/* * Copyright (C) 2006-2009 DENX Software Engineering. * * Author: Yuri Tikhonov <yur@emcraft.com> * * Further porting to arch/powerpc by * Anatolij Gustschin <agust@denx.de> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The full GNU General Public License is included in this distribution in the * file called COPYING. */ /* * This driver supports the asynchrounous DMA copy and RAID engines available * on the AMCC PPC440SPe Processors. * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) * ADMA driver written by D.Williams. */ #include <linux/init.h> #include <linux/module.h> #include <linux/async_tx.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/proc_fs.h> #include <linux/of.h> #include <linux/of_platform.h> #include <asm/dcr.h> #include <asm/dcr-regs.h> #include "adma.h" enum ppc_adma_init_code { PPC_ADMA_INIT_OK = 0, PPC_ADMA_INIT_MEMRES, PPC_ADMA_INIT_MEMREG, PPC_ADMA_INIT_ALLOC, PPC_ADMA_INIT_COHERENT, PPC_ADMA_INIT_CHANNEL, PPC_ADMA_INIT_IRQ1, PPC_ADMA_INIT_IRQ2, PPC_ADMA_INIT_REGISTER }; static char *ppc_adma_errors[] = { [PPC_ADMA_INIT_OK] = "ok", [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource", [PPC_ADMA_INIT_MEMREG] = "failed to request memory region", [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev " "structure", [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for " "hardware descriptors", [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel", [PPC_ADMA_INIT_IRQ1] = "failed to request first irq", [PPC_ADMA_INIT_IRQ2] = "failed to request second irq", [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device", }; static enum ppc_adma_init_code ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM]; struct ppc_dma_chan_ref { struct dma_chan *chan; struct list_head node; }; /* The list of channels exported by ppc440spe ADMA */ struct list_head ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list); /* This flag is set when want to refetch the xor chain in the interrupt * handler */ static u32 do_xor_refetch; /* Pointer to DMA0, DMA1 CP/CS FIFO */ static void *ppc440spe_dma_fifo_buf; /* Pointers to last submitted to DMA0, DMA1 CDBs */ static struct ppc440spe_adma_desc_slot *chan_last_sub[3]; static struct ppc440spe_adma_desc_slot *chan_first_cdb[3]; /* Pointer to last linked and submitted xor CB */ static struct ppc440spe_adma_desc_slot *xor_last_linked; static struct ppc440spe_adma_desc_slot *xor_last_submit; /* This array is used in data-check operations for storing a pattern */ static char ppc440spe_qword[16]; static atomic_t ppc440spe_adma_err_irq_ref; static dcr_host_t ppc440spe_mq_dcr_host; static unsigned int ppc440spe_mq_dcr_len; /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up * the block size in transactions, then we do not allow to activate more than * only one RXOR transactions simultaneously. So use this var to store * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is * set) or not (PPC440SPE_RXOR_RUN is clear). */ static unsigned long ppc440spe_rxor_state; /* These are used in enable & check routines */ static u32 ppc440spe_r6_enabled; static struct ppc440spe_adma_chan *ppc440spe_r6_tchan; static struct completion ppc440spe_r6_test_comp; static int ppc440spe_adma_dma2rxor_prep_src( struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_rxor *cursor, int index, int src_cnt, u32 addr); static void ppc440spe_adma_dma2rxor_set_src( struct ppc440spe_adma_desc_slot *desc, int index, dma_addr_t addr); static void ppc440spe_adma_dma2rxor_set_mult( struct ppc440spe_adma_desc_slot *desc, int index, u8 mult); #ifdef ADMA_LL_DEBUG #define ADMA_LL_DBG(x) ({ if (1) x; 0; }) #else #define ADMA_LL_DBG(x) ({ if (0) x; 0; }) #endif static void print_cb(struct ppc440spe_adma_chan *chan, void *block) { struct dma_cdb *cdb; struct xor_cb *cb; int i; switch (chan->device->id) { case 0: case 1: cdb = block; pr_debug("CDB at %p [%d]:\n" "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n" "\t sg1u 0x%08x sg1l 0x%08x\n" "\t sg2u 0x%08x sg2l 0x%08x\n" "\t sg3u 0x%08x sg3l 0x%08x\n", cdb, chan->device->id, cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt), le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l), le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l), le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l) ); break; case 2: cb = block; pr_debug("CB at %p [%d]:\n" "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n" "\t cbtah 0x%08x cbtal 0x%08x\n" "\t cblah 0x%08x cblal 0x%08x\n", cb, chan->device->id, cb->cbc, cb->cbbc, cb->cbs, cb->cbtah, cb->cbtal, cb->cblah, cb->cblal); for (i = 0; i < 16; i++) { if (i && !cb->ops[i].h && !cb->ops[i].l) continue; pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n", i, cb->ops[i].h, cb->ops[i].l); } break; } } static void print_cb_list(struct ppc440spe_adma_chan *chan, struct ppc440spe_adma_desc_slot *iter) { for (; iter; iter = iter->hw_next) print_cb(chan, iter->hw_desc); } static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src, unsigned int src_cnt) { int i; pr_debug("\n%s(%d):\nsrc: ", __func__, id); for (i = 0; i < src_cnt; i++) pr_debug("\t0x%016llx ", src[i]); pr_debug("dst:\n\t0x%016llx\n", dst); } static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src, unsigned int src_cnt) { int i; pr_debug("\n%s(%d):\nsrc: ", __func__, id); for (i = 0; i < src_cnt; i++) pr_debug("\t0x%016llx ", src[i]); pr_debug("dst: "); for (i = 0; i < 2; i++) pr_debug("\t0x%016llx ", dst[i]); } static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf) { int i; pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id); if (scf) { for (i = 0; i < src_cnt; i++) pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]); } else { for (i = 0; i < src_cnt; i++) pr_debug("\t0x%016llx(no) ", src[i]); } pr_debug("dst: "); for (i = 0; i < 2; i++) pr_debug("\t0x%016llx ", src[src_cnt + i]); } /****************************************************************************** * Command (Descriptor) Blocks low-level routines ******************************************************************************/ /** * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT * pseudo operation */ static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan) { struct xor_cb *p; switch (chan->device->id) { case PPC440SPE_XOR_ID: p = desc->hw_desc; memset(desc->hw_desc, 0, sizeof(struct xor_cb)); /* NOP with Command Block Complete Enable */ p->cbc = XOR_CBCR_CBCE_BIT; break; case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); /* NOP with interrupt */ set_bit(PPC440SPE_DESC_INT, &desc->flags); break; default: printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id, __func__); break; } } /** * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR * pseudo operation */ static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc) { memset(desc->hw_desc, 0, sizeof(struct xor_cb)); desc->hw_next = NULL; desc->src_cnt = 0; desc->dst_cnt = 1; } /** * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation */ static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc, int src_cnt, unsigned long flags) { struct xor_cb *hw_desc = desc->hw_desc; memset(desc->hw_desc, 0, sizeof(struct xor_cb)); desc->hw_next = NULL; desc->src_cnt = src_cnt; desc->dst_cnt = 1; hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt; if (flags & DMA_PREP_INTERRUPT) /* Enable interrupt on completion */ hw_desc->cbc |= XOR_CBCR_CBCE_BIT; } /** * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ * operation in DMA2 controller */ static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc, int dst_cnt, int src_cnt, unsigned long flags) { struct xor_cb *hw_desc = desc->hw_desc; memset(desc->hw_desc, 0, sizeof(struct xor_cb)); desc->hw_next = NULL; desc->src_cnt = src_cnt; desc->dst_cnt = dst_cnt; memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags)); desc->descs_per_op = 0; hw_desc->cbc = XOR_CBCR_TGT_BIT; if (flags & DMA_PREP_INTERRUPT) /* Enable interrupt on completion */ hw_desc->cbc |= XOR_CBCR_CBCE_BIT; } #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1) #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1) /** * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation * with DMA0/1 */ static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc, int dst_cnt, int src_cnt, unsigned long flags, unsigned long op) { struct dma_cdb *hw_desc; struct ppc440spe_adma_desc_slot *iter; u8 dopc; /* Common initialization of a PQ descriptors chain */ set_bits(op, &desc->flags); desc->src_cnt = src_cnt; desc->dst_cnt = dst_cnt; /* WXOR MULTICAST if both P and Q are being computed * MV_SG1_SG2 if Q only */ dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ? DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; list_for_each_entry(iter, &desc->group_list, chain_node) { hw_desc = iter->hw_desc; memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); if (likely(!list_is_last(&iter->chain_node, &desc->group_list))) { /* set 'next' pointer */ iter->hw_next = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); clear_bit(PPC440SPE_DESC_INT, &iter->flags); } else { /* this is the last descriptor. * this slot will be pasted from ADMA level * each time it wants to configure parameters * of the transaction (src, dst, ...) */ iter->hw_next = NULL; if (flags & DMA_PREP_INTERRUPT) set_bit(PPC440SPE_DESC_INT, &iter->flags); else clear_bit(PPC440SPE_DESC_INT, &iter->flags); } } /* Set OPS depending on WXOR/RXOR type of operation */ if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) { /* This is a WXOR only chain: * - first descriptors are for zeroing destinations * if PPC440SPE_ZERO_P/Q set; * - descriptors remained are for GF-XOR operations. */ iter = list_first_entry(&desc->group_list, struct ppc440spe_adma_desc_slot, chain_node); if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) { hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; iter = list_first_entry(&iter->chain_node, struct ppc440spe_adma_desc_slot, chain_node); } if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) { hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; iter = list_first_entry(&iter->chain_node, struct ppc440spe_adma_desc_slot, chain_node); } list_for_each_entry_from(iter, &desc->group_list, chain_node) { hw_desc = iter->hw_desc; hw_desc->opc = dopc; } } else { /* This is either RXOR-only or mixed RXOR/WXOR */ /* The first 1 or 2 slots in chain are always RXOR, * if need to calculate P & Q, then there are two * RXOR slots; if only P or only Q, then there is one */ iter = list_first_entry(&desc->group_list, struct ppc440spe_adma_desc_slot, chain_node); hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; if (desc->dst_cnt == DMA_DEST_MAX_NUM) { iter = list_first_entry(&iter->chain_node, struct ppc440spe_adma_desc_slot, chain_node); hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; } /* The remaining descs (if any) are WXORs */ if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) { iter = list_first_entry(&iter->chain_node, struct ppc440spe_adma_desc_slot, chain_node); list_for_each_entry_from(iter, &desc->group_list, chain_node) { hw_desc = iter->hw_desc; hw_desc->opc = dopc; } } } } /** * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor * for PQ_ZERO_SUM operation */ static void ppc440spe_desc_init_dma01pqzero_sum( struct ppc440spe_adma_desc_slot *desc, int dst_cnt, int src_cnt) { struct dma_cdb *hw_desc; struct ppc440spe_adma_desc_slot *iter; int i = 0; u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; /* * Initialize starting from 2nd or 