/* * MMU context allocation for 64-bit kernels. * * Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/spinlock.h> #include <linux/idr.h> #include <linux/module.h> #include <linux/gfp.h> #include <linux/slab.h> #include <asm/mmu_context.h> #ifdef CONFIG_PPC_ICSWX /* * The processor and its L2 cache cause the icswx instruction to * generate a COP_REQ transaction on PowerBus. The transaction has * no address, and the processor does not perform an MMU access * to authenticate the transaction. The command portion of the * PowerBus COP_REQ transaction includes the LPAR_ID (LPID) and * the coprocessor Process ID (PID), which the coprocessor compares * to the authorized LPID and PID held in the coprocessor, to determine * if the process is authorized to generate the transaction. * The data of the COP_REQ transaction is 128-byte or less and is * placed in cacheable memory on a 128-byte cache line boundary. * * The task to use a coprocessor should use use_cop() to allocate * a coprocessor PID before executing icswx instruction. use_cop() * also enables the coprocessor context switching. Drop_cop() is * used to free the coprocessor PID. * * Example: * Host Fabric Interface (HFI) is a PowerPC network coprocessor. * Each HFI have multiple windows. Each HFI window serves as a * network device sending to and receiving from HFI network. * HFI immediate send function uses icswx instruction. The immediate * send function allows small (single cache-line) packets be sent * without using the regular HFI send FIFO and doorbell, which are * much slower than immediate send. * * For each task intending to use HFI immediate send, the HFI driver * calls use_cop() to obtain a coprocessor PID for the task. * The HFI driver then allocate a free HFI window and save the * coprocessor PID to the HFI window to allow the task to use the * HFI window. * * The HFI driver repeatedly creates immediate send packets and * issues icswx instruction to send data through the HFI window. * The HFI compares the coprocessor PID in the CPU PID register * to the PID held in the HFI window to determine if the transaction * is allowed. * * When the task to release the HFI window, the HFI driver calls * drop_cop() to release the coprocessor PID. */ #define COP_PID_NONE 0 #define COP_PID_MIN (COP_PID_NONE + 1) #define COP_PID_MAX (0xFFFF) static DEFINE_SPINLOCK(mmu_context_acop_lock); static DEFINE_IDA(cop_ida); void switch_cop(struct mm_struct *next) { mtspr(SPRN_PID, next->context.cop_pid); mtspr(SPRN_ACOP, next->context.acop); } static int new_cop_pid(struct ida *ida, int min_id, int max_id, spinlock_t *lock) { int index; int err; again: if (!ida_pre_get(ida, GFP_KERNEL)) return -ENOMEM; spin_lock(lock); err = ida_get_new_above(ida, min_id, &index); spin_unlock(lock); if (err == -EAGAIN) goto again; else if (err) return err; if (index > max_id) { spin_lock(lock); ida_remove(ida, index); spin_unlock(lock); return -ENOMEM; } return index; } static void sync_cop(void *arg) { struct mm_struct *mm = arg; if (mm == current->active_mm) switch_cop(current->active_mm); } /** * Start using a coprocessor. * @acop: mask of coprocessor to be used. * @mm: The mm the coprocessor to associate with. Most likely current mm. * * Return a positive PID if successful. Negative errno otherwise. * The returned PID will be fed to the coprocessor to determine if an * icswx transaction is authenticated. */ int use_cop(unsigned long acop, struct mm_struct *mm) { int ret; if (!cpu_has_feature(CPU_FTR_ICSWX)) return -ENODEV; if (!mm || !acop) return -EINVAL; /* The page_table_lock ensures mm_users won't change under us */ spin_lock(&mm->page_table_lock); spin_lock(mm->context.cop_lockp); if (mm->context.cop_pid == COP_PID_NONE) { ret = new_cop_pid(&cop_ida, COP_PID_MIN, COP_PID_MAX, &mmu_context_acop_lock); if (ret < 0) goto out; mm->context.cop_pid = ret; } mm->context.acop |= acop; sync_cop(mm); /* * If this is a threaded process then there might be other threads * running. We need to send an IPI to force them to pick up any * change in PID and ACOP. */ if (atomic_read(&mm->mm_users) > 1) smp_call_function(sync_cop, mm, 1); ret = mm->context.cop_pid; out: spin_unlock(mm->context.cop_lockp); spin_unlock(&mm->page_table_lock); return ret; } EXPORT_SYMBOL_GPL(use_cop); /** * Stop using a coprocessor. * @acop: mask of coprocessor to be stopped. * @mm: The mm the coprocessor associated with. */ void drop_cop(unsigned long acop, struct mm_struct *mm) { int free_pid = COP_PID_NONE; if (!cpu_has_feature(CPU_FTR_ICSWX)) return; if (WARN_ON_ONCE(!mm)) return; /* The page_table_lock ensures mm_users won't change under us */ spin_lock(&mm->page_table_lock); spin_lock(mm->context.cop_lockp); mm->context.acop &= ~acop; if ((!mm->context.acop) && (mm->context.cop_pid != COP_PID_NONE)) { free_pid = mm->context.cop_pid; mm->context.cop_pid = COP_PID_NONE; } sync_cop(mm); /* * If this is a threaded process then there might be other threads * running. We need to send an IPI to force them to pick up any * change in PID and ACOP. */ if (atomic_read(&mm->mm_users) > 1) smp_call_function(sync_cop, mm, 1); if (free_pid != COP_PID_NONE) { spin_lock(&mmu_context_acop_lock); ida_remove(&cop_ida, free_pid); spin_unlock(&mmu_context_acop_lock); } spin_unlock(mm->context.cop_lockp); spin_unlock(&mm->page_table_lock); } EXPORT_SYMBOL_GPL(drop_cop); #endif /* CONFIG_PPC_ICSWX */ static DEFINE_SPINLOCK(mmu_context_lock); static DEFINE_IDA(mmu_context_ida); /* * The proto-VSID space has 2^35 - 1 segments available for user mappings. * Each segment contains 2^28 bytes. Each context maps 2^44 bytes, * so we can support 2^19-1 contexts (19 == 35 + 28 - 44). */ #define MAX_CONTEXT ((1UL << 19) - 1) int __init_new_context(void) { int index; int err; again: if (!ida_pre_get(&mmu_context_ida, GFP_KERNEL)) return -ENOMEM; spin_lock(&mmu_context_lock); err = ida_get_new_above(&mmu_context_ida, 1, &index); spin_unlock(&mmu_context_lock); if (err == -EAGAIN) goto again; else if (err) return err; if (index > MAX_CONTEXT) { spin_lock(&mmu_context_lock); ida_remove(&mmu_context_ida, index); spin_unlock(&mmu_context_lock); return -ENOMEM; } return index; } EXPORT_SYMBOL_GPL(__init_new_context); int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { int index; index = __init_new_context(); if (index < 0) return index; /* The old code would re-promote on fork, we don't do that * when using slices as it could cause problem promoting slices * that have been forced down to 4K */ if (slice_mm_new_context(mm)) slice_set_user_psize(mm, mmu_virtual_psize); subpage_prot_init_new_context(mm); mm->context.id = index; #ifdef CONFIG_PPC_ICSWX mm->context.cop_lockp = kmalloc(sizeof(spinlock_t), GFP_KERNEL); if (!mm->context.cop_lockp) { __destroy_context(index); subpage_prot_free(mm); mm->context.id = MMU_NO_CONTEXT; return -ENOMEM; } spin_lock_init(mm->context.cop_lockp); #endif /* CONFIG_PPC_ICSWX */ return 0; } void __destroy_context(int context_id) { spin_lock(&mmu_context_lock); ida_remove(&mmu_context_ida, context_id); spin_unlock(&mmu_context_lock); } EXPORT_SYMBOL_GPL(__destroy_context); void destroy_context(struct mm_struct *mm) { #ifdef CONFIG_PPC_ICSWX drop_cop(mm->context.acop, mm); kfree(mm->context.cop_lockp); mm->context.cop_lockp = NULL; #endif /* CONFIG_PPC_ICSWX */ __destroy_context(mm->context.id); subpage_prot_free(mm); mm->context.id = MMU_NO_CONTEXT; }