/* visemul.c: Emulation of VIS instructions. * * Copyright (C) 2006 David S. Miller (davem@davemloft.net) */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/thread_info.h> #include <linux/perf_event.h> #include <asm/ptrace.h> #include <asm/pstate.h> #include <asm/system.h> #include <asm/fpumacro.h> #include <asm/uaccess.h> /* OPF field of various VIS instructions. */ /* 000111011 - four 16-bit packs */ #define FPACK16_OPF 0x03b /* 000111010 - two 32-bit packs */ #define FPACK32_OPF 0x03a /* 000111101 - four 16-bit packs */ #define FPACKFIX_OPF 0x03d /* 001001101 - four 16-bit expands */ #define FEXPAND_OPF 0x04d /* 001001011 - two 32-bit merges */ #define FPMERGE_OPF 0x04b /* 000110001 - 8-by-16-bit partitoned product */ #define FMUL8x16_OPF 0x031 /* 000110011 - 8-by-16-bit upper alpha partitioned product */ #define FMUL8x16AU_OPF 0x033 /* 000110101 - 8-by-16-bit lower alpha partitioned product */ #define FMUL8x16AL_OPF 0x035 /* 000110110 - upper 8-by-16-bit partitioned product */ #define FMUL8SUx16_OPF 0x036 /* 000110111 - lower 8-by-16-bit partitioned product */ #define FMUL8ULx16_OPF 0x037 /* 000111000 - upper 8-by-16-bit partitioned product */ #define FMULD8SUx16_OPF 0x038 /* 000111001 - lower unsigned 8-by-16-bit partitioned product */ #define FMULD8ULx16_OPF 0x039 /* 000101000 - four 16-bit compare; set rd if src1 > src2 */ #define FCMPGT16_OPF 0x028 /* 000101100 - two 32-bit compare; set rd if src1 > src2 */ #define FCMPGT32_OPF 0x02c /* 000100000 - four 16-bit compare; set rd if src1 <= src2 */ #define FCMPLE16_OPF 0x020 /* 000100100 - two 32-bit compare; set rd if src1 <= src2 */ #define FCMPLE32_OPF 0x024 /* 000100010 - four 16-bit compare; set rd if src1 != src2 */ #define FCMPNE16_OPF 0x022 /* 000100110 - two 32-bit compare; set rd if src1 != src2 */ #define FCMPNE32_OPF 0x026 /* 000101010 - four 16-bit compare; set rd if src1 == src2 */ #define FCMPEQ16_OPF 0x02a /* 000101110 - two 32-bit compare; set rd if src1 == src2 */ #define FCMPEQ32_OPF 0x02e /* 000000000 - Eight 8-bit edge boundary processing */ #define EDGE8_OPF 0x000 /* 000000001 - Eight 8-bit edge boundary processing, no CC */ #define EDGE8N_OPF 0x001 /* 000000010 - Eight 8-bit edge boundary processing, little-endian */ #define EDGE8L_OPF 0x002 /* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC */ #define EDGE8LN_OPF 0x003 /* 000000100 - Four 16-bit edge boundary processing */ #define EDGE16_OPF 0x004 /* 000000101 - Four 16-bit edge boundary processing, no CC */ #define EDGE16N_OPF 0x005 /* 000000110 - Four 16-bit edge boundary processing, little-endian */ #define EDGE16L_OPF 0x006 /* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC */ #define EDGE16LN_OPF 0x007 /* 000001000 - Two 32-bit edge boundary processing */ #define EDGE32_OPF 0x008 /* 000001001 - Two 32-bit edge boundary processing, no CC */ #define EDGE32N_OPF 0x009 /* 000001010 - Two 32-bit edge boundary processing, little-endian */ #define EDGE32L_OPF 0x00a /* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC */ #define EDGE32LN_OPF 0x00b /* 000111110 - distance between 8 