3rd descriptor dependent * on dst_cnt. First one or two slots are for cloning P * and/or Q to chan->pdest and/or chan->qdest as we have * to preserve original P/Q. */ iter = list_first_entry(&desc->group_list, struct ppc440spe_adma_desc_slot, chain_node); iter = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); if (dst_cnt > 1) { iter = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); } /* initialize each source descriptor in chain */ list_for_each_entry_from(iter, &desc->group_list, chain_node) { hw_desc = iter->hw_desc; memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); iter->src_cnt = 0; iter->dst_cnt = 0; /* This is a ZERO_SUM operation: * - <src_cnt> descriptors starting from 2nd or 3rd * descriptor are for GF-XOR operations; * - remaining <dst_cnt> descriptors are for checking the result */ if (i++ < src_cnt) /* MV_SG1_SG2 if only Q is being verified * MULTICAST if both P and Q are being verified */ hw_desc->opc = dopc; else /* DMA_CDB_OPC_DCHECK128 operation */ hw_desc->opc = DMA_CDB_OPC_DCHECK128; if (likely(!list_is_last(&iter->chain_node, &desc->group_list))) { /* set 'next' pointer */ iter->hw_next = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); } else { /* this is the last descriptor. * this slot will be pasted from ADMA level * each time it wants to configure parameters * of the transaction (src, dst, ...) */ iter->hw_next = NULL; /* always enable interrupt generation since we get * the status of pqzero from the handler */ set_bit(PPC440SPE_DESC_INT, &iter->flags); } } desc->src_cnt = src_cnt; desc->dst_cnt = dst_cnt; } /** * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation */ static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc, unsigned long flags) { struct dma_cdb *hw_desc = desc->hw_desc; memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); desc->hw_next = NULL; desc->src_cnt = 1; desc->dst_cnt = 1; if (flags & DMA_PREP_INTERRUPT) set_bit(PPC440SPE_DESC_INT, &desc->flags); else clear_bit(PPC440SPE_DESC_INT, &desc->flags); hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; } /** * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation */ static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc, int value, unsigned long flags) { struct dma_cdb *hw_desc = desc->hw_desc; memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); desc->hw_next = NULL; desc->src_cnt = 1; desc->dst_cnt = 1; if (flags & DMA_PREP_INTERRUPT) set_bit(PPC440SPE_DESC_INT, &desc->flags); else clear_bit(PPC440SPE_DESC_INT, &desc->flags); hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value); hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value); hw_desc->opc = DMA_CDB_OPC_DFILL128; } /** * ppc440spe_desc_set_src_addr - set source address into the descriptor */ static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan, int src_idx, dma_addr_t addrh, dma_addr_t addrl) { struct dma_cdb *dma_hw_desc; struct xor_cb *xor_hw_desc; phys_addr_t addr64, tmplow, tmphi; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: if (!addrh) { addr64 = addrl; tmphi = (addr64 >> 32); tmplow = (addr64 & 0xFFFFFFFF); } else { tmphi = addrh; tmplow = addrl; } dma_hw_desc = desc->hw_desc; dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow); dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi); break; case PPC440SPE_XOR_ID: xor_hw_desc = desc->hw_desc; xor_hw_desc->ops[src_idx].l = addrl; xor_hw_desc->ops[src_idx].h |= addrh; break; } } /** * ppc440spe_desc_set_src_mult - set source address mult into the descriptor */ static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan, u32 mult_index, int sg_index, unsigned char mult_value) { struct dma_cdb *dma_hw_desc; struct xor_cb *xor_hw_desc; u32 *psgu; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: dma_hw_desc = desc->hw_desc; switch (sg_index) { /* for RXOR operations set multiplier * into source cued address */ case DMA_CDB_SG_SRC: psgu = &dma_hw_desc->sg1u; break; /* for WXOR operations set multiplier * into destination cued address(es) */ case DMA_CDB_SG_DST1: psgu = &dma_hw_desc->sg2u; break; case DMA_CDB_SG_DST2: psgu = &dma_hw_desc->sg3u; break; default: BUG(); } *psgu |= cpu_to_le32(mult_value << mult_index); break; case PPC440SPE_XOR_ID: xor_hw_desc = desc->hw_desc; break; default: BUG(); } } /** * ppc440spe_desc_set_dest_addr - set destination address into the descriptor */ static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan, dma_addr_t addrh, dma_addr_t addrl, u32 dst_idx) { struct dma_cdb *dma_hw_desc; struct xor_cb *xor_hw_desc; phys_addr_t addr64, tmphi, tmplow; u32 *psgu, *psgl; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: if (!addrh) { addr64 = addrl; tmphi = (addr64 >> 32); tmplow = (addr64 & 0xFFFFFFFF); } else { tmphi = addrh; tmplow = addrl; } dma_hw_desc = desc->hw_desc; psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u; psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l; *psgl = cpu_to_le32((u32)tmplow); *psgu |= cpu_to_le32((u32)tmphi); break; case PPC440SPE_XOR_ID: xor_hw_desc = desc->hw_desc; xor_hw_desc->cbtal = addrl; xor_hw_desc->cbtah |= addrh; break; } } /** * ppc440spe_desc_set_byte_count - set number of data bytes involved * into the operation */ static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan, u32 byte_count) { struct dma_cdb *dma_hw_desc; struct xor_cb *xor_hw_desc; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: dma_hw_desc = desc->hw_desc; dma_hw_desc->cnt = cpu_to_le32(byte_count); break; case PPC440SPE_XOR_ID: xor_hw_desc = desc->hw_desc; xor_hw_desc->cbbc = byte_count; break; } } /** * ppc440spe_desc_set_rxor_block_size - set RXOR block size */ static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count) { /* assume that byte_count is aligned on the 512-boundary; * thus write it directly to the register (bits 23:31 are * reserved there). */ dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count); } /** * ppc440spe_desc_set_dcheck - set CHECK pattern */ static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan, u8 *qword) { struct dma_cdb *dma_hw_desc; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: dma_hw_desc = desc->hw_desc; iowrite32(qword[0], &dma_hw_desc->sg3l); iowrite32(qword[4], &dma_hw_desc->sg3u); iowrite32(qword[8], &dma_hw_desc->sg2l); iowrite32(qword[12], &dma_hw_desc->sg2u); break; default: BUG(); } } /** * ppc440spe_xor_set_link - set link address in xor CB */ static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc, struct ppc440spe_adma_desc_slot *next_desc) { struct xor_cb *xor_hw_desc = prev_desc->hw_desc; if (unlikely(!next_desc || !(next_desc->phys))) { printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n", __func__, next_desc, next_desc ? next_desc->phys : 0); BUG(); } xor_hw_desc->cbs = 0; xor_hw_desc->cblal = next_desc->phys; xor_hw_desc->cblah = 0; xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT; } /** * ppc440spe_desc_set_link - set the address of descriptor following this * descriptor in chain */ static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan, struct ppc440spe_adma_desc_slot *prev_desc, struct ppc440spe_adma_desc_slot *next_desc) { unsigned long flags; struct ppc440spe_adma_desc_slot *tail = next_desc; if (unlikely(!prev_desc || !next_desc || (prev_desc->hw_next && prev_desc->hw_next != next_desc))) { /* If previous next is overwritten something is wrong. * though we may refetch from append to initiate list * processing; in this case - it's ok. */ printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; " "prev->hw_next=0x%p\n", __func__, prev_desc, next_desc, prev_desc ? prev_desc->hw_next : 0); BUG(); } local_irq_save(flags); /* do s/w chaining both for DMA and XOR descriptors */ prev_desc->hw_next = next_desc; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: break; case PPC440SPE_XOR_ID: /* bind descriptor to the chain */ while (tail->hw_next) tail = tail->hw_next; xor_last_linked = tail; if (prev_desc == xor_last_submit) /* do not link to the last submitted CB */ break; ppc440spe_xor_set_link(prev_desc, next_desc); break; } local_irq_restore(flags); } /** * ppc440spe_desc_get_src_addr - extract the source address from the descriptor */ static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan, int src_idx) { struct dma_cdb *dma_hw_desc; struct xor_cb *xor_hw_desc; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: dma_hw_desc = desc->hw_desc; /* May have 0, 1, 2, or 3 sources */ switch (dma_hw_desc->opc) { case DMA_CDB_OPC_NO_OP: case DMA_CDB_OPC_DFILL128: return 0; case DMA_CDB_OPC_DCHECK128: if (unlikely(src_idx)) { printk(KERN_ERR "%s: try to get %d source for" " DCHECK128\n", __func__, src_idx); BUG(); } return le32_to_cpu(dma_hw_desc->sg1l); case DMA_CDB_OPC_MULTICAST: case DMA_CDB_OPC_MV_SG1_SG2: if (unlikely(src_idx > 2)) { printk(KERN_ERR "%s: try to get %d source from" " DMA descr\n", __func__, src_idx); BUG(); } if (src_idx) { if (le32_to_cpu(dma_hw_desc->sg1u) & DMA_CUED_XOR_WIN_MSK) { u8 region; if (src_idx == 1) return le32_to_cpu( dma_hw_desc->sg1l) + desc->unmap_len; region = (le32_to_cpu( dma_hw_desc->sg1u)) >> DMA_CUED_REGION_OFF; region &= DMA_CUED_REGION_MSK; switch (region) { case DMA_RXOR123: return le32_to_cpu( dma_hw_desc->sg1l) + (desc->unmap_len << 1); case DMA_RXOR124: return le32_to_cpu( dma_hw_desc->sg1l) + (desc->unmap_len * 3); case DMA_RXOR125: return le32_to_cpu( dma_hw_desc->sg1l) + (desc->unmap_len << 2); default: printk(KERN_ERR "%s: try to" " get src3 for region %02x" "PPC440SPE_DESC_RXOR12?\n", __func__, region); BUG(); } } else { printk(KERN_ERR "%s: try to get %d" " source for non-cued descr\n", __func__, src_idx); BUG(); } } return le32_to_cpu(dma_hw_desc->sg1l); default: printk(KERN_ERR "%s: unknown OPC 0x%02x\n", __func__, dma_hw_desc->opc); BUG(); } return le32_to_cpu(dma_hw_desc->sg1l); case PPC440SPE_XOR_ID: /* May have up to 16 sources */ xor_hw_desc = desc->hw_desc; return xor_hw_desc->ops[src_idx].l; } return 0; } /** * ppc440spe_desc_get_dest_addr - extract the destination address from the * descriptor */ static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan, int idx) { struct dma_cdb *dma_hw_desc; struct xor_cb *xor_hw_desc; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: dma_hw_desc = desc->hw_desc; if (likely(!idx)) return le32_to_cpu(dma_hw_desc->sg2l); return le32_to_cpu(dma_hw_desc->sg3l); case PPC440SPE_XOR_ID: xor_hw_desc = desc->hw_desc; return xor_hw_desc->cbtal; } return 0; } /** * ppc440spe_desc_get_src_num - extract the number of source addresses from * the descriptor */ static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan) { struct dma_cdb *dma_hw_desc; struct xor_cb *xor_hw_desc; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: dma_hw_desc = desc->hw_desc; switch (dma_hw_desc->opc) { case DMA_CDB_OPC_NO_OP: case DMA_CDB_OPC_DFILL128: return 0; case DMA_CDB_OPC_DCHECK128: return 1; case DMA_CDB_OPC_MV_SG1_SG2: case DMA_CDB_OPC_MULTICAST: /* * Only for RXOR operations we have more than * one source */ if (le32_to_cpu(dma_hw_desc->sg1u) & DMA_CUED_XOR_WIN_MSK) { /* RXOR op, there are 2 or 3 sources */ if (((le32_to_cpu(dma_hw_desc->sg1u) >> DMA_CUED_REGION_OFF) & DMA_CUED_REGION_MSK) == DMA_RXOR12) { /* RXOR 1-2 */ return 2; } else { /* RXOR 1-2-3/1-2-4/1-2-5 */ return 3; } } return 1; default: printk(KERN_ERR "%s: unknown OPC 0x%02x\n", __func__, dma_hw_desc->opc); BUG(); } case PPC440SPE_XOR_ID: /* up to 16 sources */ xor_hw_desc = desc->hw_desc; return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK; default: BUG(); } return 0; } /** * ppc440spe_desc_get_dst_num - get the number of destination addresses in * this descriptor */ static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan) { struct dma_cdb *dma_hw_desc; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: /* May be 1 or 2 destinations */ dma_hw_desc = desc->hw_desc; switch (dma_hw_desc->opc) { case DMA_CDB_OPC_NO_OP: case DMA_CDB_OPC_DCHECK128: return 0; case DMA_CDB_OPC_MV_SG1_SG2: case DMA_CDB_OPC_DFILL128: return 1; case DMA_CDB_OPC_MULTICAST: if (desc->dst_cnt == 2) return 2; else return 1; default: printk(KERN_ERR "%s: unknown OPC 0x%02x\n", __func__, dma_hw_desc->opc); BUG(); } case PPC440SPE_XOR_ID: /* Always only 1 destination */ return 1; default: BUG(); } return 0; } /** * ppc440spe_desc_get_link - get the address of the descriptor that * follows this one */ static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan) { if (!desc->hw_next) return 0; return desc->hw_next->phys; } /** * ppc440spe_desc_is_aligned - check alignment */ static inline int ppc440spe_desc_is_aligned( struct ppc440spe_adma_desc_slot *desc, int num_slots) { return (desc->idx & (num_slots - 1)) ? 