/* * GPL LICENSE SUMMARY * * Copyright(c) 2010 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * Contact Information: * Intel Corporation * 2200 Mission College Blvd. * Santa Clara, CA 97052 * * This provides access methods for PCI registers that mis-behave on * the CE4100. Each register can be assigned a private init, read and * write routine. The exception to this is the bridge device. The * bridge device is the only device on bus zero (0) that requires any * fixup so it is a special case ATM */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/init.h> #include <asm/ce4100.h> #include <asm/pci_x86.h> struct sim_reg { u32 value; u32 mask; }; struct sim_dev_reg { int dev_func; int reg; void (*init)(struct sim_dev_reg *reg); void (*read)(struct sim_dev_reg *reg, u32 *value); void (*write)(struct sim_dev_reg *reg, u32 value); struct sim_reg sim_reg; }; struct sim_reg_op { void (*init)(struct sim_dev_reg *reg); void (*read)(struct sim_dev_reg *reg, u32 value); void (*write)(struct sim_dev_reg *reg, u32 value); }; #define MB (1024 * 1024) #define KB (1024) #define SIZE_TO_MASK(size) (~(size - 1)) #define DEFINE_REG(device, func, offset, size, init_op, read_op, write_op)\ { PCI_DEVFN(device, func), offset, init_op, read_op, write_op,\ {0, SIZE_TO_MASK(size)} }, static void reg_init(struct sim_dev_reg *reg) { pci_direct_conf1.read(0, 1, reg->dev_func, reg->reg, 4, ®->sim_reg.value); } static void reg_read(struct sim_dev_reg *reg, u32 *value) { unsigned long flags; raw_spin_lock_irqsave(&pci_config_lock, flags); *value = reg->sim_reg.value; raw_spin_unlock_irqrestore(&pci_config_lock, flags); } static void reg_write(struct sim_dev_reg *reg, u32 value) { unsigned long flags; raw_spin_lock_irqsave(&pci_config_lock, flags); reg->sim_reg.value = (value & reg->sim_reg.mask) | (reg->sim_reg.value & ~reg->sim_reg.mask); raw_spin_unlock_irqrestore(&pci_config_lock, flags); } static void sata_reg_init(struct sim_dev_reg *reg) { pci_direct_conf1.read(0, 1, PCI_DEVFN(14, 0), 0x10, 4, ®->sim_reg.value); reg->sim_reg.value += 0x400; } static void ehci_reg_read(struct sim_dev_reg *reg, u32 *value) { reg_read(reg, value); if (*value != reg->sim_reg.mask) *value |= 0x100; } void sata_revid_init(struct sim_dev_reg *reg) { reg->sim_reg.value = 0x01060100; reg->sim_reg.mask = 0; } static void sata_revid_read(struct sim_dev_reg *reg, u32 *value) { reg_read(reg, value); } static struct sim_dev_reg bus1_fixups[] = { DEFINE_REG(2, 0, 0x10, (16*MB), reg_init, reg_read, reg_write) DEFINE_REG(2, 0, 0x14, (256), reg_init, reg_read, reg_write) DEFINE_REG(2, 1, 0x10, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(3, 0, 0x10, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(4, 0, 0x10, (128*KB), reg_init, reg_read, reg_write) DEFINE_REG(4, 1, 0x10, (128*KB), reg_init, reg_read, reg_write) DEFINE_REG(6, 0, 0x10, (512*KB), reg_init, reg_read, reg_write) DEFINE_REG(6, 1, 0x10, (512*KB), reg_init, reg_read, reg_write) DEFINE_REG(6, 2, 0x10, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(8, 0, 0x10, (1*MB), reg_init, reg_read, reg_write) DEFINE_REG(8, 1, 0x10, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(8, 2, 0x10, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(9, 0, 0x10 , (1*MB), reg_init, reg_read, reg_write) DEFINE_REG(9, 0, 0x14, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(10, 0, 0x10, (256), reg_init, reg_read, reg_write) DEFINE_REG(10, 0, 0x14, (256*MB), reg_init, reg_read, reg_write) DEFINE_REG(11, 0, 0x10, (256), reg_init, reg_read, reg_write) DEFINE_REG(11, 0, 0x14, (256), reg_init, reg_read, reg_write) DEFINE_REG(11, 1, 0x10, (256), reg_init, reg_read, reg_write) DEFINE_REG(11, 2, 0x10, (256), reg_init, reg_read, reg_write) DEFINE_REG(11, 2, 0x14, (256), reg_init, reg_read, reg_write) DEFINE_REG(11, 2, 0x18, (256), reg_init, reg_read, reg_write) DEFINE_REG(11, 3, 0x10, (256), reg_init, reg_read, reg_write) DEFINE_REG(11, 3, 0x14, (256), reg_init, reg_read, reg_write) DEFINE_REG(11, 4, 0x10, (256), reg_init, reg_read, reg_write) DEFINE_REG(11, 5, 0x10, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(11, 6, 0x10, (256), reg_init, reg_read, reg_write) DEFINE_REG(11, 7, 0x10, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(12, 0, 