8-bit components */ #define PDIST_OPF 0x03e /* 000010000 - convert 8-bit 3-D address to blocked byte address */ #define ARRAY8_OPF 0x010 /* 000010010 - convert 16-bit 3-D address to blocked byte address */ #define ARRAY16_OPF 0x012 /* 000010100 - convert 32-bit 3-D address to blocked byte address */ #define ARRAY32_OPF 0x014 /* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE */ #define BMASK_OPF 0x019 /* 001001100 - Permute bytes as specified by GSR.MASK */ #define BSHUFFLE_OPF 0x04c #define VIS_OPF_SHIFT 5 #define VIS_OPF_MASK (0x1ff << VIS_OPF_SHIFT) #define RS1(INSN) (((INSN) >> 14) & 0x1f) #define RS2(INSN) (((INSN) >> 0) & 0x1f) #define RD(INSN) (((INSN) >> 25) & 0x1f) static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2, unsigned int rd, int from_kernel) { if (rs2 >= 16 || rs1 >= 16 || rd >= 16) { if (from_kernel != 0) __asm__ __volatile__("flushw"); else flushw_user(); } } static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs) { unsigned long value; if (reg < 16) return (!reg ? 0 : regs->u_regs[reg]); if (regs->tstate & TSTATE_PRIV) { struct reg_window *win; win = (struct reg_window *)(regs->u_regs[UREG_FP] + STACK_BIAS); value = win->locals[reg - 16]; } else if (test_thread_flag(TIF_32BIT)) { struct reg_window32 __user *win32; win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP])); get_user(value, &win32->locals[reg - 16]); } else { struct reg_window __user *win; win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS); get_user(value, &win->locals[reg - 16]); } return value; } static inline unsigned long __user *__fetch_reg_addr_user(unsigned int reg, struct pt_regs *regs) { BUG_ON(reg < 16); BUG_ON(regs->tstate & TSTATE_PRIV); if (test_thread_flag(TIF_32BIT)) { struct reg_window32 __user *win32; win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP])); return (unsigned long __user *)&win32->locals[reg - 16]; } else { struct reg_window __user *win; win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS); return &win->locals[reg - 16]; } } static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg, struct pt_regs *regs) { BUG_ON(reg >= 16); BUG_ON(regs->tstate & TSTATE_PRIV); return ®s->u_regs[reg]; } static void store_reg(struct pt_regs *regs, unsigned long val, unsigned long rd) { if (rd < 16) { unsigned long *rd_kern = __fetch_reg_addr_kern(rd, regs); *rd_kern = val; } else { unsigned long __user *rd_user = __fetch_reg_addr_user(rd, regs); if (test_thread_flag(TIF_32BIT)) __put_user((u32)val, (u32 __user *)rd_user); else __put_user(val, rd_user); } } static inline unsigned long fpd_regval(struct fpustate *f, unsigned int insn_regnum) { insn_regnum = (((insn_regnum & 1) << 5) | (insn_regnum & 0x1e)); return *(unsigned long *) &f->regs[insn_regnum]; } static inline unsigned long *fpd_regaddr(struct fpustate *f, unsigned int insn_regnum) { insn_regnum = (((insn_regnum & 1) << 5) | (insn_regnum & 0x1e)); return (unsigned long *) &f->regs[insn_regnum]; } static inline unsigned int fps_regval(struct fpustate *f, unsigned int insn_regnum) { return f->regs[insn_regnum]; } static inline