0 : 1; } /** * ppc440spe_chan_xor_slot_count - get the number of slots necessary for * XOR operation */ static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt, int *slots_per_op) { int slot_cnt; /* each XOR descriptor provides up to 16 source operands */ slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS; if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)) return slot_cnt; printk(KERN_ERR "%s: len %d > max %d !!\n", __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); BUG(); return slot_cnt; } /** * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for * DMA2 PQ operation */ static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs, int src_cnt, size_t len) { signed long long order = 0; int state = 0; int addr_count = 0; int i; for (i = 1; i < src_cnt; i++) { dma_addr_t cur_addr = srcs[i]; dma_addr_t old_addr = srcs[i-1]; switch (state) { case 0: if (cur_addr == old_addr + len) { /* direct RXOR */ order = 1; state = 1; if (i == src_cnt-1) addr_count++; } else if (old_addr == cur_addr + len) { /* reverse RXOR */ order = -1; state = 1; if (i == src_cnt-1) addr_count++; } else { state = 3; } break; case 1: if (i == src_cnt-2 || (order == -1 && cur_addr != old_addr - len)) { order = 0; state = 0; addr_count++; } else if (cur_addr == old_addr + len*order) { state = 2; if (i == src_cnt-1) addr_count++; } else if (cur_addr == old_addr + 2*len) { state = 2; if (i == src_cnt-1) addr_count++; } else if (cur_addr == old_addr + 3*len) { state = 2; if (i == src_cnt-1) addr_count++; } else { order = 0; state = 0; addr_count++; } break; case 2: order = 0; state = 0; addr_count++; break; } if (state == 3) break; } if (src_cnt <= 1 || (state != 1 && state != 2)) { pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n", __func__, src_cnt, state, addr_count, order); for (i = 0; i < src_cnt; i++) pr_err("\t[%d] 0x%llx \n", i, srcs[i]); BUG(); } return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS; } /****************************************************************************** * ADMA channel low-level routines ******************************************************************************/ static u32 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan); static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan); /** * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine */ static void ppc440spe_adma_device_clear_eot_status( struct ppc440spe_adma_chan *chan) { struct dma_regs *dma_reg; struct xor_regs *xor_reg; u8 *p = chan->device->dma_desc_pool_virt; struct dma_cdb *cdb; u32 rv, i; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: /* read FIFO to ack */ dma_reg = chan->device->dma_reg; while ((rv = ioread32(&dma_reg->csfpl))) { i = rv & DMA_CDB_ADDR_MSK; cdb = (struct dma_cdb *)&p[i - (u32)chan->device->dma_desc_pool]; /* Clear opcode to ack. This is necessary for * ZeroSum operations only */ cdb->opc = 0; if (test_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) { /* probably this is a completed RXOR op, * get pointer to CDB using the fact that * physical and virtual addresses of CDB * in pools have the same offsets */ if (le32_to_cpu(cdb->sg1u) & DMA_CUED_XOR_BASE) { /* this is a RXOR */ clear_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state); } } if (rv & DMA_CDB_STATUS_MSK) { /* ZeroSum check failed */ struct ppc440spe_adma_desc_slot *iter; dma_addr_t phys = rv & ~DMA_CDB_MSK; /* * Update the status of corresponding * descriptor. */ list_for_each_entry(iter, &chan->chain, chain_node) { if (iter->phys == phys) break; } /* * if cannot find the corresponding * slot it's a bug */ BUG_ON(&iter->chain_node == &chan->chain); if (iter->xor_check_result) { if (test_bit(PPC440SPE_DESC_PCHECK, &iter->flags)) { *iter->xor_check_result |= SUM_CHECK_P_RESULT; } else if (test_bit(PPC440SPE_DESC_QCHECK, &iter->flags)) { *iter->xor_check_result |= SUM_CHECK_Q_RESULT; } else BUG(); } } } rv = ioread32(&dma_reg->dsts); if (rv) { pr_err("DMA%d err status: 0x%x\n", chan->device->id, rv); /* write back to clear */ iowrite32(rv, &dma_reg->dsts); } break; case PPC440SPE_XOR_ID: /* reset status bits to ack */ xor_reg = chan->device->xor_reg; rv = ioread32be(&xor_reg->sr); iowrite32be(rv, &xor_reg->sr); if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) { if (rv & XOR_IE_RPTIE_BIT) { /* Read PLB Timeout Error. * Try to resubmit the CB */ u32 val = ioread32be(&xor_reg->ccbalr); iowrite32be(val, &xor_reg->cblalr); val = ioread32be(&xor_reg->crsr); iowrite32be(val | XOR_CRSR_XAE_BIT, &xor_reg->crsr); } else pr_err("XOR ERR 0x%x status\n", rv); break; } /* if the XORcore is idle, but there are unprocessed CBs * then refetch the s/w chain here */ if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) && do_xor_refetch) ppc440spe_chan_append(chan); break; } } /** * ppc440spe_chan_is_busy - get the channel status */ static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan) { struct dma_regs *dma_reg; struct xor_regs *xor_reg; int busy = 0; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: dma_reg = chan->device->dma_reg; /* if command FIFO's head and tail pointers are equal and * status tail is the same as command, then channel is free */ if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) || ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp)) busy = 1; break; case PPC440SPE_XOR_ID: /* use the special status bit for the XORcore */ xor_reg = chan->device->xor_reg; busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0; break; } return busy; } /** * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain */ static void ppc440spe_chan_set_first_xor_descriptor( struct ppc440spe_adma_chan *chan, struct ppc440spe_adma_desc_slot *next_desc) { struct xor_regs *xor_reg = chan->device->xor_reg; if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) printk(KERN_INFO "%s: Warn: XORcore is running " "when try to set the first CDB!\n", __func__); xor_last_submit = xor_last_linked = next_desc; iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr); iowrite32be(next_desc->phys, &xor_reg->cblalr); iowrite32be(0, &xor_reg->cblahr); iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT, &xor_reg->cbcr); chan->hw_chain_inited = 1; } /** * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO. * called with irqs disabled */ static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan, struct ppc440spe_adma_desc_slot *desc) { u32 pcdb; struct dma_regs *dma_reg = chan->device->dma_reg; pcdb = desc->phys; if (!test_bit(PPC440SPE_DESC_INT, &desc->flags)) pcdb |= DMA_CDB_NO_INT; chan_last_sub[chan->device->id] = desc; ADMA_LL_DBG(print_cb(chan, desc->hw_desc)); iowrite32(pcdb, &dma_reg->cpfpl); } /** * ppc440spe_chan_append - update the h/w chain in the channel */ static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan) { struct xor_regs *xor_reg; struct ppc440spe_adma_desc_slot *iter; struct xor_cb *xcb; u32 cur_desc; unsigned long flags; local_irq_save(flags); switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: cur_desc = ppc440spe_chan_get_current_descriptor(chan); if (likely(cur_desc)) { iter = chan_last_sub[chan->device->id]; BUG_ON(!iter); } else { /* first peer */ iter = chan_first_cdb[chan->device->id]; BUG_ON(!iter); ppc440spe_dma_put_desc(chan, iter); chan->hw_chain_inited = 1; } /* is there something new to append */ if (!iter->hw_next) break; /* flush descriptors from the s/w queue to fifo */ list_for_each_entry_continue(iter, &chan->chain, chain_node) { ppc440spe_dma_put_desc(chan, iter); if (!iter->hw_next) break; } break; case PPC440SPE_XOR_ID: /* update h/w links and refetch */ if (!xor_last_submit->hw_next) break; xor_reg = chan->device->xor_reg; /* the last linked CDB has to generate an interrupt * that we'd be able to append the next lists to h/w * regardless of the XOR engine state at the moment of * appending of these next lists */ xcb = xor_last_linked->hw_desc; xcb->cbc |= XOR_CBCR_CBCE_BIT; if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) { /* XORcore is idle. Refetch now */ do_xor_refetch = 0; ppc440spe_xor_set_link(xor_last_submit, xor_last_submit->hw_next); ADMA_LL_DBG(print_cb_list(chan, xor_last_submit->hw_next)); xor_last_submit = xor_last_linked; iowrite32be(ioread32be(&xor_reg->crsr) | XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT, &xor_reg->crsr); } else { /* XORcore is running. Refetch later in the handler */ do_xor_refetch = 1; } break; } local_irq_restore(flags); } /** * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor */ static u32 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan) { struct dma_regs *dma_reg; struct xor_regs *xor_reg; if (unlikely(!chan->hw_chain_inited)) /* h/w descriptor chain is not initialized yet */ return 0; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: dma_reg = chan->device->dma_reg; return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK); case PPC440SPE_XOR_ID: xor_reg = chan->device->xor_reg; return ioread32be(&xor_reg->ccbalr); } return 0; } /** * ppc440spe_chan_run - enable the channel */ static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan) { struct xor_regs *xor_reg; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: /* DMAs are always enabled, do nothing */ break; case PPC440SPE_XOR_ID: /* drain write buffer */ xor_reg = chan->device->xor_reg; /* fetch descriptor pointed to in <link> */ iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT, &xor_reg->crsr); break; } } /****************************************************************************** * ADMA device level ******************************************************************************/ static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan); static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan); static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx); static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx, dma_addr_t addr, int index); static void ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx, dma_addr_t addr, int index); static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx, dma_addr_t *paddr, unsigned long flags); static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx, dma_addr_t addr, int index); static void ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx, unsigned char mult, int index, int dst_pos); static void ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx, dma_addr_t paddr, dma_addr_t qaddr); static struct page *ppc440spe_rxor_srcs[32]; /** * ppc440spe_can_rxor - check if the operands may be processed with RXOR */ static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len) { int i, order = 0, state = 0; int idx = 0; if (unlikely(!