#include <linux/kernel.h> #include <linux/init.h> #include <linux/pci.h> #include <asm/bootinfo.h> #include <asm/lasat/lasat.h> #include <asm/gt64120.h> #include <asm/nile4.h> #define PCI_ACCESS_READ 0 #define PCI_ACCESS_WRITE 1 #define LO(reg) (reg / 4) #define HI(reg) (reg / 4 + 1) volatile unsigned long *const vrc_pciregs = (void *) Vrc5074_BASE; static DEFINE_SPINLOCK(nile4_pci_lock); static int nile4_pcibios_config_access(unsigned char access_type, struct pci_bus *bus, unsigned int devfn, int where, u32 *val) { unsigned char busnum = bus->number; u32 adr, mask, err; if ((busnum == 0) && (PCI_SLOT(devfn) > 8)) /* The addressing scheme chosen leaves room for just * 8 devices on the first busnum (besides the PCI * controller itself) */ return PCIBIOS_DEVICE_NOT_FOUND; if ((busnum == 0) && (devfn == PCI_DEVFN(0, 0))) { /* Access controller registers directly */ if (access_type == PCI_ACCESS_WRITE) { vrc_pciregs[(0x200 + where) >> 2] = *val; } else { *val = vrc_pciregs[(0x200 + where) >> 2]; } return PCIBIOS_SUCCESSFUL; } /* Temporarily map PCI Window 1 to config space */ mask = vrc_pciregs[LO(NILE4_PCIINIT1)]; vrc_pciregs[LO(NILE4_PCIINIT1)] = 0x0000001a | (busnum ? 0x200 : 0); /* Clear PCI Error register. This also clears the Error Type * bits in the Control register */ vrc_pciregs[LO(NILE4_PCIERR)] = 0; vrc_pciregs[HI(NILE4_PCIERR)] = 0; /* Setup address */ if (busnum == 0) adr = KSEG1ADDR(PCI_WINDOW1) + ((1 << (PCI_SLOT(devfn) + 15)) | (PCI_FUNC(devfn) << 8) | (where & ~3)); else adr = KSEG1ADDR(PCI_WINDOW1) | (busnum << 16) | (devfn << 8) | (where & ~3); if (access_type == PCI_ACCESS_WRITE) *(u32 *) adr = *val; else *val = *(u32 *) adr; /* Check for master or target abort */ err = (vrc_pciregs[HI(NILE4_PCICTRL)] >> 5) & 0x7; /* Restore PCI Window 1 */ vrc_pciregs[LO(NILE4_PCIINIT1)] = mask; if (err) return PCIBIOS_DEVICE_NOT_FOUND; return PCIBIOS_SUCCESSFUL; } static int nile4_pcibios_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { unsigned long flags; u32 data = 0; int err; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; spin_lock_irqsave(&nile4_pci_lock, flags); err = nile4_pcibios_config_access(PCI_ACCESS_READ, bus, devfn, where, &data); spin_unlock_irqrestore(&nile4_pci_lock, flags); if (err) return err; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } static int nile4_pcibios_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { unsigned long flags; u32 data = 0; int err; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; spin_lock_irqsave(&nile4_pci_lock, flags); err = nile4_pcibios_config_access(PCI_ACCESS_READ, bus, devfn, where, &data); spin_unlock_irqrestore(&nile4_pci_lock, flags); if (err) return err; if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else data = val; if (nile4_pcibios_config_access (PCI_ACCESS_WRITE, bus, devfn, where, &data)) return -1; return PCIBIOS_SUCCESSFUL; } struct pci_ops nile4_pci_ops = { .read = nile4_pcibios_read, .write = nile4_pcibios_write, };