unsigned int *fps_regaddr(struct fpustate *f, unsigned int insn_regnum) { return &f->regs[insn_regnum]; } struct edge_tab { u16 left, right; }; static struct edge_tab edge8_tab[8] = { { 0xff, 0x80 }, { 0x7f, 0xc0 }, { 0x3f, 0xe0 }, { 0x1f, 0xf0 }, { 0x0f, 0xf8 }, { 0x07, 0xfc }, { 0x03, 0xfe }, { 0x01, 0xff }, }; static struct edge_tab edge8_tab_l[8] = { { 0xff, 0x01 }, { 0xfe, 0x03 }, { 0xfc, 0x07 }, { 0xf8, 0x0f }, { 0xf0, 0x1f }, { 0xe0, 0x3f }, { 0xc0, 0x7f }, { 0x80, 0xff }, }; static struct edge_tab edge16_tab[4] = { { 0xf, 0x8 }, { 0x7, 0xc }, { 0x3, 0xe }, { 0x1, 0xf }, }; static struct edge_tab edge16_tab_l[4] = { { 0xf, 0x1 }, { 0xe, 0x3 }, { 0xc, 0x7 }, { 0x8, 0xf }, }; static struct edge_tab edge32_tab[2] = { { 0x3, 0x2 }, { 0x1, 0x3 }, }; static struct edge_tab edge32_tab_l[2] = { { 0x3, 0x1 }, { 0x2, 0x3 }, }; static void edge(struct pt_regs *regs, unsigned int insn, unsigned int opf) { unsigned long orig_rs1, rs1, orig_rs2, rs2, rd_val; u16 left, right; maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0); orig_rs1 = rs1 = fetch_reg(RS1(insn), regs); orig_rs2 = rs2 = fetch_reg(RS2(insn), regs); if (test_thread_flag(TIF_32BIT)) { rs1 = rs1 & 0xffffffff; rs2 = rs2 & 0xffffffff; } switch (opf) { default: case EDGE8_OPF: case EDGE8N_OPF: left = edge8_tab[rs1 & 0x7].left; right = edge8_tab[rs2 & 0x7].right; break; case EDGE8L_OPF: case EDGE8LN_OPF: left = edge8_tab_l[rs1 & 0x7].left; right = edge8_tab_l[rs2 & 0x7].right; break; case EDGE16_OPF: case EDGE16N_OPF: left = edge16_tab[(rs1 >> 1) & 0x3].left; right = edge16_tab[(rs2 >> 1) & 0x3].right; break; case EDGE16L_OPF: case EDGE16LN_OPF: left = edge16_tab_l[(rs1 >> 1) & 0x3].left; right = edge16_tab_l[(rs2 >> 1) & 0x3].right; break; case EDGE32_OPF: case EDGE32N_OPF: left = edge32_tab[(rs1 >> 2) & 0x1].left; right = edge32_tab[(rs2 >> 2) & 0x1].right; break; case EDGE32L_OPF: case EDGE32LN_OPF: left = edge32_tab_l[(rs1 >> 2) & 0x1].left; right = edge32_tab_l[(rs2 >> 2) & 0x1].right; break; } if ((rs1 & ~0x7UL) == (rs2 & ~0x7UL)) rd_val = right & left; else rd_val = left; store_reg(regs, rd_val, RD(insn)); switch (opf) { case EDGE8_OPF: case EDGE8L_OPF: case EDGE16_OPF: case EDGE16L_OPF: case EDGE32_OPF: case EDGE32L_OPF: { unsigned long ccr, tstate; __asm__ __volatile__("subcc %1, %2, %%g0\n\t" "rd %%ccr, %0" : "=r" (ccr) : "r" (orig_rs1), "r" (orig_rs2) : "cc"); tstate = regs->tstate & ~(TSTATE_XCC | TSTATE_ICC); regs->tstate = tstate | (ccr << 32UL); } } } static void array(struct pt_regs *regs, unsigned int insn, unsigned int opf) { unsigned long rs1, rs2, rd_val; unsigned int bits, bits_mask; maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0); rs1 = fetch_reg(RS1(insn), regs); rs2 = fetch_reg(RS2(insn), regs); bits = (rs2 > 5 ? 