(src_cnt > 1))) return 0; BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs)); /* Skip holes in the source list before checking */ for (i = 0; i < src_cnt; i++) { if (!srcs[i]) continue; ppc440spe_rxor_srcs[idx++] = srcs[i]; } src_cnt = idx; for (i = 1; i < src_cnt; i++) { char *cur_addr = page_address(ppc440spe_rxor_srcs[i]); char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]); switch (state) { case 0: if (cur_addr == old_addr + len) { /* direct RXOR */ order = 1; state = 1; } else if (old_addr == cur_addr + len) { /* reverse RXOR */ order = -1; state = 1; } else goto out; break; case 1: if ((i == src_cnt - 2) || (order == -1 && cur_addr != old_addr - len)) { order = 0; state = 0; } else if ((cur_addr == old_addr + len * order) || (cur_addr == old_addr + 2 * len) || (cur_addr == old_addr + 3 * len)) { state = 2; } else { order = 0; state = 0; } break; case 2: order = 0; state = 0; break; } } out: if (state == 1 || state == 2) return 1; return 0; } /** * ppc440spe_adma_device_estimate - estimate the efficiency of processing * the operation given on this channel. It's assumed that 'chan' is * capable to process 'cap' type of operation. * @chan: channel to use * @cap: type of transaction * @dst_lst: array of destination pointers * @dst_cnt: number of destination operands * @src_lst: array of source pointers * @src_cnt: number of source operands * @src_sz: size of each source operand */ static int ppc440spe_adma_estimate(struct dma_chan *chan, enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt, struct page **src_lst, int src_cnt, size_t src_sz) { int ef = 1; if (cap == DMA_PQ || cap == DMA_PQ_VAL) { /* If RAID-6 capabilities were not activated don't try * to use them */ if (unlikely(!ppc440spe_r6_enabled)) return -1; } /* In the current implementation of ppc440spe ADMA driver it * makes sense to pick out only pq case, because it may be * processed: * (1) either using Biskup method on DMA2; * (2) or on DMA0/1. * Thus we give a favour to (1) if the sources are suitable; * else let it be processed on one of the DMA0/1 engines. * In the sum_product case where destination is also the * source process it on DMA0/1 only. */ if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) { if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1]) ef = 0; /* sum_product case, process on DMA0/1 */ else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz)) ef = 3; /* override (DMA0/1 + idle) */ else ef = 0; /* can't process on DMA2 if !rxor */ } /* channel idleness increases the priority */ if (likely(ef) && !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan))) ef++; return ef; } struct dma_chan * ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt, struct page **src_lst, int src_cnt, size_t src_sz) { struct dma_chan *best_chan = NULL; struct ppc_dma_chan_ref *ref; int best_rank = -1; if (unlikely(!src_sz)) return NULL; if (src_sz > PAGE_SIZE) { /* * should a user of the api ever pass > PAGE_SIZE requests * we sort out cases where temporary page-sized buffers * are used. */ switch (cap) { case DMA_PQ: if (src_cnt == 1 && dst_lst[1] == src_lst[0]) return NULL; if (src_cnt == 2 && dst_lst[1] == src_lst[1]) return NULL; break; case DMA_PQ_VAL: case DMA_XOR_VAL: return NULL; default: break; } } list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) { if (dma_has_cap(cap, ref->chan->device->cap_mask)) { int rank; rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst, dst_cnt, src_lst, src_cnt, src_sz); if (rank > best_rank) { best_rank = rank; best_chan = ref->chan; } } } return best_chan; } EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel); /** * ppc440spe_get_group_entry - get group entry with index idx * @tdesc: is the last allocated slot in the group. */ static struct ppc440spe_adma_desc_slot * ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx) { struct ppc440spe_adma_desc_slot *iter = tdesc->group_head; int i = 0; if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) { printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n", __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt); BUG(); } list_for_each_entry(iter, &tdesc->group_list, chain_node) { if (i++ == entry_idx) break; } return iter; } /** * ppc440spe_adma_free_slots - flags descriptor slots for reuse * @slot: Slot to free * Caller must hold &ppc440spe_chan->lock while calling this function */ static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot, struct ppc440spe_adma_chan *chan) { int stride = slot->slots_per_op; while (stride--) { slot->slots_per_op = 0; slot = list_entry(slot->slot_node.next, struct ppc440spe_adma_desc_slot, slot_node); } } static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan, struct ppc440spe_adma_desc_slot *desc) { u32 src_cnt, dst_cnt; dma_addr_t addr; /* * get the number of sources & destination * included in this descriptor and unmap * them all */ src_cnt = ppc440spe_desc_get_src_num(desc, chan); dst_cnt = ppc440spe_desc_get_dst_num(desc, chan); /* unmap destinations */ if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { while (dst_cnt--) { addr = ppc440spe_desc_get_dest_addr( desc, chan, dst_cnt); dma_unmap_page(chan->device->dev, addr, desc->unmap_len, DMA_FROM_DEVICE); } } /* unmap sources */ if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { while (src_cnt--) { addr = ppc440spe_desc_get_src_addr( desc, chan, src_cnt); dma_unmap_page(chan->device->dev, addr, desc->unmap_len, DMA_TO_DEVICE); } } } /** * ppc440spe_adma_run_tx_complete_actions - call functions to be called * upon completion */ static dma_cookie_t ppc440spe_adma_run_tx_complete_actions( struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan, dma_cookie_t cookie) { int i; BUG_ON(desc->async_tx.cookie < 0); if (desc->async_tx.cookie > 0) { cookie = desc->async_tx.cookie; desc->async_tx.cookie = 0; /* call the callback (must not sleep or submit new * operations to this channel) */ if (desc->async_tx.callback) desc->async_tx.callback( desc->async_tx.callback_param); /* unmap dma addresses * (unmap_single vs unmap_page?) * * actually, ppc's dma_unmap_page() functions are empty, so * the following code is just for the sake of completeness */ if (chan && chan->needs_unmap && desc->group_head && desc->unmap_len) { struct ppc440spe_adma_desc_slot *unmap = desc->group_head; /* assume 1 slot per op always */ u32 slot_count = unmap->slot_cnt; /* Run through the group list and unmap addresses */ for (i = 0; i < slot_count; i++) { BUG_ON(!unmap); ppc440spe_adma_unmap(chan, unmap); unmap = unmap->hw_next; } } } /* run dependent operations */ dma_run_dependencies(&desc->async_tx); return cookie; } /** * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set) */ static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_adma_chan *chan) { /* the client is allowed to attach dependent operations * until 'ack' is set */ if (!async_tx_test_ack(&desc->async_tx)) return 0; /* leave the last descriptor in the chain * so we can append to it */ if (list_is_last(&desc->chain_node, &chan->chain) || desc->phys == ppc440spe_chan_get_current_descriptor(chan)) return 1; if (chan->device->id != PPC440SPE_XOR_ID) { /* our DMA interrupt handler clears opc field of * each processed descriptor. For all types of * operations except for ZeroSum we do not actually * need ack from the interrupt handler. ZeroSum is a * special case since the result of this operation * is available from the handler only, so if we see * such type of descriptor (which is unprocessed yet) * then leave it in chain. */ struct dma_cdb *cdb = desc->hw_desc; if (cdb->opc == DMA_CDB_OPC_DCHECK128) return 1; } dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n", desc->phys, desc->idx, desc->slots_per_op); list_del(&desc->chain_node); ppc440spe_adma_free_slots(desc, chan); return 0; } /** * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine * which runs through the channel CDBs list until reach the descriptor * currently processed. When routine determines that all CDBs of group * are completed then corresponding callbacks (if any) are called and slots * are freed. */ static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) { struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL; dma_cookie_t cookie = 0; u32 current_desc = ppc440spe_chan_get_current_descriptor(chan); int busy = ppc440spe_chan_is_busy(chan); int seen_current = 0, slot_cnt = 0, slots_per_op = 0; dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n", chan->device->id, __func__); if (!current_desc) { /* There were no transactions yet, so * nothing to clean */ return; } /* free completed slots from the chain starting with * the oldest descriptor */ list_for_each_entry_safe(iter, _iter, &chan->chain, chain_node) { dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d " "busy: %d this_desc: %#llx next_desc: %#x " "cur: %#x ack: %d\n", iter->async_tx.cookie, iter->idx, busy, iter->phys, ppc440spe_desc_get_link(iter, chan), current_desc, async_tx_test_ack(&iter->async_tx)); prefetch(_iter); prefetch(&_iter->async_tx); /* do not advance past the current descriptor loaded into the * hardware channel,subsequent descriptors are either in process * or have not been submitted */ if (seen_current) break; /* stop the search if we reach the current descriptor and the * channel is busy, or if it appears that the current descriptor * needs to be re-read (i.e. has been appended to) */ if (iter->phys == current_desc) { BUG_ON(seen_current++); if (busy || ppc440spe_desc_get_link(iter, chan)) { /* not all descriptors of the group have * been completed; exit. */ break; } } /* detect the start of a group transaction */ if (!slot_cnt && !slots_per_op) { slot_cnt = iter->slot_cnt; slots_per_op = iter->slots_per_op; if (slot_cnt <= slots_per_op) { slot_cnt = 0; slots_per_op = 0; } } if (slot_cnt) { if (!group_start) group_start = iter; slot_cnt -= slots_per_op; } /* all the members of a group are complete */ if (slots_per_op != 0 && slot_cnt == 0) { struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter; int end_of_chain = 0; /* clean up the group */ slot_cnt = group_start->slot_cnt; grp_iter = group_start; list_for_each_entry_safe_from(grp_iter, _grp_iter, &chan->chain, chain_node) { cookie = ppc440spe_adma_run_tx_complete_actions( grp_iter, chan, cookie); slot_cnt -= slots_per_op; end_of_chain = ppc440spe_adma_clean_slot( grp_iter, chan); if (end_of_chain && slot_cnt) { /* Should wait for ZeroSum completion */ if (cookie > 0) chan->completed_cookie = cookie; return; } if (slot_cnt == 0 || end_of_chain) break; } /* the group should be complete at this point */ BUG_ON(slot_cnt); slots_per_op = 0; group_start = NULL; if (end_of_chain) break; else continue; } else if (slots_per_op) /* wait for group completion */ continue; cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan, cookie); if (ppc440spe_adma_clean_slot(iter, chan)) break; } BUG_ON(!seen_current); if (cookie > 0) { chan->completed_cookie = cookie; pr_debug("\tcompleted cookie %d\n", cookie); } } /** * ppc440spe_adma_tasklet - clean up watch-dog initiator */ static void ppc440spe_adma_tasklet(unsigned long data) { struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data; spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING); __ppc440spe_adma_slot_cleanup(chan); spin_unlock(&chan->lock); } /** * ppc440spe_adma_slot_cleanup - clean up scheduled initiator */ static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) { spin_lock_bh(&chan->lock); __ppc440spe_adma_slot_cleanup(chan); spin_unlock_bh(&chan->lock); } /** * ppc440spe_adma_alloc_slots - allocate free slots (if any) */ static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots( struct ppc440spe_adma_chan *chan, int num_slots, int slots_per_op) { struct ppc440spe_adma_desc_slot *iter = NULL, *_iter; struct ppc440spe_adma_desc_slot *alloc_start = NULL; struct list_head chain = LIST_HEAD_INIT(chain); int slots_found, retry = 0; BUG_ON(!num_slots || !slots_per_op); /* start search from the last allocated descrtiptor * if a contiguous allocation can not be found start searching * from the beginning of the list */ retry: slots_found = 0; if (retry == 0) iter = chan->last_used; else iter = list_entry(&chan->all_slots, struct ppc440spe_adma_desc_slot, slot_node); list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots, slot_node) { prefetch(_iter); prefetch(&_iter->async_tx); if (iter->slots_per_op) { slots_found = 0; continue; } /* start the allocation if the slot is correctly aligned */ if (!slots_found++) alloc_start = iter; if (slots_found == num_slots) { struct ppc440spe_adma_desc_slot *alloc_tail = NULL; struct ppc440spe_adma_desc_slot *last_used = NULL; iter = alloc_start; while (num_slots) { int i; /* pre-ack all but the last descriptor */ if (num_slots != slots_per_op) async_tx_ack(&iter->async_tx); list_add_tail(&iter->chain_node, &chain); alloc_tail = iter; iter->async_tx.cookie = 0; iter->hw_next = NULL; iter->flags = 0; iter->slot_cnt = num_slots; iter->xor_check_result = NULL; for (i = 0; i < slots_per_op; i++) { iter->slots_per_op = slots_per_op - i; last_used = iter; iter = list_entry(iter->slot_node.next, struct ppc440spe_adma_desc_slot, slot_node); } num_slots -= slots_per_op; } alloc_tail->group_head = alloc_start; alloc_tail->async_tx.cookie = -EBUSY; list_splice(&chain, &alloc_tail->group_list); chan->last_used = last_used; return alloc_tail; } } if (!retry++) goto retry; /* try to free some slots if the allocation fails */ tasklet_schedule(&chan->irq_tasklet); return NULL; } /** * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots */ static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan) { struct ppc440spe_adma_chan *ppc440spe_chan; struct ppc440spe_adma_desc_slot *slot = NULL; char *hw_desc; int i, db_sz; int init; ppc440spe_chan = to_ppc440spe_adma_chan(chan); init = ppc440spe_chan->slots_allocated ? 0 : 1; chan->chan_id = ppc440spe_chan->device->id; /* Allocate descriptor slots */ i = ppc440spe_chan->slots_allocated; if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID) db_sz = sizeof(struct dma_cdb); else db_sz = sizeof(struct xor_cb); for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) { slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot), GFP_KERNEL); if (!slot) { printk(KERN_INFO "SPE ADMA Channel only initialized" " %d descriptor slots", i--); break; } hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt; slot->hw_desc = (void *) &hw_desc[i * db_sz]; dma_async_tx_descriptor_init(&slot->async_tx, chan); slot->async_tx.tx_submit = ppc440spe_adma_tx_submit; INIT_LIST_HEAD(&slot->chain_node); INIT_LIST_HEAD(&slot->slot_node); INIT_LIST_HEAD(&slot->group_list); slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz; slot->idx = i; spin_lock_bh(&ppc440spe_chan->lock); ppc440spe_chan->slots_allocated++; list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots); spin_unlock_bh(&ppc440spe_chan->lock); } if (i && !ppc440spe_chan->last_used) { ppc440spe_chan->last_used = list_entry(ppc440spe_chan->all_slots.next, struct ppc440spe_adma_desc_slot, slot_node); } dev_dbg(ppc440spe_chan->device->common.dev, "ppc440spe adma%d: allocated %d descriptor slots\n", ppc440spe_chan->device->id, i); /* initialize the channel and the chain with a null operation */ if (init) { switch (ppc440spe_chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: ppc440spe_chan->hw_chain_inited = 0; /* Use WXOR for self-testing */ if (!ppc440spe_r6_tchan) ppc440spe_r6_tchan = ppc440spe_chan; break; case PPC440SPE_XOR_ID: ppc440spe_chan_start_null_xor(ppc440spe_chan); break; default: BUG(); } ppc440spe_chan->needs_unmap = 1; } return (i > 0) ? i : -ENOMEM; } /** * ppc440spe_desc_assign_cookie - assign a cookie */ static dma_cookie_t ppc440spe_desc_assign_cookie( struct ppc440spe_adma_chan *chan, struct ppc440spe_adma_desc_slot *desc) { dma_cookie_t cookie = chan->common.cookie; cookie++; if (cookie < 0) cookie = 1; chan->common.cookie = desc->async_tx.cookie = cookie; return cookie; } /** * ppc440spe_rxor_set_region_data - */ static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc, u8 xor_arg_no, u32 mask) { struct xor_cb *xcb = desc->hw_desc; xcb->ops[xor_arg_no].h |= mask; } /** * ppc440spe_rxor_set_src - */ static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc, u8 xor_arg_no, dma_addr_t addr) { struct xor_cb *xcb = desc->hw_desc; xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE; xcb->ops[xor_arg_no].l = addr; } /** * ppc440spe_rxor_set_mult - */ static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc, u8 xor_arg_no, u8 idx, u8 mult) { struct xor_cb *xcb = desc->hw_desc; xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8); } /** * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold * has been achieved */ static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan) { dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n", chan->device->id, chan->pending); if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) { chan->pending = 0; ppc440spe_chan_append(chan); } } /** * ppc440spe_adma_tx_submit - submit new descriptor group to the channel * (it's not necessary that descriptors will be submitted to the h/w * chains too right now) */ static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx) { struct ppc440spe_adma_desc_slot *sw_desc; struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan); struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail; int slot_cnt; int slots_per_op; dma_cookie_t cookie; sw_desc = tx_to_ppc440spe_adma_slot(tx); group_start = sw_desc->group_head; slot_cnt = group_start->slot_cnt; slots_per_op = group_start->slots_per_op; spin_lock_bh(&chan->lock); cookie = ppc440spe_desc_assign_cookie(chan, sw_desc); if (unlikely(list_empty(&chan->chain))) { /* first peer */ list_splice_init(&sw_desc->group_list, &chan->chain); chan_first_cdb[chan->device->id] = group_start; } else { /* isn't first peer, bind CDBs to chain */ old_chain_tail = list_entry(chan->chain.prev, struct ppc440spe_adma_desc_slot, chain_node); list_splice_init(&sw_desc->group_list, &old_chain_tail->chain_node); /* fix up the hardware chain */ ppc440spe_desc_set_link(chan, old_chain_tail, group_start); } /* increment the pending count by the number of operations */ chan->pending += slot_cnt / slots_per_op; ppc440spe_adma_check_threshold(chan); spin_unlock_bh(&chan->lock); dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n", chan->device->id, __func__, sw_desc->async_tx.cookie, sw_desc->idx, sw_desc); return cookie; } /** * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation */ static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt( struct dma_chan *chan, unsigned long flags) { struct ppc440spe_adma_chan *ppc440spe_chan; struct ppc440spe_adma_desc_slot *sw_desc, *group_start; int slot_cnt, slots_per_op; ppc440spe_chan = to_ppc440spe_adma_chan(chan); dev_dbg(ppc440spe_chan->device->common.dev, "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id, __func__); spin_lock_bh(&ppc440spe_chan->lock); slot_cnt = slots_per_op = 1; sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, slots_per_op); if (sw_desc) { group_start = sw_desc->group_head; ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan); group_start->unmap_len = 0; sw_desc->async_tx.flags = flags; } spin_unlock_bh(&ppc440spe_chan->lock); return sw_desc ? &sw_desc->async_tx : NULL; } /** * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation */ static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy( struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src, size_t len, unsigned long flags) { struct ppc440spe_adma_chan *ppc440spe_chan; struct ppc440spe_adma_desc_slot *sw_desc, *group_start; int slot_cnt, slots_per_op; ppc440spe_chan = to_ppc440spe_adma_chan(chan); if (unlikely(!len)) return NULL; BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT); spin_lock_bh(&ppc440spe_chan->lock); dev_dbg(ppc440spe_chan->device->common.dev, "ppc440spe adma%d: %s len: %u int_en %d\n", ppc440spe_chan->device->id, __func__, len, flags & DMA_PREP_INTERRUPT ? 1 : 0); slot_cnt = slots_per_op = 1; sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, slots_per_op); if (sw_desc) { group_start = sw_desc->group_head; ppc440spe_desc_init_memcpy(group_start, flags); ppc440spe_adma_set_dest(group_start, dma_dest, 0); ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0); ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); sw_desc->unmap_len = len; sw_desc->async_tx.flags = flags; } spin_unlock_bh(&ppc440spe_chan->lock); return sw_desc ? &sw_desc->async_tx : NULL; } /** * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation */ static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memset( struct dma_chan *chan, dma_addr_t dma_dest, int value, size_t len, unsigned long flags) { struct ppc440spe_adma_chan *ppc440spe_chan; struct ppc440spe_adma_desc_slot *sw_desc, *group_start; int slot_cnt, slots_per_op; ppc440spe_chan = to_ppc440spe_adma_chan(chan); if (unlikely(!len)) return NULL; BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT); spin_lock_bh(&ppc440spe_chan->lock); dev_dbg(ppc440spe_chan->device->common.dev, "ppc440spe adma%d: %s cal: %u len: %u int_en %d\n", ppc440spe_chan->device->id, __func__, value, len, flags & DMA_PREP_INTERRUPT ? 1 : 0); slot_cnt = slots_per_op = 1; sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, slots_per_op); if (sw_desc) { group_start = sw_desc->group_head; ppc440spe_desc_init_memset(group_start, value, flags); ppc440spe_adma_set_dest(group_start, dma_dest, 0); ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); sw_desc->unmap_len = len; sw_desc->async_tx.flags = flags; } spin_unlock_bh(&ppc440spe_chan->lock); return sw_desc ? &sw_desc->async_tx : NULL; } /** * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation */ static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor( struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t *dma_src, u32 src_cnt, size_t len, unsigned long flags) { struct ppc440spe_adma_chan *ppc440spe_chan; struct ppc440spe_adma_desc_slot *sw_desc, *group_start; int slot_cnt, slots_per_op; ppc440spe_chan = to_ppc440spe_adma_chan(chan); ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id, dma_dest, dma_src, src_cnt)); if (unlikely(!len)) return NULL; BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); dev_dbg(ppc440spe_chan->device->common.dev, "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", ppc440spe_chan->device->id, __func__, src_cnt, len, flags & DMA_PREP_INTERRUPT ? 