/* * linux/arch/sparc/mm/init.c * * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 2000 Anton Blanchard (anton@samba.org) */ #include <linux/module.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/initrd.h> #include <linux/init.h> #include <linux/highmem.h> #include <linux/bootmem.h> #include <linux/pagemap.h> #include <linux/poison.h> #include <linux/gfp.h> #include <asm/sections.h> #include <asm/system.h> #include <asm/vac-ops.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/vaddrs.h> #include <asm/pgalloc.h> /* bug in asm-generic/tlb.h: check_pgt_cache */ #include <asm/tlb.h> #include <asm/prom.h> #include <asm/leon.h> unsigned long *sparc_valid_addr_bitmap; EXPORT_SYMBOL(sparc_valid_addr_bitmap); unsigned long phys_base; EXPORT_SYMBOL(phys_base); unsigned long pfn_base; EXPORT_SYMBOL(pfn_base); unsigned long page_kernel; EXPORT_SYMBOL(page_kernel); struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1]; unsigned long sparc_unmapped_base; struct pgtable_cache_struct pgt_quicklists; /* Initial ramdisk setup */ extern unsigned int sparc_ramdisk_image; extern unsigned int sparc_ramdisk_size; unsigned long highstart_pfn, highend_pfn; pte_t *kmap_pte; pgprot_t kmap_prot; #define kmap_get_fixmap_pte(vaddr) \ pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr)) void __init kmap_init(void) { /* cache the first kmap pte */ kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN)); kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE); } void show_mem(unsigned int filter) { printk("Mem-info:\n"); show_free_areas(filter); printk("Free swap: %6ldkB\n", nr_swap_pages << (PAGE_SHIFT-10)); printk("%ld pages of RAM\n", totalram_pages); printk("%ld free pages\n", nr_free_pages()); #if 0 /* undefined pgtable_cache_size, pgd_cache_size */ printk("%ld pages in page table cache\n",pgtable_cache_size); #ifndef CONFIG_SMP if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d) printk("%ld entries in page dir cache\n",pgd_cache_size); #endif #endif } void __init sparc_context_init(int numctx) { int ctx; ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL); for(ctx = 0; ctx < numctx; ctx++) { struct ctx_list *clist; clist = (ctx_list_pool + ctx); clist->ctx_number = ctx; clist->ctx_mm = NULL; } ctx_free.next = ctx_free.prev = &ctx_free; ctx_used.next = ctx_used.prev = &ctx_used; for(ctx = 0; ctx < numctx; ctx++) add_to_free_ctxlist(ctx_list_pool + ctx); } extern unsigned long cmdline_memory_size; unsigned long last_valid_pfn; unsigned long calc_highpages(void) { int i; int nr = 0; for (i = 0; sp_banks[i].num_bytes != 0; i++) { unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; if (end_pfn <= max_low_pfn) continue; if (start_pfn < max_low_pfn) start_pfn = max_low_pfn; nr += end_pfn - start_pfn; } return nr; } static unsigned long calc_max_low_pfn(void) { int i; unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); unsigned long curr_pfn, last_pfn; last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT; for (i = 1; sp_banks[i].num_bytes != 0; i++) { curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; if (curr_pfn >= tmp) { if (last_pfn < tmp) tmp = last_pfn; break; } last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; } return tmp; } unsigned long __init bootmem_init(unsigned long *pages_avail) { unsigned long bootmap_size, start_pfn; unsigned long end_of_phys_memory = 0UL; unsigned long bootmap_pfn, bytes_avail, size; int i; bytes_avail = 0UL; for (i = 0; sp_banks[i].num_bytes != 0; i++) { end_of_phys_memory = sp_banks[i].base_addr + sp_banks[i].num_bytes; bytes_avail += sp_banks[i].num_bytes; if (cmdline_memory_size) { if (bytes_avail > cmdline_memory_size) { unsigned long slack = bytes_avail - cmdline_memory_size; bytes_avail -= slack; end_of_phys_memory -= slack; sp_banks[i].num_bytes -= slack; if (sp_banks[i].num_bytes == 0) { sp_banks[i].base_addr = 0xdeadbeef; } else { sp_banks[i+1].num_bytes = 0; sp_banks[i+1].base_addr = 0xdeadbeef; } break; } } } /* Start with page aligned address of last symbol in kernel * image. */ start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end)); /* Now shift down to get the real physical page frame number. */ start_pfn >>= PAGE_SHIFT; bootmap_pfn = start_pfn; max_pfn = end_of_phys_memory >> PAGE_SHIFT; max_low_pfn = max_pfn; highstart_pfn = highend_pfn = max_pfn; if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) { highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); max_low_pfn = calc_max_low_pfn(); printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", calc_highpages() >> (20 - PAGE_SHIFT)); } #ifdef CONFIG_BLK_DEV_INITRD /* Now have to check initial ramdisk, so that bootmap does not overwrite it */ if (sparc_ramdisk_image) { if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE) sparc_ramdisk_image -= KERNBASE; initrd_start = sparc_ramdisk_image + phys_base; initrd_end = initrd_start + sparc_ramdisk_size; if (initrd_end > end_of_phys_memory) { printk(KERN_CRIT "initrd extends beyond end of memory " "(0x%016lx > 0x%016lx)\ndisabling initrd\n", initrd_end, end_of_phys_memory); initrd_start = 0; } if (initrd_start) { if (initrd_start >= (start_pfn << PAGE_SHIFT) && initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE) bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT; } } #endif /* Initialize the boot-time allocator. */ bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, max_low_pfn); /* Now register the available physical memory with the * allocator. */ *pages_avail = 0; for (i = 0; sp_banks[i].num_bytes != 0; i++) { unsigned long curr_pfn, last_pfn; curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; if (curr_pfn >= max_low_pfn) break; last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; if (last_pfn > max_low_pfn) last_pfn = max_low_pfn; /* * .. finally, did all the rounding and playing * around just make the area go away? */ if (last_pfn <= curr_pfn) continue; size = (last_pfn - curr_pfn) << PAGE_SHIFT; *pages_avail += last_pfn - curr_pfn; free_bootmem(sp_banks[i].base_addr, size); } #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start) { /* Reserve the initrd image area. */ size = initrd_end - initrd_start; reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT); *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; initrd_start = (initrd_start - phys_base) + PAGE_OFFSET; initrd_end = (initrd_end - phys_base) + PAGE_OFFSET; } #endif /* Reserve the kernel text/data/bss. */ size = (start_pfn << PAGE_SHIFT) - phys_base; reserve_bootmem(phys_base, size, BOOTMEM_DEFAULT); *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; /* Reserve the bootmem map. We do not account for it * in pages_avail because we will release that memory * in free_all_bootmem. */ size = bootmap_size; reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT); *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; return max_pfn; } /* * check_pgt_cache * * This is called at the end of unmapping of VMA (zap_page_range), * to rescan the page cache for architecture specific things, * presumably something like sun4/sun4c PMEGs. Most architectures * define check_pgt_cache empty. * * We simply copy the 2.4 implementation for now. */ static int pgt_cache_water[2] = { 25, 50 }; void check_pgt_cache(void) { do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]); } /* * paging_init() sets up the page tables: We call the MMU specific * init routine based upon the Sun model type on the Sparc. * */ extern void sun4c_paging_init(void); extern void srmmu_paging_init(void); extern void device_scan(void); pgprot_t PAGE_SHARED __read_mostly; EXPORT_SYMBOL(PAGE_SHARED); void __init paging_init(void) { switch(sparc_cpu_model) { case sun4c: case sun4e: case sun4: sun4c_paging_init(); sparc_unmapped_base = 0xe0000000; BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000); break; case sparc_leon: leon_init(); /* fall through */ case sun4m: case sun4d: srmmu_paging_init(); sparc_unmapped_base = 0x50000000; BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000); break; default: prom_printf("paging_init: Cannot init paging on this Sparc\n"); prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model); prom_printf("paging_init: Halting...