5 : rs2); bits_mask = (1UL << bits) - 1UL; rd_val = ((((rs1 >> 11) & 0x3) << 0) | (((rs1 >> 33) & 0x3) << 2) | (((rs1 >> 55) & 0x1) << 4) | (((rs1 >> 13) & 0xf) << 5) | (((rs1 >> 35) & 0xf) << 9) | (((rs1 >> 56) & 0xf) << 13) | (((rs1 >> 17) & bits_mask) << 17) | (((rs1 >> 39) & bits_mask) << (17 + bits)) | (((rs1 >> 60) & 0xf) << (17 + (2*bits)))); switch (opf) { case ARRAY16_OPF: rd_val <<= 1; break; case ARRAY32_OPF: rd_val <<= 2; } store_reg(regs, rd_val, RD(insn)); } static void bmask(struct pt_regs *regs, unsigned int insn) { unsigned long rs1, rs2, rd_val, gsr; maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0); rs1 = fetch_reg(RS1(insn), regs); rs2 = fetch_reg(RS2(insn), regs); rd_val = rs1 + rs2; store_reg(regs, rd_val, RD(insn)); gsr = current_thread_info()->gsr[0] & 0xffffffff; gsr |= rd_val << 32UL; current_thread_info()->gsr[0] = gsr; } static void bshuffle(struct pt_regs *regs, unsigned int insn) { struct fpustate *f = FPUSTATE; unsigned long rs1, rs2, rd_val; unsigned long bmask, i; bmask = current_thread_info()->gsr[0] >> 32UL; rs1 = fpd_regval(f, RS1(insn)); rs2 = fpd_regval(f, RS2(insn)); rd_val = 0UL; for (i = 0; i < 8; i++) { unsigned long which = (bmask >> (i * 4)) & 0xf; unsigned long byte; if (which < 8) byte = (rs1 >> (which * 8)) & 0xff; else byte = (rs2 >> ((which-8)*8)) & 0xff; rd_val |= (byte << (i * 8)); } *fpd_regaddr(f, RD(insn)) = rd_val; } static void pdist(struct pt_regs *regs, unsigned int insn) { struct fpustate *f = FPUSTATE; unsigned long rs1, rs2, *rd, rd_val; unsigned long i; rs1 = fpd_regval(f, RS1(insn)); rs2 = fpd_regval(f, RS2(insn)); rd = fpd_regaddr(f, RD(insn)); rd_val = *rd; for (i = 0; i < 8; i++) { s16 s1, s2; s1 = (rs1 >> (56 - (i * 8))) & 0xff; s2 = (rs2 >> (56 - (i * 8))) & 0xff; /* Absolute value of difference. */ s1 -= s2; if (s1 < 0) s1 = ~s1 + 1; rd_val += s1; } *rd = rd_val; } static void pformat(struct pt_regs *regs, unsigned int insn, unsigned int opf) { struct fpustate *f = FPUSTATE; unsigned long rs1, rs2, gsr, scale, rd_val; gsr = current_thread_info()->gsr[0]; scale = (gsr >> 3) & (opf == FPACK16_OPF ? 0xf : 0x1f); switch (opf) { case FPACK16_OPF: { unsigned long byte; rs2 = fpd_regval(f, RS2(insn)); rd_val = 0; for (byte = 0; byte < 4; byte++) { unsigned int val; s16 src = (rs2 >> (byte * 16UL)) & 0xffffUL; int scaled = src << scale; int from_fixed = scaled >> 7; val = ((from_fixed < 0) ? 0 : (from_fixed > 255) ? 255 : from_fixed); rd_val |= (val << (8 * byte)); } *fps_regaddr(f, RD(insn)) = rd_val; break; } case FPACK32_OPF: { unsigned long word; rs1 = fpd_regval(f, RS1(insn)); rs2 = fpd_regval(f, RS2(insn)); rd_val = (rs1 << 8) & ~(0x000000ff000000ffUL); for (word = 0; word < 2; word++) { unsigned long val; s32 src = (rs2 >> (word * 32UL)); s64 scaled = src << scale; s64 from_fixed = scaled >> 23; val = ((from_fixed < 0) ? 0 : (from_fixed > 255) ? 255 : from_fixed); rd_val |= (val << (32 * word)); } *fpd_regaddr(f, RD(insn)) = rd_val; break; } case FPACKFIX_OPF: { unsigned long word; rs2 = fpd_regval(f, RS2(insn)); rd_val = 0; for (word = 0; word < 2; word++) { long val; s32 src = (rs2 >> (word * 32UL)); s64 scaled = src << scale; s64 from_fixed = scaled >> 16; val = ((from_fixed < -32768) ? -32768 : (from_fixed > 32767) ? 