1 : 0); spin_lock_bh(&ppc440spe_chan->lock); slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op); sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, slots_per_op); if (sw_desc) { group_start = sw_desc->group_head; ppc440spe_desc_init_xor(group_start, src_cnt, flags); ppc440spe_adma_set_dest(group_start, dma_dest, 0); while (src_cnt--) ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src[src_cnt], src_cnt); ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); sw_desc->unmap_len = len; sw_desc->async_tx.flags = flags; } spin_unlock_bh(&ppc440spe_chan->lock); return sw_desc ? &sw_desc->async_tx : NULL; } static inline void ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc, int src_cnt); static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor); /** * ppc440spe_adma_init_dma2rxor_slot - */ static void ppc440spe_adma_init_dma2rxor_slot( struct ppc440spe_adma_desc_slot *desc, dma_addr_t *src, int src_cnt) { int i; /* initialize CDB */ for (i = 0; i < src_cnt; i++) { ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i, desc->src_cnt, (u32)src[i]); } } /** * ppc440spe_dma01_prep_mult - * for Q operation where destination is also the source */ static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult( struct ppc440spe_adma_chan *ppc440spe_chan, dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { struct ppc440spe_adma_desc_slot *sw_desc = NULL; unsigned long op = 0; int slot_cnt; set_bit(PPC440SPE_DESC_WXOR, &op); slot_cnt = 2; spin_lock_bh(&ppc440spe_chan->lock); /* use WXOR, each descriptor occupies one slot */ sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); if (sw_desc) { struct ppc440spe_adma_chan *chan; struct ppc440spe_adma_desc_slot *iter; struct dma_cdb *hw_desc; chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); set_bits(op, &sw_desc->flags); sw_desc->src_cnt = src_cnt; sw_desc->dst_cnt = dst_cnt; /* First descriptor, zero data in the destination and copy it * to q page using MULTICAST transfer. */ iter = list_first_entry(&sw_desc->group_list, struct ppc440spe_adma_desc_slot, chain_node); memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); /* set 'next' pointer */ iter->hw_next = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); clear_bit(PPC440SPE_DESC_INT, &iter->flags); hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MULTICAST; ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, dst[0], 0); ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1); ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, src[0]); ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); iter->unmap_len = len; /* * Second descriptor, multiply data from the q page * and store the result in real destination. */ iter = list_first_entry(&iter->chain_node, struct ppc440spe_adma_desc_slot, chain_node); memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); iter->hw_next = NULL; if (flags & DMA_PREP_INTERRUPT) set_bit(PPC440SPE_DESC_INT, &iter->flags); else clear_bit(PPC440SPE_DESC_INT, &iter->flags); hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, dst[1]); ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, dst[0], 0); ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, DMA_CDB_SG_DST1, scf[0]); ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); iter->unmap_len = len; sw_desc->async_tx.flags = flags; } spin_unlock_bh(&ppc440spe_chan->lock); return sw_desc; } /** * ppc440spe_dma01_prep_sum_product - * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also * the source. */ static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product( struct ppc440spe_adma_chan *ppc440spe_chan, dma_addr_t *dst, dma_addr_t *src, int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { struct ppc440spe_adma_desc_slot *sw_desc = NULL; unsigned long op = 0; int slot_cnt; set_bit(PPC440SPE_DESC_WXOR, &op); slot_cnt = 3; spin_lock_bh(&ppc440spe_chan->lock); /* WXOR, each descriptor occupies one slot */ sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); if (sw_desc) { struct ppc440spe_adma_chan *chan; struct ppc440spe_adma_desc_slot *iter; struct dma_cdb *hw_desc; chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); set_bits(op, &sw_desc->flags); sw_desc->src_cnt = src_cnt; sw_desc->dst_cnt = 1; /* 1st descriptor, src[1] data to q page and zero destination */ iter = list_first_entry(&sw_desc->group_list, struct ppc440spe_adma_desc_slot, chain_node); memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); iter->hw_next = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); clear_bit(PPC440SPE_DESC_INT, &iter->flags); hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MULTICAST; ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, *dst, 0); ppc440spe_desc_set_dest_addr(iter, chan, 0, ppc440spe_chan->qdest, 1); ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, src[1]); ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); iter->unmap_len = len; /* 2nd descriptor, multiply src[1] data and store the * result in destination */ iter = list_first_entry(&iter->chain_node, struct ppc440spe_adma_desc_slot, chain_node); memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); /* set 'next' pointer */ iter->hw_next = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); if (flags & DMA_PREP_INTERRUPT) set_bit(PPC440SPE_DESC_INT, &iter->flags); else clear_bit(PPC440SPE_DESC_INT, &iter->flags); hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, ppc440spe_chan->qdest); ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, *dst, 0); ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, DMA_CDB_SG_DST1, scf[1]); ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); iter->unmap_len = len; /* * 3rd descriptor, multiply src[0] data and xor it * with destination */ iter = list_first_entry(&iter->chain_node, struct ppc440spe_adma_desc_slot, chain_node); memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); iter->hw_next = NULL; if (flags & DMA_PREP_INTERRUPT) set_bit(PPC440SPE_DESC_INT, &iter->flags); else clear_bit(PPC440SPE_DESC_INT, &iter->flags); hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, src[0]); ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, *dst, 0); ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, DMA_CDB_SG_DST1, scf[0]); ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); iter->unmap_len = len; sw_desc->async_tx.flags = flags; } spin_unlock_bh(&ppc440spe_chan->lock); return sw_desc; } static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq( struct ppc440spe_adma_chan *ppc440spe_chan, dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { int slot_cnt; struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; unsigned long op = 0; unsigned char mult = 1; pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", __func__, dst_cnt, src_cnt, len); /* select operations WXOR/RXOR depending on the * source addresses of operators and the number * of destinations (RXOR support only Q-parity calculations) */ set_bit(PPC440SPE_DESC_WXOR, &op); if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) { /* no active RXOR; * do RXOR if: * - there are more than 1 source, * - len is aligned on 512-byte boundary, * - source addresses fit to one of 4 possible regions. */ if (src_cnt > 1 && !(len & MQ0_CF2H_RXOR_BS_MASK) && (src[0] + len) == src[1]) { /* may do RXOR R1 R2 */ set_bit(PPC440SPE_DESC_RXOR, &op); if (src_cnt != 2) { /* may try to enhance region of RXOR */ if ((src[1] + len) == src[2]) { /* do RXOR R1 R2 R3 */ set_bit(PPC440SPE_DESC_RXOR123, &op); } else if ((src[1] + len * 2) == src[2]) { /* do RXOR R1 R2 R4 */ set_bit(PPC440SPE_DESC_RXOR124, &op); } else if ((src[1] + len * 3) == src[2]) { /* do RXOR R1 R2 R5 */ set_bit(PPC440SPE_DESC_RXOR125, &op); } else { /* do RXOR R1 R2 */ set_bit(PPC440SPE_DESC_RXOR12, &op); } } else { /* do RXOR R1 R2 */ set_bit(PPC440SPE_DESC_RXOR12, &op); } } if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { /* can not do this operation with RXOR */ clear_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state); } else { /* can do; set block size right now */ ppc440spe_desc_set_rxor_block_size(len); } } /* Number of necessary slots depends on operation type selected */ if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { /* This is a WXOR only chain. Need descriptors for each * source to GF-XOR them with WXOR, and need descriptors * for each destination to zero them with WXOR */ slot_cnt = src_cnt; if (flags & DMA_PREP_ZERO_P) { slot_cnt++; set_bit(PPC440SPE_ZERO_P, &op); } if (flags & DMA_PREP_ZERO_Q) { slot_cnt++; set_bit(PPC440SPE_ZERO_Q, &op); } } else { /* Need 1/2 descriptor for RXOR operation, and * need (src_cnt - (2 or 3)) for WXOR of sources * remained (if any) */ slot_cnt = dst_cnt; if (flags & DMA_PREP_ZERO_P) set_bit(PPC440SPE_ZERO_P, &op); if (flags & DMA_PREP_ZERO_Q) set_bit(PPC440SPE_ZERO_Q, &op); if (test_bit(PPC440SPE_DESC_RXOR12, &op)) slot_cnt += src_cnt - 2; else slot_cnt += src_cnt - 3; /* Thus we have either RXOR only chain or * mixed RXOR/WXOR */ if (slot_cnt == dst_cnt) /* RXOR only chain */ clear_bit(PPC440SPE_DESC_WXOR, &op); } spin_lock_bh(&ppc440spe_chan->lock); /* for both RXOR/WXOR each descriptor occupies one slot */ sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); if (sw_desc) { ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt, flags, op); /* setup dst/src/mult */ pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n", __func__, dst[0], dst[1]); ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); while (src_cnt--) { ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], src_cnt); /* NOTE: "Multi = 0 is equivalent to = 1" as it * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf * doesn't work for RXOR with DMA0/1! Instead, multi=0 * leads to zeroing source data after RXOR. * So, for P case set-up mult=1 explicitly. */ if (!(flags & DMA_PREP_PQ_DISABLE_Q)) mult = scf[src_cnt]; ppc440spe_adma_pq_set_src_mult(sw_desc, mult, src_cnt, dst_cnt - 1); } /* Setup byte count foreach slot just allocated */ sw_desc->async_tx.flags = flags; list_for_each_entry(iter, &sw_desc->group_list, chain_node) { ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); iter->unmap_len = len; } } spin_unlock_bh(&ppc440spe_chan->lock); return sw_desc; } static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq( struct ppc440spe_adma_chan *ppc440spe_chan, dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { int slot_cnt, descs_per_op; struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; unsigned long op = 0; unsigned char mult = 1; BUG_ON(!dst_cnt); /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", __func__, dst_cnt, src_cnt, len);*/ spin_lock_bh(&ppc440spe_chan->lock); descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len); if (descs_per_op < 0) { spin_unlock_bh(&ppc440spe_chan->lock); return NULL; } /* depending on number of sources we have 1 or 2 RXOR chains */ slot_cnt = descs_per_op * dst_cnt; sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); if (sw_desc) { op = slot_cnt; sw_desc->async_tx.flags = flags; list_for_each_entry(iter, &sw_desc->group_list, chain_node) { ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt, --op ? 