0x10, (128*KB), reg_init, reg_read, reg_write) DEFINE_REG(12, 0, 0x14, (256), reg_init, reg_read, reg_write) DEFINE_REG(12, 1, 0x10, (1024), reg_init, reg_read, reg_write) DEFINE_REG(13, 0, 0x10, (32*KB), reg_init, ehci_reg_read, reg_write) DEFINE_REG(13, 1, 0x10, (32*KB), reg_init, ehci_reg_read, reg_write) DEFINE_REG(14, 0, 0x8, 0, sata_revid_init, sata_revid_read, 0) DEFINE_REG(14, 0, 0x10, 0, reg_init, reg_read, reg_write) DEFINE_REG(14, 0, 0x14, 0, reg_init, reg_read, reg_write) DEFINE_REG(14, 0, 0x18, 0, reg_init, reg_read, reg_write) DEFINE_REG(14, 0, 0x1C, 0, reg_init, reg_read, reg_write) DEFINE_REG(14, 0, 0x20, 0, reg_init, reg_read, reg_write) DEFINE_REG(14, 0, 0x24, (0x200), sata_reg_init, reg_read, reg_write) DEFINE_REG(15, 0, 0x10, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(15, 0, 0x14, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(16, 0, 0x10, (64*KB), reg_init, reg_read, reg_write) DEFINE_REG(16, 0, 0x14, (64*MB), reg_init, reg_read, reg_write) DEFINE_REG(16, 0, 0x18, (64*MB), reg_init, reg_read, reg_write) DEFINE_REG(17, 0, 0x10, (128*KB), reg_init, reg_read, reg_write) DEFINE_REG(18, 0, 0x10, (1*KB), reg_init, reg_read, reg_write) }; static void __init init_sim_regs(void) { int i; for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) { if (bus1_fixups[i].init) bus1_fixups[i].init(&bus1_fixups[i]); } } static inline void extract_bytes(u32 *value, int reg, int len) { uint32_t mask; *value >>= ((reg & 3) * 8); mask = 0xFFFFFFFF >> ((4 - len) * 8); *value &= mask; } int bridge_read(unsigned int devfn, int reg, int len, u32 *value) { u32 av_bridge_base, av_bridge_limit; int retval = 0; switch (reg) { /* Make BARs appear to not request any memory. */ case PCI_BASE_ADDRESS_0: case PCI_BASE_ADDRESS_0 + 1: case PCI_BASE_ADDRESS_0 + 2: case PCI_BASE_ADDRESS_0 + 3: *value = 0; break; /* Since subordinate bus number register is hardwired * to zero and read only, so do the simulation. */ case PCI_PRIMARY_BUS: if (len == 4) *value = 0x00010100; break; case PCI_SUBORDINATE_BUS: *value = 1; break; case PCI_MEMORY_BASE: case PCI_MEMORY_LIMIT: /* Get the A/V bridge base address. */ pci_direct_conf1.read(0, 0, devfn, PCI_BASE_ADDRESS_0, 4, &av_bridge_base); av_bridge_limit = av_bridge_base + (512*MB - 1); av_bridge_limit >>= 16; av_bridge_limit &= 0xFFF0; av_bridge_base >>= 16; av_bridge_base &= 0xFFF0; if (reg == PCI_MEMORY_LIMIT) *value = av_bridge_limit; else if (len == 2) *value = av_bridge_base; else *value = (av_bridge_limit << 16) | av_bridge_base; break; /* Make prefetchable memory limit smaller than prefetchable * memory base, so not claim prefetchable memory space. */ case PCI_PREF_MEMORY_BASE: *value = 0xFFF0; break; case PCI_PREF_MEMORY_LIMIT: *value = 0x0; break; /* Make IO limit smaller than IO base, so not claim IO space. */ case PCI_IO_BASE: *value = 0xF0; break; case PCI_IO_LIMIT: *value = 0; break; default: retval = 1; } return retval; } static int ce4100_conf_read(unsigned int seg, unsigned int bus, unsigned int devfn, int reg, int len, u32 *value) { int i; if (bus == 1) { for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) { if (bus1_fixups[i].dev_func == devfn && bus1_fixups[i].reg == (reg & ~3) && bus1_fixups[i].read) { bus1_fixups[i].read(&(bus1_fixups[i]), value); extract_bytes(value, reg, len); return 0; } } } if (bus == 0 && (PCI_DEVFN(1, 0) == devfn) && !bridge_read(devfn, reg, len, value)) return 0; return pci_direct_conf1.read(seg, bus, devfn, reg, len, value); } static int ce4100_conf_write(unsigned int seg, unsigned int bus, unsigned int devfn, int reg, int len, u32 value) { int i; if (bus == 1) { for (i = 0; i < ARRAY_SIZE(bus1_fixups); i++) { if (bus1_fixups[i].dev_func == devfn && bus1_fixups[i].reg == (reg & ~3) && bus1_fixups[i].write) { bus1_fixups[i].write(&(bus1_fixups[i]), value); return 0; } } } /* Discard writes to A/V bridge BAR. */ if (bus == 0 && PCI_DEVFN(1, 0) == devfn && ((reg & ~3) == PCI_BASE_ADDRESS_0)) return 0; return pci_direct_conf1.write(seg, bus, devfn, reg, len, value); } struct pci_raw_ops ce4100_pci_conf = { .read = ce4100_conf_read, .write = ce4100_conf_write, }; int __init ce4100_pci_init(void) { init_sim_regs(); raw_pci_ops = &ce4100_pci_conf; /* Indicate caller that it should invoke pci_legacy_init() */ return 1; }