32767 : from_fixed); rd_val |= ((val & 0xffff) << (word * 16)); } *fps_regaddr(f, RD(insn)) = rd_val; break; } case FEXPAND_OPF: { unsigned long byte; rs2 = fps_regval(f, RS2(insn)); rd_val = 0; for (byte = 0; byte < 4; byte++) { unsigned long val; u8 src = (rs2 >> (byte * 8)) & 0xff; val = src << 4; rd_val |= (val << (byte * 16)); } *fpd_regaddr(f, RD(insn)) = rd_val; break; } case FPMERGE_OPF: { rs1 = fps_regval(f, RS1(insn)); rs2 = fps_regval(f, RS2(insn)); rd_val = (((rs2 & 0x000000ff) << 0) | ((rs1 & 0x000000ff) << 8) | ((rs2 & 0x0000ff00) << 8) | ((rs1 & 0x0000ff00) << 16) | ((rs2 & 0x00ff0000) << 16) | ((rs1 & 0x00ff0000) << 24) | ((rs2 & 0xff000000) << 24) | ((rs1 & 0xff000000) << 32)); *fpd_regaddr(f, RD(insn)) = rd_val; break; } } } static void pmul(struct pt_regs *regs, unsigned int insn, unsigned int opf) { struct fpustate *f = FPUSTATE; unsigned long rs1, rs2, rd_val; switch (opf) { case FMUL8x16_OPF: { unsigned long byte; rs1 = fps_regval(f, RS1(insn)); rs2 = fpd_regval(f, RS2(insn)); rd_val = 0; for (byte = 0; byte < 4; byte++) { u16 src1 = (rs1 >> (byte * 8)) & 0x00ff; s16 src2 = (rs2 >> (byte * 16)) & 0xffff; u32 prod = src1 * src2; u16 scaled = ((prod & 0x00ffff00) >> 8); /* Round up. */ if (prod & 0x80) scaled++; rd_val |= ((scaled & 0xffffUL) << (byte * 16UL)); } *fpd_regaddr(f, RD(insn)) = rd_val; break; } case FMUL8x16AU_OPF: case FMUL8x16AL_OPF: { unsigned long byte; s16 src2; rs1 = fps_regval(f, RS1(insn)); rs2 = fps_regval(f, RS2(insn)); rd_val = 0; src2 = rs2 >> (opf == FMUL8x16AU_OPF ? 16 : 0); for (byte = 0; byte < 4; byte++) { u16 src1 = (rs1 >> (byte * 8)) & 0x00ff; u32 prod = src1 * src2; u16 scaled = ((prod & 0x00ffff00) >> 8); /* Round up. */ if (prod & 0x80) scaled++; rd_val |= ((scaled & 0xffffUL) << (byte * 16UL)); } *fpd_regaddr(f, RD(insn)) = rd_val; break; } case FMUL8SUx16_OPF: case FMUL8ULx16_OPF: { unsigned long byte, ushift; rs1 = fpd_regval(f, RS1(insn)); rs2 = fpd_regval(f, RS2(insn)); rd_val = 0; ushift = (opf == FMUL8SUx16_OPF) ? 8 : 0; for (byte = 0; byte < 4; byte++) { u16 src1; s16 src2; u32 prod; u16 scaled; src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff); src2 = ((rs2 >> (16 * byte)) & 0xffff); prod = src1 * src2; scaled = ((prod & 0x00ffff00) >> 8); /* Round up. */ if (prod & 0x80) scaled++; rd_val |= ((scaled & 0xffffUL) << (byte * 16UL)); } *fpd_regaddr(f, RD(insn)) = rd_val; break; } case FMULD8SUx16_OPF: case FMULD8ULx16_OPF: { unsigned long byte, ushift; rs1 = fps_regval(f, RS1(insn)); rs2 = fps_regval(f, RS2(insn)); rd_val = 0; ushift = (opf == FMULD8SUx16_OPF) ? 8 : 0; for (byte = 0; byte < 2; byte++) { u16 src1; s16 src2; u32 prod; u16 scaled; src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff); src2 = ((rs2 >> (16 * byte)) & 0xffff); prod = src1 * src2; scaled = ((prod & 0x00ffff00) >> 8); /* Round up. */ if (prod & 0x80) scaled++; rd_val |= ((scaled & 0xffffUL) << ((byte * 32UL) + 7UL)); } *fpd_regaddr(f, RD(insn)) = rd_val; break; } } } static void pcmp(struct pt_regs *regs, unsigned int insn, unsigned int opf) { struct fpustate *f = FPUSTATE; unsigned long rs1, rs2, rd_val, i; rs1 = fpd_regval(f, RS1(insn)); rs2 = fpd_regval(f, RS2(insn)); rd_val = 0; switch (opf) { case FCMPGT16_OPF: for (i = 0; i < 