0 : flags); ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); iter->unmap_len = len; ppc440spe_init_rxor_cursor(&(iter->rxor_cursor)); iter->rxor_cursor.len = len; iter->descs_per_op = descs_per_op; } op = 0; list_for_each_entry(iter, &sw_desc->group_list, chain_node) { op++; if (op % descs_per_op == 0) ppc440spe_adma_init_dma2rxor_slot(iter, src, src_cnt); if (likely(!list_is_last(&iter->chain_node, &sw_desc->group_list))) { /* set 'next' pointer */ iter->hw_next = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); ppc440spe_xor_set_link(iter, iter->hw_next); } else { /* this is the last descriptor. */ iter->hw_next = NULL; } } /* fixup head descriptor */ sw_desc->dst_cnt = dst_cnt; if (flags & DMA_PREP_ZERO_P) set_bit(PPC440SPE_ZERO_P, &sw_desc->flags); if (flags & DMA_PREP_ZERO_Q) set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags); /* setup dst/src/mult */ ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); while (src_cnt--) { /* handle descriptors (if dst_cnt == 2) inside * the ppc440spe_adma_pq_set_srcxxx() functions */ ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], src_cnt); if (!(flags & DMA_PREP_PQ_DISABLE_Q)) mult = scf[src_cnt]; ppc440spe_adma_pq_set_src_mult(sw_desc, mult, src_cnt, dst_cnt - 1); } } spin_unlock_bh(&ppc440spe_chan->lock); ppc440spe_desc_set_rxor_block_size(len); return sw_desc; } /** * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation */ static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq( struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, unsigned long flags) { struct ppc440spe_adma_chan *ppc440spe_chan; struct ppc440spe_adma_desc_slot *sw_desc = NULL; int dst_cnt = 0; ppc440spe_chan = to_ppc440spe_adma_chan(chan); ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id, dst, src, src_cnt)); BUG_ON(!len); BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); BUG_ON(!src_cnt); if (src_cnt == 1 && dst[1] == src[0]) { dma_addr_t dest[2]; /* dst[1] is real destination (Q) */ dest[0] = dst[1]; /* this is the page to multicast source data to */ dest[1] = ppc440spe_chan->qdest; sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan, dest, 2, src, src_cnt, scf, len, flags); return sw_desc ? &sw_desc->async_tx : NULL; } if (src_cnt == 2 && dst[1] == src[1]) { sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan, &dst[1], src, 2, scf, len, flags); return sw_desc ? &sw_desc->async_tx : NULL; } if (!(flags & DMA_PREP_PQ_DISABLE_P)) { BUG_ON(!dst[0]); dst_cnt++; flags |= DMA_PREP_ZERO_P; } if (!(flags & DMA_PREP_PQ_DISABLE_Q)) { BUG_ON(!dst[1]); dst_cnt++; flags |= DMA_PREP_ZERO_Q; } BUG_ON(!dst_cnt); dev_dbg(ppc440spe_chan->device->common.dev, "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", ppc440spe_chan->device->id, __func__, src_cnt, len, flags & DMA_PREP_INTERRUPT ? 1 : 0); switch (ppc440spe_chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan, dst, dst_cnt, src, src_cnt, scf, len, flags); break; case PPC440SPE_XOR_ID: sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan, dst, dst_cnt, src, src_cnt, scf, len, flags); break; } return sw_desc ? &sw_desc->async_tx : NULL; } /** * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for * a PQ_ZERO_SUM operation */ static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum( struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, enum sum_check_flags *pqres, unsigned long flags) { struct ppc440spe_adma_chan *ppc440spe_chan; struct ppc440spe_adma_desc_slot *sw_desc, *iter; dma_addr_t pdest, qdest; int slot_cnt, slots_per_op, idst, dst_cnt; ppc440spe_chan = to_ppc440spe_adma_chan(chan); if (flags & DMA_PREP_PQ_DISABLE_P) pdest = 0; else pdest = pq[0]; if (flags & DMA_PREP_PQ_DISABLE_Q) qdest = 0; else qdest = pq[1]; ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id, src, src_cnt, scf)); /* Always use WXOR for P/Q calculations (two destinations). * Need 1 or 2 extra slots to verify results are zero. */ idst = dst_cnt = (pdest && qdest) ? 2 : 1; /* One additional slot per destination to clone P/Q * before calculation (we have to preserve destinations). */ slot_cnt = src_cnt + dst_cnt * 2; slots_per_op = 1; spin_lock_bh(&ppc440spe_chan->lock); sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, slots_per_op); if (sw_desc) { ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt); /* Setup byte count for each slot just allocated */ sw_desc->async_tx.flags = flags; list_for_each_entry(iter, &sw_desc->group_list, chain_node) { ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); iter->unmap_len = len; } if (pdest) { struct dma_cdb *hw_desc; struct ppc440spe_adma_chan *chan; iter = sw_desc->group_head; chan = to_ppc440spe_adma_chan(iter->async_tx.chan); memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); iter->hw_next = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; iter->src_cnt = 0; iter->dst_cnt = 0; ppc440spe_desc_set_dest_addr(iter, chan, 0, ppc440spe_chan->pdest, 0); ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest); ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); iter->unmap_len = 0; /* override pdest to preserve original P */ pdest = ppc440spe_chan->pdest; } if (qdest) { struct dma_cdb *hw_desc; struct ppc440spe_adma_chan *chan; iter = list_first_entry(&sw_desc->group_list, struct ppc440spe_adma_desc_slot, chain_node); chan = to_ppc440spe_adma_chan(iter->async_tx.chan); if (pdest) { iter = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); } memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); iter->hw_next = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); hw_desc = iter->hw_desc; hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; iter->src_cnt = 0; iter->dst_cnt = 0; ppc440spe_desc_set_dest_addr(iter, chan, 0, ppc440spe_chan->qdest, 0); ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest); ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); iter->unmap_len = 0; /* override qdest to preserve original Q */ qdest = ppc440spe_chan->qdest; } /* Setup destinations for P/Q ops */ ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest); /* Setup zero QWORDs into DCHECK CDBs */ idst = dst_cnt; list_for_each_entry_reverse(iter, &sw_desc->group_list, chain_node) { /* * The last CDB corresponds to Q-parity check, * the one before last CDB corresponds * P-parity check */ if (idst == DMA_DEST_MAX_NUM) { if (idst == dst_cnt) { set_bit(PPC440SPE_DESC_QCHECK, &iter->flags); } else { set_bit(PPC440SPE_DESC_PCHECK, &iter->flags); } } else { if (qdest) { set_bit(PPC440SPE_DESC_QCHECK, &iter->flags); } else { set_bit(PPC440SPE_DESC_PCHECK, &iter->flags); } } iter->xor_check_result = pqres; /* * set it to zero, if check fail then result will * be updated */ *iter->xor_check_result = 0; ppc440spe_desc_set_dcheck(iter, ppc440spe_chan, ppc440spe_qword); if (!(--dst_cnt)) break; } /* Setup sources and mults for P/Q ops */ list_for_each_entry_continue_reverse(iter, &sw_desc->group_list, chain_node) { struct ppc440spe_adma_chan *chan; u32 mult_dst; chan = to_ppc440spe_adma_chan(iter->async_tx.chan); ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, src[src_cnt - 1]); if (qdest) { mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, mult_dst, scf[src_cnt - 1]); } if (!(--src_cnt)) break; } } spin_unlock_bh(&ppc440spe_chan->lock); return sw_desc ? &sw_desc->async_tx : NULL; } /** * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for * XOR ZERO_SUM operation */ static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum( struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, size_t len, enum sum_check_flags *result, unsigned long flags) { struct dma_async_tx_descriptor *tx; dma_addr_t pq[2]; /* validate P, disable Q */ pq[0] = src[0]; pq[1] = 0; flags |= DMA_PREP_PQ_DISABLE_Q; tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1], src_cnt - 1, 0, len, result, flags); return tx; } /** * ppc440spe_adma_set_dest - set destination address into descriptor */ static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, dma_addr_t addr, int index) { struct ppc440spe_adma_chan *chan; BUG_ON(index >= sw_desc->dst_cnt); chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: /* to do: support transfers lengths > * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT */ ppc440spe_desc_set_dest_addr(sw_desc->group_head, chan, 0, addr, index); break; case PPC440SPE_XOR_ID: sw_desc = ppc440spe_get_group_entry(sw_desc, index); ppc440spe_desc_set_dest_addr(sw_desc, chan, 0, addr, index); break; } } static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter, struct ppc440spe_adma_chan *chan, dma_addr_t addr) { /* To clear destinations update the descriptor * (P or Q depending on index) as follows: * addr is destination (0 corresponds to SG2): */ ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0); /* ... and the addr is source: */ ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr); /* addr is always SG2 then the mult is always DST1 */ ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, DMA_CDB_SG_DST1, 1); } /** * ppc440spe_adma_pq_set_dest - set destination address into descriptor * for the PQXOR operation */ static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, dma_addr_t *addrs, unsigned long flags) { struct ppc440spe_adma_desc_slot *iter; struct ppc440spe_adma_chan *chan; dma_addr_t paddr, qaddr; dma_addr_t addr = 0, ppath, qpath; int index = 0, i; chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); if (flags & DMA_PREP_PQ_DISABLE_P) paddr = 0; else paddr = addrs[0]; if (flags & DMA_PREP_PQ_DISABLE_Q) qaddr = 0; else qaddr = addrs[1]; if (!paddr || !qaddr) addr = paddr ? paddr : qaddr; switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: /* walk through the WXOR source list and set P/Q-destinations * for each slot: */ if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { /* This is WXOR-only chain; may have 1/2 zero descs */ if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) index++; if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) index++; iter = ppc440spe_get_group_entry(sw_desc, index); if (addr) { /* one destination */ list_for_each_entry_from(iter, &sw_desc->group_list, chain_node) ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0); } else { /* two destinations */ list_for_each_entry_from(iter, &sw_desc->group_list, chain_node) { ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, paddr, 0); ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, qaddr, 1); } } if (index) { /* To clear destinations update the descriptor * (1st,2nd, or both depending on flags) */ index = 0; if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) { iter = ppc440spe_get_group_entry( sw_desc, index++); ppc440spe_adma_pq_zero_op(iter, chan, paddr); } if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) { iter = ppc440spe_get_group_entry( sw_desc, index++); ppc440spe_adma_pq_zero_op(iter, chan, qaddr); } return; } } else { /* This is RXOR-only or RXOR/WXOR mixed chain */ /* If we want to include destination into calculations, * then make dest addresses cued with mult=1 (XOR). */ ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? DMA_CUED_XOR_HB : DMA_CUED_XOR_BASE | (1 << DMA_CUED_MULT1_OFF); qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? DMA_CUED_XOR_HB : DMA_CUED_XOR_BASE | (1 << DMA_CUED_MULT1_OFF); /* Setup destination(s) in RXOR slot(s) */ iter = ppc440spe_get_group_entry(sw_desc, index++); ppc440spe_desc_set_dest_addr(iter, chan, paddr ? ppath : qpath, paddr ? paddr : qaddr, 0); if (!addr) { /* two destinations */ iter = ppc440spe_get_group_entry(sw_desc, index++); ppc440spe_desc_set_dest_addr(iter, chan, qpath, qaddr, 0); } if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) { /* Setup destination(s) in remaining WXOR * slots */ iter = ppc440spe_get_group_entry(sw_desc, index); if (addr) { /* one destination */ list_for_each_entry_from(iter, &sw_desc->group_list, chain_node) ppc440spe_desc_set_dest_addr( iter, chan, DMA_CUED_XOR_BASE, addr, 