\n"); prom_halt(); } /* Initialize the protection map with non-constant, MMU dependent values. */ protection_map[0] = PAGE_NONE; protection_map[1] = PAGE_READONLY; protection_map[2] = PAGE_COPY; protection_map[3] = PAGE_COPY; protection_map[4] = PAGE_READONLY; protection_map[5] = PAGE_READONLY; protection_map[6] = PAGE_COPY; protection_map[7] = PAGE_COPY; protection_map[8] = PAGE_NONE; protection_map[9] = PAGE_READONLY; protection_map[10] = PAGE_SHARED; protection_map[11] = PAGE_SHARED; protection_map[12] = PAGE_READONLY; protection_map[13] = PAGE_READONLY; protection_map[14] = PAGE_SHARED; protection_map[15] = PAGE_SHARED; btfixup(); prom_build_devicetree(); of_fill_in_cpu_data(); device_scan(); } static void __init taint_real_pages(void) { int i; for (i = 0; sp_banks[i].num_bytes; i++) { unsigned long start, end; start = sp_banks[i].base_addr; end = start + sp_banks[i].num_bytes; while (start < end) { set_bit(start >> 20, sparc_valid_addr_bitmap); start += PAGE_SIZE; } } } static void map_high_region(unsigned long start_pfn, unsigned long end_pfn) { unsigned long tmp; #ifdef CONFIG_DEBUG_HIGHMEM printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn); #endif for (tmp = start_pfn; tmp < end_pfn; tmp++) { struct page *page = pfn_to_page(tmp); ClearPageReserved(page); init_page_count(page); __free_page(page); totalhigh_pages++; } } void __init mem_init(void) { int codepages = 0; int datapages = 0; int initpages = 0; int reservedpages = 0; int i; if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) { prom_printf("BUG: fixmap and pkmap areas overlap\n"); prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n", PKMAP_BASE, (unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, FIXADDR_START); prom_printf("Please mail sparclinux@vger.kernel.org.\n"); prom_halt(); } /* Saves us work later. */ memset((void *)&empty_zero_page, 0, PAGE_SIZE); i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5); i += 1; sparc_valid_addr_bitmap = (unsigned long *) __alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL); if (sparc_valid_addr_bitmap == NULL) { prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n"); prom_halt(); } memset(sparc_valid_addr_bitmap, 0, i << 2); taint_real_pages(); max_mapnr = last_valid_pfn - pfn_base; high_memory = __va(max_low_pfn << PAGE_SHIFT); totalram_pages = free_all_bootmem(); for (i = 0; sp_banks[i].num_bytes != 0; i++) { unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT; unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT; num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT; if (end_pfn <= highstart_pfn) continue; if (start_pfn < highstart_pfn) start_pfn = highstart_pfn; map_high_region(start_pfn, end_pfn); } totalram_pages += totalhigh_pages; codepages = (((unsigned long) &_etext) - ((unsigned long)&_start)); codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; datapages = (((unsigned long) &_edata) - ((unsigned long)&_etext)); datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin)); initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; /* Ignore memory holes for the purpose of counting reserved pages */ for (i=0; i < max_low_pfn; i++) if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap) && PageReserved(pfn_to_page(i))) reservedpages++; printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n", nr_free_pages() << (PAGE_SHIFT-10), num_physpages << (PAGE_SHIFT - 10), codepages << (PAGE_SHIFT-10), reservedpages << (PAGE_SHIFT - 10), datapages << (PAGE_SHIFT-10), initpages << (PAGE_SHIFT-10), totalhigh_pages << (PAGE_SHIFT-10)); } void free_initmem (void) { unsigned long addr; unsigned long freed; addr = (unsigned long)(&__init_begin); freed = (unsigned long)(&__init_end) - addr; for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { struct page *p; memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); p = virt_to_page(addr); ClearPageReserved(p); init_page_count(p); __free_page(p); totalram_pages++; num_physpages++; } printk(KERN_INFO "Freeing unused kernel memory: %ldk freed\n", freed >> 10); } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { if (start < end) printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { struct page *p; memset((void *)start, POISON_FREE_INITMEM, PAGE_SIZE); p = virt_to_page(start); ClearPageReserved(p); init_page_count(p); __free_page(p); totalram_pages++; num_physpages++; } } #endif void sparc_flush_page_to_ram(struct page *page) { unsigned long vaddr = (unsigned long)page_address(page); if (vaddr) __flush_page_to_ram(vaddr); } EXPORT_SYMBOL(sparc_flush_page_to_ram);