4; i++) { s16 a = (rs1 >> (i * 16)) & 0xffff; s16 b = (rs2 >> (i * 16)) & 0xffff; if (a > b) rd_val |= 8 >> i; } break; case FCMPGT32_OPF: for (i = 0; i < 2; i++) { s32 a = (rs1 >> (i * 32)) & 0xffffffff; s32 b = (rs2 >> (i * 32)) & 0xffffffff; if (a > b) rd_val |= 2 >> i; } break; case FCMPLE16_OPF: for (i = 0; i < 4; i++) { s16 a = (rs1 >> (i * 16)) & 0xffff; s16 b = (rs2 >> (i * 16)) & 0xffff; if (a <= b) rd_val |= 8 >> i; } break; case FCMPLE32_OPF: for (i = 0; i < 2; i++) { s32 a = (rs1 >> (i * 32)) & 0xffffffff; s32 b = (rs2 >> (i * 32)) & 0xffffffff; if (a <= b) rd_val |= 2 >> i; } break; case FCMPNE16_OPF: for (i = 0; i < 4; i++) { s16 a = (rs1 >> (i * 16)) & 0xffff; s16 b = (rs2 >> (i * 16)) & 0xffff; if (a != b) rd_val |= 8 >> i; } break; case FCMPNE32_OPF: for (i = 0; i < 2; i++) { s32 a = (rs1 >> (i * 32)) & 0xffffffff; s32 b = (rs2 >> (i * 32)) & 0xffffffff; if (a != b) rd_val |= 2 >> i; } break; case FCMPEQ16_OPF: for (i = 0; i < 4; i++) { s16 a = (rs1 >> (i * 16)) & 0xffff; s16 b = (rs2 >> (i * 16)) & 0xffff; if (a == b) rd_val |= 8 >> i; } break; case FCMPEQ32_OPF: for (i = 0; i < 2; i++) { s32 a = (rs1 >> (i * 32)) & 0xffffffff; s32 b = (rs2 >> (i * 32)) & 0xffffffff; if (a == b) rd_val |= 2 >> i; } break; } maybe_flush_windows(0, 0, RD(insn), 0); store_reg(regs, rd_val, RD(insn)); } /* Emulate the VIS instructions which are not implemented in * hardware on Niagara. */ int vis_emul(struct pt_regs *regs, unsigned int insn) { unsigned long pc = regs->tpc; unsigned int opf; BUG_ON(regs->tstate & TSTATE_PRIV); perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0); if (test_thread_flag(TIF_32BIT)) pc = (u32)pc; if (get_user(insn, (u32 __user *) pc)) return -EFAULT; save_and_clear_fpu(); opf = (insn & VIS_OPF_MASK) >> VIS_OPF_SHIFT; switch (opf) { default: return -EINVAL; /* Pixel Formatting Instructions. */ case FPACK16_OPF: case FPACK32_OPF: case FPACKFIX_OPF: case FEXPAND_OPF: case FPMERGE_OPF: pformat(regs, insn, opf); break; /* Partitioned Multiply Instructions */ case FMUL8x16_OPF: case FMUL8x16AU_OPF: case FMUL8x16AL_OPF: case FMUL8SUx16_OPF: case FMUL8ULx16_OPF: case FMULD8SUx16_OPF: case FMULD8ULx16_OPF: pmul(regs, insn, opf); break; /* Pixel Compare Instructions */ case FCMPGT16_OPF: case FCMPGT32_OPF: case FCMPLE16_OPF: case FCMPLE32_OPF: case FCMPNE16_OPF: case FCMPNE32_OPF: case FCMPEQ16_OPF: case FCMPEQ32_OPF: pcmp(regs, insn, opf); break; /* Edge Handling Instructions */ case EDGE8_OPF: case EDGE8N_OPF: case EDGE8L_OPF: case EDGE8LN_OPF: case EDGE16_OPF: case EDGE16N_OPF: case EDGE16L_OPF: case EDGE16LN_OPF: case EDGE32_OPF: case EDGE32N_OPF: case EDGE32L_OPF: case EDGE32LN_OPF: edge(regs, insn, opf); break; /* Pixel Component Distance */ case PDIST_OPF: pdist(regs, insn); break; /* Three-Dimensional Array Addressing Instructions */ case ARRAY8_OPF: case ARRAY16_OPF: case ARRAY32_OPF: array(regs, insn, opf); break; /* Byte Mask and Shuffle Instructions */ case BMASK_OPF: bmask(regs, insn); break; case BSHUFFLE_OPF: bshuffle(regs, insn); break; } regs->tpc = regs->tnpc; regs->tnpc += 4; return 0; }