/* * Broadcom specific AMBA * PCI Core * * Copyright 2005, Broadcom Corporation * Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de> * * Licensed under the GNU/GPL. See COPYING for details. */ #include "bcma_private.h" #include <linux/bcma/bcma.h> /************************************************** * R/W ops. **************************************************/ static u32 bcma_pcie_read(struct bcma_drv_pci *pc, u32 address) { pcicore_write32(pc, 0x130, address); pcicore_read32(pc, 0x130); return pcicore_read32(pc, 0x134); } #if 0 static void bcma_pcie_write(struct bcma_drv_pci *pc, u32 address, u32 data) { pcicore_write32(pc, 0x130, address); pcicore_read32(pc, 0x130); pcicore_write32(pc, 0x134, data); } #endif static void bcma_pcie_mdio_set_phy(struct bcma_drv_pci *pc, u8 phy) { const u16 mdio_control = 0x128; const u16 mdio_data = 0x12C; u32 v; int i; v = (1 << 30); /* Start of Transaction */ v |= (1 << 28); /* Write Transaction */ v |= (1 << 17); /* Turnaround */ v |= (0x1F << 18); v |= (phy << 4); pcicore_write32(pc, mdio_data, v); udelay(10); for (i = 0; i < 200; i++) { v = pcicore_read32(pc, mdio_control); if (v & 0x100 /* Trans complete */) break; msleep(1); } } static u16 bcma_pcie_mdio_read(struct bcma_drv_pci *pc, u8 device, u8 address) { const u16 mdio_control = 0x128; const u16 mdio_data = 0x12C; int max_retries = 10; u16 ret = 0; u32 v; int i; v = 0x80; /* Enable Preamble Sequence */ v |= 0x2; /* MDIO Clock Divisor */ pcicore_write32(pc, mdio_control, v); if (pc->core->id.rev >= 10) { max_retries = 200; bcma_pcie_mdio_set_phy(pc, device); } v = (1 << 30); /* Start of Transaction */ v |= (1 << 29); /* Read Transaction */ v |= (1 << 17); /* Turnaround */ if (pc->core->id.rev < 10) v |= (u32)device << 22; v |= (u32)address << 18; pcicore_write32(pc, mdio_data, v); /* Wait for the device to complete the transaction */ udelay(10); for (i = 0; i < max_retries; i++) { v = pcicore_read32(pc, mdio_control); if (v & 0x100 /* Trans complete */) { udelay(10); ret = pcicore_read32(pc, mdio_data); break; } msleep(1); } pcicore_write32(pc, mdio_control, 0); return ret; } static void bcma_pcie_mdio_write(struct bcma_drv_pci *pc, u8 device, u8 address, u16 data) { const u16 mdio_control = 0x128; const u16 mdio_data = 0x12C; int max_retries = 10; u32 v; int i; v = 0x80; /* Enable Preamble Sequence */ v |= 0x2; /* MDIO Clock Divisor */ pcicore_write32(pc, mdio_control, v); if (pc->core->id.rev >= 10) { max_retries = 200; bcma_pcie_mdio_set_phy(pc, device); } v = (1 << 30); /* Start of Transaction */ v |= (1 << 28); /* Write Transaction */ v |= (1 << 17); /* Turnaround */ if (pc->core->id.rev < 10) v |= (u32)device << 22; v |= (u32)address << 18; v |= data; pcicore_write32(pc, mdio_data, v); /* Wait for the device to complete the transaction */ udelay(10); for (i = 0; i < max_retries; i++) { v = pcicore_read32(pc, mdio_control); if (v & 0x100 /* Trans complete */) break; msleep(1); } pcicore_write32(pc, mdio_control, 0); } /************************************************** * Workarounds. **************************************************/ static u8 bcma_pcicore_polarity_workaround(struct bcma_drv_pci *pc) { return (bcma_pcie_read(pc, 0x204) & 0x10) ? 0xC0 : 0x80; } static void bcma_pcicore_serdes_workaround(struct bcma_drv_pci *pc) { const u8 serdes_pll_device = 0x1D; const u8 serdes_rx_device = 0x1F; u16 tmp; bcma_pcie_mdio_write(pc, serdes_rx_device, 1 /* Control */, bcma_pcicore_polarity_workaround(pc)); tmp = bcma_pcie_mdio_read(pc, serdes_pll_device, 1 /* Control */); if (tmp & 0x4000) bcma_pcie_mdio_write(pc, serdes_pll_device, 1, tmp & ~0x4000); } /************************************************** * Init. **************************************************/ void bcma_core_pci_init(struct bcma_drv_pci *pc) { bcma_pcicore_serdes_workaround(pc); }