; ic_init((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR)); ic_init((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR)); mips_cpu_irq_init(); /* register all 64 possible IC0+IC1 irq sources as type "none". * Use set_irq_type() to set edge/level behaviour at runtime. */ for (irq_nr = AU1000_INTC0_INT_BASE; (irq_nr < AU1000_INTC0_INT_BASE + 32); irq_nr++) au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE); for (irq_nr = AU1000_INTC1_INT_BASE; (irq_nr < AU1000_INTC1_INT_BASE + 32); irq_nr++) au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE); /* * Initialize IC0, which is fixed per processor. */ while (map->im_irq != -1) { irq_nr = map->im_irq; if (irq_nr >= AU1000_INTC1_INT_BASE) { bit = irq_nr - AU1000_INTC1_INT_BASE; base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR); } else { bit = irq_nr - AU1000_INTC0_INT_BASE; base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR); } if (map->im_request) __raw_writel(1 << bit, base + IC_ASSIGNSET); au1x_ic_settype(irq_get_irq_data(irq_nr), map->im_type); ++map; } set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3); } void __init arch_init_irq(void) { switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1000: au1000_init_irq(au1000_irqmap); break; case ALCHEMY_CPU_AU1500: au1000_init_irq(au1500_irqmap); break; case ALCHEMY_CPU_AU1100: au1000_init_irq(au1100_irqmap); break; case ALCHEMY_CPU_AU1550: au1000_init_irq(au1550_irqmap); break; case ALCHEMY_CPU_AU1200: au1000_init_irq(au1200_irqmap); break; } } static unsigned long alchemy_ic_pmdata[7 * 2]; static inline void alchemy_ic_suspend_one(void __iomem *base, unsigned long *d) { d[0] = __raw_readl(base + IC_CFG0RD); d[1] = __raw_readl(base + IC_CFG1RD); d[2] = __raw_readl(base + IC_CFG2RD); d[3] = __raw_readl(base + IC_SRCRD); d[4] = __raw_readl(base + IC_ASSIGNRD); d[5] = __raw_readl(base + IC_WAKERD); d[6] = __raw_readl(base + IC_MASKRD); ic_init(base); /* shut it up too while at it */ } static inline void alchemy_ic_resume_one(void __iomem *base, unsigned long *d) { ic_init(base); __raw_writel(d[0], base + IC_CFG0SET); __raw_writel(d[1], base + IC_CFG1SET); __raw_writel(d[2], base + IC_CFG2SET); __raw_writel(d[3], base + IC_SRCSET); __raw_writel(d[4], base + IC_ASSIGNSET); __raw_writel(d[5], base + IC_WAKESET); wmb(); __raw_writel(d[6], base + IC_MASKSET); wmb(); } static int alchemy_ic_suspend(void) { alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR), alchemy_ic_pmdata); alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR), &alchemy_ic_pmdata[7]); return 0; } static void alchemy_ic_resume(void) { alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR), &alchemy_ic_pmdata[7]); alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR), alchemy_ic_pmdata); } static struct syscore_ops alchemy_ic_syscore_ops = { .suspend = alchemy_ic_suspend, .resume = alchemy_ic_resume, }; static int __init alchemy_ic_pm_init(void) { register_syscore_ops(&alchemy_ic_syscore_ops); return 0; } device_initcall(alchemy_ic_pm_init);