/* * ipmi_kcs_sm.c * * State machine for handling IPMI KCS interfaces. * * Author: MontaVista Software, Inc. * Corey Minyard <minyard@mvista.com> * source@mvista.com * * Copyright 2002 MontaVista Software Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * This state machine is taken from the state machine in the IPMI spec, * pretty much verbatim. If you have questions about the states, see * that document. */ #include <linux/kernel.h> /* For printk. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/string.h> #include <linux/jiffies.h> #include <linux/ipmi_msgdefs.h> /* for completion codes */ #include "ipmi_si_sm.h" /* kcs_debug is a bit-field * KCS_DEBUG_ENABLE - turned on for now * KCS_DEBUG_MSG - commands and their responses * KCS_DEBUG_STATES - state machine */ #define KCS_DEBUG_STATES 4 #define KCS_DEBUG_MSG 2 #define KCS_DEBUG_ENABLE 1 static int kcs_debug; module_param(kcs_debug, int, 0644); MODULE_PARM_DESC(kcs_debug, "debug bitmask, 1=enable, 2=messages, 4=states"); /* The states the KCS driver may be in. */ enum kcs_states { /* The KCS interface is currently doing nothing. */ KCS_IDLE, /* * We are starting an operation. The data is in the output * buffer, but nothing has been done to the interface yet. This * was added to the state machine in the spec to wait for the * initial IBF. */ KCS_START_OP, /* We have written a write cmd to the interface. */ KCS_WAIT_WRITE_START, /* We are writing bytes to the interface. */ KCS_WAIT_WRITE, /* * We have written the write end cmd to the interface, and * still need to write the last byte. */ KCS_WAIT_WRITE_END, /* We are waiting to read data from the interface. */ KCS_WAIT_READ, /* * State to transition to the error handler, this was added to * the state machine in the spec to be sure IBF was there. */ KCS_ERROR0, /* * First stage error handler, wait for the interface to * respond. */ KCS_ERROR1, /* * The abort cmd has been written, wait for the interface to * respond. */ KCS_ERROR2, /* * We wrote some data to the interface, wait for it to switch * to read mode. */ KCS_ERROR3, /* The hardware failed to follow the state machine. */ KCS_HOSED }; #define MAX_KCS_READ_SIZE IPMI_MAX_MSG_LENGTH #define MAX_KCS_WRITE_SIZE IPMI_MAX_MSG_LENGTH /* Timeouts in microseconds. */ #define IBF_RETRY_TIMEOUT 1000000 #define OBF_RETRY_TIMEOUT 1000000 #define MAX_ERROR_RETRIES 10 #define ERROR0_OBF_WAIT_JIFFIES (2*HZ) struct si_sm_data { enum kcs_states state; struct si_sm_io *io; unsigned char write_data[MAX_KCS_WRITE_SIZE]; int write_pos; int write_count; int orig_write_count; unsigned char read_data[MAX_KCS_READ_SIZE]; int read_pos; int truncated; unsigned int error_retries; long ibf_timeout; long obf_timeout; unsigned long error0_timeout; }; static unsigned int init_kcs_data(struct si_sm_data *kcs, struct si_sm_io *io) { kcs->state = KCS_IDLE; kcs->io = io; kcs->write_pos = 0; kcs->write_count = 0; kcs->orig_write_count = 0; kcs->read_pos = 0; kcs->error_retries = 0; kcs->truncated = 0; kcs->ibf_timeout = IBF_RETRY_TIMEOUT; kcs->obf_timeout = OBF_RETRY_TIMEOUT; /* Reserve 2 I/O bytes. */ return 2; } static inline unsigned char read_status(struct si_sm_data *kcs) { return kcs->io->inputb(kcs->io, 1); } static inline unsigned char read_data(struct si_sm_data *kcs) { return kcs->io->inputb(kcs->io, 0); } static inline void write_cmd(struct si_sm_data *kcs, unsigned char data) { kcs->io->outputb(kcs->io, 1, data); } static inline void write_data(struct si_sm_data *kcs, unsigned char data) { kcs->io->outputb(kcs->io, 0, data); } /* Control codes. */ #define KCS_GET_STATUS_ABORT 0x60 #define KCS_WRITE_START 0x61 #define KCS_WRITE_END 0x62 #define KCS_READ_BYTE 0x68 /* Status bits. */ #define GET_STATUS_STATE(status) (((status) >> 6) & 0x03) #define KCS_IDLE_STATE 0 #define KCS_READ_STATE 1 #define KCS_WRITE_STATE 2 #define KCS_ERROR_STATE 3 #define