/*************************************************************************** * Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de> * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ .file "twofish-x86_64-asm.S" .text #include <asm/asm-offsets.h> #define a_offset 0 #define b_offset 4 #define c_offset 8 #define d_offset 12 /* Structure of the crypto context struct*/ #define s0 0 /* S0 Array 256 Words each */ #define s1 1024 /* S1 Array */ #define s2 2048 /* S2 Array */ #define s3 3072 /* S3 Array */ #define w 4096 /* 8 whitening keys (word) */ #define k 4128 /* key 1-32 ( word ) */ /* define a few register aliases to allow macro substitution */ #define R0 %rax #define R0D %eax #define R0B %al #define R0H %ah #define R1 %rbx #define R1D %ebx #define R1B %bl #define R1H %bh #define R2 %rcx #define R2D %ecx #define R2B %cl #define R2H %ch #define R3 %rdx #define R3D %edx #define R3B %dl #define R3H %dh /* performs input whitening */ #define input_whitening(src,context,offset)\ xor w+offset(context), src; /* performs input whitening */ #define output_whitening(src,context,offset)\ xor w+16+offset(context), src; /* * a input register containing a (rotated 16) * b input register containing b * c input register containing c * d input register containing d (already rol $1) * operations on a and b are interleaved to increase performance */ #define encrypt_round(a,b,c,d,round)\ movzx b ## B, %edi;\ mov s1(%r11,%rdi,4),%r8d;\ movzx a ## B, %edi;\ mov s2(%r11,%rdi,4),%r9d;\ movzx b ## H, %edi;\ ror $16, b ## D;\ xor s2(%r11,%rdi,4),%r8d;\ movzx a ## H, %edi;\ ror $16, a ## D;\ xor s3(%r11,%rdi,4),%r9d;\ movzx b ## B, %edi;\ xor s3(%r11,%rdi,4),%r8d;\ movzx a ## B, %edi;\ xor (%r11,%rdi,4), %r9d;\ movzx b ## H, %edi;\ ror $15, b ## D;\ xor (%r11,%rdi,4), %r8d;\ movzx a ## H, %edi;\ xor s1(%r11,%rdi,4),%r9d;\ add %r8d, %r9d;\ add %r9d, %r8d;\ add k+round(%r11), %r9d;\ xor %r9d, c ## D;\ rol $15, c ## D;\ add k+4+round(%r11),%r8d;\ xor %r8d, d ## D; /* * a input register containing a(rotated 16) * b input register containing b * c input register containing c * d input register containing d (already rol $1) * operations on a and b are interleaved to increase performance * during the round a and b are prepared for the output whitening */ #define encrypt_last_round(a,b,c,d,round)\ mov b ## D, %r10d;\ shl $32, %r10;\ movzx b ## B, %edi;\ mov s1(%r11,%rdi,4),%r8d;\ movzx a ## B, %edi;\ mov s2(%r11,%rdi,4),%r9d;\ movzx b ## H, %edi;\ ror $16, b ## D;\ xor s2(%r11,%rdi,4),%r8d;\ movzx a ## H, %edi;\ ror $16, a ## D;\ xor s3(%r11,%rdi,4),%r9d;\ movzx b ## B, %edi;\ xor s3(%r11,%rdi,4),%r8d;\ movzx a ## B, %edi;\ xor (%r11,%rdi,4), %r9d;\ xor a, %r10;\ movzx b ## H, %edi;\ xor (%r11,%rdi,4), %r8d;\ movzx a ## H, %edi;\ xor s1(%r11,%rdi,4),%r9d;\ add %r8d, %r9d;\ add %r9d, %r8d;\ add k+round(%r11), %r9d;\ xor %r9d, c ## D;\ ror $1, c ## D;\ add k+4+round(%r11),%r8d;\ xor %r8d, d ## D /* * a input register containing a * b input register containing b (rotated 16) * c input register containing c (already rol $1) * d input register containing d * operations on a and b are interleaved to increase performance */ #define decrypt_round(a,b,c,d,round)\ movzx a ## B, %edi;\ mov (%r11,%rdi,4), %r9d;\ movzx b ## B, %edi;\ mov s3(%r11,%rdi,4),%r8d;\ movzx a ## H, %edi;\ ror $16, a ## D;\ xor s1(%r11,%rdi,4),%r9d;\ movzx b ## H, %edi;\ ror $16, b ## D;\ xor (%r11,%rdi,4), %r8d;\ movzx a ## B, %edi;\ xor s2(%r11,%rdi,4),%r9d;\ movzx b ## B, %edi;\ xor s1(%r11,%rdi,4),%r8d;\ movzx a ## H, %edi;\ ror $15, a ## D;\ xor s3(%r11,%rdi,4),%r9d;\ movzx b ## H, %edi;\ xor s2(%r11,%rdi,4),%r8d;\ add %r8d, %r9d;\ add %r9d, %r8d;\ add k+round(%r11), %r9d;\ xor %r9d, c ## D;\ add k+4+round(%r11),%r8d;\ xor %r8d, d ## D;\ rol $15, d ## D; /* * a input register containing a * b input register containing b * c input register containing c (already rol $1) * d input register containing d * operations on a and b are interleaved to increase performance * during the round a and b are prepared for the output whitening */ #define decrypt_last_round(a,b,c,d,round)\ movzx a ## B, %edi;\ mov (%r11,%rdi,4), %r9d;\ movzx b ## B, %edi;\ mov s3(%r11,%rdi,4),%r8d;\ movzx b ## H, %edi;\ ror $16, b ## D;\ xor (%r11,%rdi,4), %r8d;\ movzx a ## H, %edi;\ mov b ## D, %r10d;\ shl $32, %r10;\ xor a, %r10;\ ror $16, a ## D;\ xor s1(%r11,%rdi,4),%r9d;\ movzx b ## B, %edi;\ xor s1(%r11,%rdi,4),%r8d;\ movzx a ## B, %edi;\ xor s2(%r11,%rdi,4),%r9d;\ movzx b ## H, %edi;\ xor s2(%r11,%rdi,4),%r8d;\ movzx a ## H, %edi;\ xor s3(%r11,%rdi,4),%r9d;\ add %r8d, %r9d;\ add %r9d, %r8d;\ add k+round(%r11), %r9d;\ xor %r9d, c ## D;\ add k+4+round(%r11),%r8d;\ xor %r8d, d ## D;\ ror $1, d ## D; .align 8 .global twofish_enc_blk .global twofish_dec_blk twofish_enc_blk: pushq R1 /* %rdi contains the crypto tfm address */ /* %rsi contains the output address */ /* %rdx contains the input address */ add $crypto_tfm_ctx_offset, %rdi /* set ctx address */ /* ctx address is moved to free one non-rex register as target for the 8bit high operations */ mov %rdi, %r11 movq (R3), R1 movq 8(R3), R3 input_whitening(R1,%r11,a_offset) input_whitening(R3,%r11,c_offset) mov R1D, R0D rol $16, R0D shr $32, R1 mov R3D, R2D shr $32, R3 rol $1, R3D encrypt_round(R0,R1,R2,R3,0); encrypt_round(R2,R3,R0,R1,8); encrypt_round(R0,R1,R2,R3,2*8); encrypt_round(R2,R3,R0,R1,3*8); encrypt_round(R0,R1,R2,R3,4*8); encrypt_round(R2,R3,R0,R1,5*8); encrypt_round(R0,R1,R2,R3,6*8); encrypt_round(R2,R3,R0,R1,7*8); encrypt_round(R0,R1,R2,R3,8*8); encrypt_round(R2,R3,R0,R1,9*8); encrypt_round(R0,R1,R2,R3,10*8); encrypt_round(R2,R3,R0,R1,11*8); encrypt_round(R0,R1,R2,R3,12*8); encrypt_round(R2,R3,R0,R1,13*8); encrypt_round(R0,R1,R2,R3,14*8); encrypt_last_round(R2,R3,R0,R1,15*8); output_whitening(%r10,%r11,a_offset) movq %r10, (%rsi) shl $32, R1 xor R0, R1 output_whitening(R1,%r11,c_offset) movq R1, 8(%rsi) popq R1 movq $1,%rax ret twofish_dec_blk: pushq R1 /* %rdi contains the crypto tfm address */ /* %rsi contains the output address */ /* %rdx contains the input address */ add $crypto_tfm_ctx_offset, %rdi /* set ctx address */ /* ctx address is moved to free one non-rex register as target for the 8bit high operations */ mov %rdi, %r11 movq (R3), R1 movq 8(R3), R3 output_whitening(R1,%r11,a_offset) output_whitening(R3,%r11,c_offset) mov R1D, R0D shr $32, R1 rol $16, R1D mov R3D, R2D shr $32, R3 rol $1, R2D decrypt_round(R0,R1,R2,R3,15*8); decrypt_round(R2,R3,R0,R1,14*8); decrypt_round(R0,R1,R2,R3,13*8); decrypt_round(R2,R3,R0,R1,12*8); decrypt_round(R0,R1,R2,R3,11*8); decrypt_round(R2,R3,R0,R1,10*8); decrypt_round(R0,R1,R2,R3,9*8); decrypt_round(R2,R3,R0,R1,8*8); decrypt_round(R0,R1,R2,R3,7*8); decrypt_round(R2,R3,R0,R1,6*8); decrypt_round(R0,R1,R2,R3,5*8); decrypt_round(R2,R3,R0,R1,4*8); decrypt_round(R0,R1,R2,R3,3*8); decrypt_round(R2,R3,R0,R1,2*8); decrypt_round(R0,R1,R2,R3,1*8); decrypt_last_round(R2,R3,R0,R1,0); input_whitening(%r10,%r11,a_offset) movq %r10, (%rsi) shl $32, R1 xor R0, R1 input_whitening(R1,%r11,c_offset) movq R1, 8(%rsi) popq R1 movq $1,%rax ret