GET_STATUS_ATN(status) ((status) & 0x04) #define GET_STATUS_IBF(status) ((status) & 0x02) #define GET_STATUS_OBF(status) ((status) & 0x01) static inline void write_next_byte(struct si_sm_data *kcs) { write_data(kcs, kcs->write_data[kcs->write_pos]); (kcs->write_pos)++; (kcs->write_count)--; } static inline void start_error_recovery(struct si_sm_data *kcs, char *reason) { (kcs->error_retries)++; if (kcs->error_retries > MAX_ERROR_RETRIES) { if (kcs_debug & KCS_DEBUG_ENABLE) printk(KERN_DEBUG "ipmi_kcs_sm: kcs hosed: %s\n", reason); kcs->state = KCS_HOSED; } else { kcs->error0_timeout = jiffies + ERROR0_OBF_WAIT_JIFFIES; kcs->state = KCS_ERROR0; } } static inline void read_next_byte(struct si_sm_data *kcs) { if (kcs->read_pos >= MAX_KCS_READ_SIZE) { /* Throw the data away and mark it truncated. */ read_data(kcs); kcs->truncated = 1; } else { kcs->read_data[kcs->read_pos] = read_data(kcs); (kcs->read_pos)++; } write_data(kcs, KCS_READ_BYTE); } static inline int check_ibf(struct si_sm_data *kcs, unsigned char status, long time) { if (GET_STATUS_IBF(status)) { kcs->ibf_timeout -= time; if (kcs->ibf_timeout < 0) { start_error_recovery(kcs, "IBF not ready in time"); kcs->ibf_timeout = IBF_RETRY_TIMEOUT; return 1; } return 0; } kcs->ibf_timeout = IBF_RETRY_TIMEOUT; return 1; } static inline int check_obf(struct si_sm_data *kcs, unsigned char status, long time) { if (!GET_STATUS_OBF(status)) { kcs->obf_timeout -= time; if (kcs->obf_timeout < 0) { start_error_recovery(kcs, "OBF not ready in time"); return 1; } return 0; } kcs->obf_timeout = OBF_RETRY_TIMEOUT; return 1; } static void clear_obf(struct si_sm_data *kcs, unsigned char status) { if (GET_STATUS_OBF(status)) read_data(kcs); } static void restart_kcs_transaction(struct si_sm_data *kcs) { kcs->write_count = kcs->orig_write_count; kcs->write_pos = 0; kcs->read_pos = 0; kcs->state = KCS_WAIT_WRITE_START; kcs->ibf_timeout = IBF_RETRY_TIMEOUT; kcs->obf_timeout = OBF_RETRY_TIMEOUT; write_cmd(kcs, KCS_WRITE_START); } static int start_kcs_transaction(struct si_sm_data *kcs, unsigned char *data, unsigned int size) { unsigned int i; if (size < 2) return IPMI_REQ_LEN_INVALID_ERR; if (size > MAX_KCS_WRITE_SIZE) return IPMI_REQ_LEN_EXCEEDED_ERR; if ((kcs->state != KCS_IDLE) && (kcs->state != KCS_HOSED)) return IPMI_NOT_IN_MY_STATE_ERR; if (kcs_debug & KCS_DEBUG_MSG) { printk(KERN_DEBUG "start_kcs_transaction -"); for (i = 0; i < size; i++) printk(" %02x", (unsigned char) (data [i])); printk("\n"); } kcs->error_retries = 0; memcpy(kcs->write_data, data, size); kcs->write_count = size; kcs->orig_write_count = size; kcs->write_pos = 0; kcs->read_pos = 0; kcs->state = KCS_START_OP; kcs->ibf_timeout = IBF_RETRY_TIMEOUT; kcs->obf_timeout = OBF_RETRY_TIMEOUT; return 0; } static int get_kcs_result(struct si_sm_data *kcs, unsigned char *data, unsigned int length) { if (length < kcs->read_pos) { kcs->read_pos = length; kcs->truncated = 1; } memcpy(data, kcs->read_data, kcs->read_pos); if ((length >= 3) && (kcs->read_pos < 3)) { /* Guarantee that we return at least 3 bytes, with an error in the third byte if it is too short. */ data[2] = IPMI_ERR_UNSPECIFIED; kcs->read_pos = 3; } if (kcs->truncated) { /* * Report a truncated error. We might overwrite * another error, but that's too bad, the user needs * to know it was truncated. */ data[2] = IPMI_ERR_MSG_TRUNCATED; kcs->truncated = 0; } return kcs->read_pos; } /* * This implements the state machine defined in the IPMI manual, see * that for details on how this works. Divide that flowchart into * sections delimited by "Wait for IBF" and this will become clear. */ static enum si_sm_result kcs_event(struct si_sm_data *kcs, long time) { unsigned char status; unsigned char state; status = read_status(kcs); if (kcs_debug & KCS_DEBUG_STATES) printk(KERN_DEBUG "KCS: State = %d, %x\n", kcs->state, status); /* All states wait for ibf, so just do it here. */ if (!check_ibf(kcs, status, time)) return SI_SM_CALL_WITH_DELAY; /* Just about everything looks at the KCS state, so grab that, too. */ state = GET_STATUS_STATE(status); switch (kcs->state) { case KCS_IDLE: /* If there's and interrupt source, turn it off. */ clear_obf(kcs, status); if (GET_STATUS_ATN(status)) return SI_SM_ATTN; else return SI_SM_IDLE; case KCS_START_OP: if (state != KCS_IDLE_STATE) { start_error_recovery(kcs, "State machine not idle at start"); break; } clear_obf(kcs, status); write_cmd(kcs, KCS_WRITE_START); kcs->state = KCS_WAIT_WRITE_START; break; case KCS_WAIT_WRITE_START: if (state != KCS_WRITE_STATE) { start_error_recovery( kcs, "Not in write state at write start"); break; } read_data(kcs); if (kcs->write_count == 1) { write_cmd(kcs, KCS_WRITE_END); kcs->state = KCS_WAIT_WRITE_END; } else { write_next_byte(kcs); kcs->state = KCS_WAIT_WRITE; } break; case KCS_WAIT_WRITE: if (state != KCS_WRITE_STATE) { start_error_recovery(kcs, "Not in write state for write"); break; } clear_obf(kcs, status); if (kcs->write_count == 1) { write_cmd(kcs, KCS_WRITE_END); kcs->state = KCS_WAIT_WRITE_END; } else { write_next_byte(kcs); } break; case KCS_WAIT_WRITE_END: if (state != KCS_WRITE_STATE) { start_error_recovery(kcs, "Not in write state" " for write end"); break; } clear_obf(kcs, status); write_next_byte(kcs); kcs->state = KCS_WAIT_READ; break; case KCS_WAIT_READ: if ((state != KCS_READ_STATE) && (state != KCS_IDLE_STATE)) { start_error_recovery( kcs, "Not in read or idle in read state"); break; } if (state == KCS_READ_STATE) { if (!check_obf(kcs, status, time)) return SI_SM_CALL_WITH_DELAY; read_next_byte(kcs); } else { /* * We don't implement this exactly like the state * machine in the spec. Some broken hardware * does not write the final dummy byte to the * read register. Thus obf will never go high * here. We just go straight to idle, and we * handle clearing out obf in idle state if it * happens to come in. */ clear_obf(kcs, status); kcs->orig_write_count = 0; kcs->state = KCS_IDLE; return SI_SM_TRANSACTION_COMPLETE; } break; case KCS_ERROR0: clear_obf(kcs, status); status = read_status(kcs); if (GET_STATUS_OBF(status)) /* controller isn't responding */ if (time_before(jiffies, kcs->error0_timeout)) return SI_SM_CALL_WITH_TICK_DELAY; write_cmd(kcs, KCS_GET_STATUS_ABORT); kcs->state = KCS_ERROR1; break; case KCS_ERROR1: clear_obf(kcs, status); write_data(kcs, 0); kcs->state = KCS_ERROR2; break; case KCS_ERROR2: if (state != KCS_READ_STATE) { start_error_recovery(kcs, "Not in read state for error2"); break; } if (!check_obf(kcs, status, time)) return SI_SM_CALL_WITH_DELAY; clear_obf(kcs, status); write_data(kcs, KCS_READ_BYTE); kcs->state = KCS_ERROR3; break; case KCS_ERROR3: if (state != KCS_IDLE_STATE) { start_error_recovery(kcs, "Not in idle state for error3"); break; } if (!check_obf(kcs, status, time)) return SI_SM_CALL_WITH_DELAY; clear_obf(kcs, status); if (kcs->orig_write_count) { restart_kcs_transaction(kcs); } else { kcs->state = KCS_IDLE; return SI_SM_TRANSACTION_COMPLETE; } break; case KCS_HOSED: break; } if (kcs->state == KCS_HOSED) { init_kcs_data(kcs, kcs->io); return SI_SM_HOSED; } return SI_SM_CALL_WITHOUT_DELAY; } static int kcs_size(void) { return sizeof(struct si_sm_data); } static int kcs_detect(struct si_sm_data *kcs) { /* * It's impossible for the KCS status register to be all 1's, * (assuming a properly functioning, self-initialized BMC) * but that's what you get from reading a bogus address, so we * test that first. */ if (read_status(kcs) == 0xff) return 1; return 0; } static void kcs_cleanup(struct si_sm_data *kcs) { } struct si_sm_handlers kcs_smi_handlers = { .init_data = init_kcs_data, .start_transaction = start_kcs_transaction, .get_result = get_kcs_result, .event = kcs_event, .detect = kcs_detect, .cleanup = kcs_cleanup, .size = kcs_size, };