0); } else { /* two destinations */ list_for_each_entry_from(iter, &sw_desc->group_list, chain_node) { ppc440spe_desc_set_dest_addr( iter, chan, DMA_CUED_XOR_BASE, paddr, 0); ppc440spe_desc_set_dest_addr( iter, chan, DMA_CUED_XOR_BASE, qaddr, 1); } } } } break; case PPC440SPE_XOR_ID: /* DMA2 descriptors have only 1 destination, so there are * two chains - one for each dest. * If we want to include destination into calculations, * then make dest addresses cued with mult=1 (XOR). */ ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? DMA_CUED_XOR_HB : DMA_CUED_XOR_BASE | (1 << DMA_CUED_MULT1_OFF); qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? DMA_CUED_XOR_HB : DMA_CUED_XOR_BASE | (1 << DMA_CUED_MULT1_OFF); iter = ppc440spe_get_group_entry(sw_desc, 0); for (i = 0; i < sw_desc->descs_per_op; i++) { ppc440spe_desc_set_dest_addr(iter, chan, paddr ? ppath : qpath, paddr ? paddr : qaddr, 0); iter = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); } if (!addr) { /* Two destinations; setup Q here */ iter = ppc440spe_get_group_entry(sw_desc, sw_desc->descs_per_op); for (i = 0; i < sw_desc->descs_per_op; i++) { ppc440spe_desc_set_dest_addr(iter, chan, qpath, qaddr, 0); iter = list_entry(iter->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); } } break; } } /** * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor * for the PQ_ZERO_SUM operation */ static void ppc440spe_adma_pqzero_sum_set_dest( struct ppc440spe_adma_desc_slot *sw_desc, dma_addr_t paddr, dma_addr_t qaddr) { struct ppc440spe_adma_desc_slot *iter, *end; struct ppc440spe_adma_chan *chan; dma_addr_t addr = 0; int idx; chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); /* walk through the WXOR source list and set P/Q-destinations * for each slot */ idx = (paddr && qaddr) ? 2 : 1; /* set end */ list_for_each_entry_reverse(end, &sw_desc->group_list, chain_node) { if (!(--idx)) break; } /* set start */ idx = (paddr && qaddr) ? 2 : 1; iter = ppc440spe_get_group_entry(sw_desc, idx); if (paddr && qaddr) { /* two destinations */ list_for_each_entry_from(iter, &sw_desc->group_list, chain_node) { if (unlikely(iter == end)) break; ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, paddr, 0); ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, qaddr, 1); } } else { /* one destination */ addr = paddr ? paddr : qaddr; list_for_each_entry_from(iter, &sw_desc->group_list, chain_node) { if (unlikely(iter == end)) break; ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0); } } /* The remaining descriptors are DATACHECK. These have no need in * destination. Actually, these destinations are used there * as sources for check operation. So, set addr as source. */ ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr); if (!addr) { end = list_entry(end->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr); } } /** * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor */ static inline void ppc440spe_desc_set_xor_src_cnt( struct ppc440spe_adma_desc_slot *desc, int src_cnt) { struct xor_cb *hw_desc = desc->hw_desc; hw_desc->cbc &= ~XOR_CDCR_OAC_MSK; hw_desc->cbc |= src_cnt; } /** * ppc440spe_adma_pq_set_src - set source address into descriptor */ static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc, dma_addr_t addr, int index) { struct ppc440spe_adma_chan *chan; dma_addr_t haddr = 0; struct ppc440spe_adma_desc_slot *iter = NULL; chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain */ if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { /* RXOR-only or RXOR/WXOR operation */ int iskip = test_bit(PPC440SPE_DESC_RXOR12, &sw_desc->flags) ? 2 : 3; if (index == 0) { /* 1st slot (RXOR) */ /* setup sources region (R1-2-3, R1-2-4, * or R1-2-5) */ if (test_bit(PPC440SPE_DESC_RXOR12, &sw_desc->flags)) haddr = DMA_RXOR12 << DMA_CUED_REGION_OFF; else if (test_bit(PPC440SPE_DESC_RXOR123, &sw_desc->flags)) haddr = DMA_RXOR123 << DMA_CUED_REGION_OFF; else if (test_bit(PPC440SPE_DESC_RXOR124, &sw_desc->flags)) haddr = DMA_RXOR124 << DMA_CUED_REGION_OFF; else if (test_bit(PPC440SPE_DESC_RXOR125, &sw_desc->flags)) haddr = DMA_RXOR125 << DMA_CUED_REGION_OFF; else BUG(); haddr |= DMA_CUED_XOR_BASE; iter = ppc440spe_get_group_entry(sw_desc, 0); } else if (index < iskip) { /* 1st slot (RXOR) * shall actually set source address only once * instead of first <iskip> */ iter = NULL; } else { /* 2nd/3d and next slots (WXOR); * skip first slot with RXOR */ haddr = DMA_CUED_XOR_HB; iter = ppc440spe_get_group_entry(sw_desc, index - iskip + sw_desc->dst_cnt); } } else { int znum = 0; /* WXOR-only operation; skip first slots with * zeroing destinations */ if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) znum++; if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) znum++; haddr = DMA_CUED_XOR_HB; iter = ppc440spe_get_group_entry(sw_desc, index + znum); } if (likely(iter)) { ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr); if (!index && test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) && sw_desc->dst_cnt == 2) { /* if we have two destinations for RXOR, then * setup source in the second descr too */ iter = ppc440spe_get_group_entry(sw_desc, 1); ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr); } } break; case PPC440SPE_XOR_ID: /* DMA2 may do Biskup */ iter = sw_desc->group_head; if (iter->dst_cnt == 2) { /* both P & Q calculations required; set P src here */ ppc440spe_adma_dma2rxor_set_src(iter, index, addr); /* this is for Q */ iter = ppc440spe_get_group_entry(sw_desc, sw_desc->descs_per_op); } ppc440spe_adma_dma2rxor_set_src(iter, index, addr); break; } } /** * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor */ static void ppc440spe_adma_memcpy_xor_set_src( struct ppc440spe_adma_desc_slot *sw_desc, dma_addr_t addr, int index) { struct ppc440spe_adma_chan *chan; chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); sw_desc = sw_desc->group_head; if (likely(sw_desc)) ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr); } /** * ppc440spe_adma_dma2rxor_inc_addr - */ static void ppc440spe_adma_dma2rxor_inc_addr( struct ppc440spe_adma_desc_slot *desc, struct ppc440spe_rxor *cursor, int index, int src_cnt) { cursor->addr_count++; if (index == src_cnt - 1) { ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); } else if (cursor->addr_count == XOR_MAX_OPS) { ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); cursor->addr_count = 0; cursor->desc_count++; } } /** * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB */ static int ppc440spe_adma_dma2rxor_prep_src( struct ppc440spe_adma_desc_slot *hdesc, struct ppc440spe_rxor *cursor, int index, int src_cnt, u32 addr) { int rval = 0; u32 sign; struct ppc440spe_adma_desc_slot *desc = hdesc; int i; for (i = 0; i < cursor->desc_count; i++) { desc = list_entry(hdesc->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); } switch (cursor->state) { case 0: if (addr == cursor->addrl + cursor->len) { /* direct RXOR */ cursor->state = 1; cursor->xor_count++; if (index == src_cnt-1) { ppc440spe_rxor_set_region(desc, cursor->addr_count, DMA_RXOR12 << DMA_CUED_REGION_OFF); ppc440spe_adma_dma2rxor_inc_addr( desc, cursor, index, src_cnt); } } else if (cursor->addrl == addr + cursor->len) { /* reverse RXOR */ cursor->state = 1; cursor->xor_count++; set_bit(cursor->addr_count, &desc->reverse_flags[0]); if (index == src_cnt-1) { ppc440spe_rxor_set_region(desc, cursor->addr_count, DMA_RXOR12 << DMA_CUED_REGION_OFF); ppc440spe_adma_dma2rxor_inc_addr( desc, cursor, index, src_cnt); } } else { printk(KERN_ERR "Cannot build " "DMA2 RXOR command block.\n"); BUG(); } break; case 1: sign = test_bit(cursor->addr_count, desc->reverse_flags) ? -1 : 1; if (index == src_cnt-2 || (sign == -1 && addr != cursor->addrl - 2*cursor->len)) { cursor->state = 0; cursor->xor_count = 1; cursor->addrl = addr; ppc440spe_rxor_set_region(desc, cursor->addr_count, DMA_RXOR12 << DMA_CUED_REGION_OFF); ppc440spe_adma_dma2rxor_inc_addr( desc, cursor, index, src_cnt); } else if (addr == cursor->addrl + 2*sign*cursor->len) { cursor->state = 2; cursor->xor_count = 0; ppc440spe_rxor_set_region(desc, cursor->addr_count, DMA_RXOR123 << DMA_CUED_REGION_OFF); if (index == src_cnt-1) { ppc440spe_adma_dma2rxor_inc_addr( desc, cursor, index, src_cnt); } } else if (addr == cursor->addrl + 3*cursor->len) { cursor->state = 2; cursor->xor_count = 0; ppc440spe_rxor_set_region(desc, cursor->addr_count, DMA_RXOR124 << DMA_CUED_REGION_OFF); if (index == src_cnt-1) { ppc440spe_adma_dma2rxor_inc_addr( desc, cursor, index, src_cnt); } } else if (addr == cursor->addrl + 4*cursor->len) { cursor->state = 2; cursor->xor_count = 0; ppc440spe_rxor_set_region(desc, cursor->addr_count, DMA_RXOR125 << DMA_CUED_REGION_OFF); if (index == src_cnt-1) { ppc440spe_adma_dma2rxor_inc_addr( desc, cursor, index, src_cnt); } } else { cursor->state = 0; cursor->xor_count = 1; cursor->addrl = addr; ppc440spe_rxor_set_region(desc, cursor->addr_count, DMA_RXOR12 << DMA_CUED_REGION_OFF); ppc440spe_adma_dma2rxor_inc_addr( desc, cursor, index, src_cnt); } break; case 2: cursor->state = 0; cursor->addrl = addr; cursor->xor_count++; if (index) { ppc440spe_adma_dma2rxor_inc_addr( desc, cursor, index, src_cnt); } break; } return rval; } /** * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call */ static void ppc440spe_adma_dma2rxor_set_src( struct ppc440spe_adma_desc_slot *desc, int index, dma_addr_t addr) { struct xor_cb *xcb = desc->hw_desc; int k = 0, op = 0, lop = 0; /* get the RXOR operand which corresponds to index addr */ while (op <= index) { lop = op; if (k == XOR_MAX_OPS) { k = 0; desc = list_entry(desc->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); xcb = desc->hw_desc; } if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == (DMA_RXOR12 << DMA_CUED_REGION_OFF)) op += 2; else op += 3; } BUG_ON(k < 1); if (test_bit(k-1, desc->reverse_flags)) { /* reverse operand order; put last op in RXOR group */ if (index == op - 1) ppc440spe_rxor_set_src(desc, k - 1, addr); } else { /* direct operand order; put first op in RXOR group */ if (index == lop) ppc440spe_rxor_set_src(desc, k - 1, addr); } } /** * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call */ static void ppc440spe_adma_dma2rxor_set_mult( struct ppc440spe_adma_desc_slot *desc, int index, u8 mult) { struct xor_cb *xcb = desc->hw_desc; int k = 0, op = 0, lop = 0; /* get the RXOR operand which corresponds to index mult */ while (op <= index) { lop = op; if (k == XOR_MAX_OPS) { k = 0; desc = list_entry(desc->chain_node.next, struct ppc440spe_adma_desc_slot, chain_node); xcb = desc->hw_desc; } if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == (DMA_RXOR12 << DMA_CUED_REGION_OFF)) op += 2; else op += 3; } BUG_ON(k < 1); if (test_bit(k-1, desc->reverse_flags)) { /* reverse order */ ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult); } else { /* direct order */ ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult); } } /** * ppc440spe_init_rxor_cursor - */ static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor) { memset(cursor, 0, sizeof(struct ppc440spe_rxor)); cursor->state = 2; } /** * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into * descriptor for the PQXOR operation */ static void ppc440spe_adma_pq_set_src_mult( struct ppc440spe_adma_desc_slot *sw_desc, unsigned char mult, int index, int dst_pos) { struct ppc440spe_adma_chan *chan; u32 mult_idx, mult_dst; struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL; chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); switch (chan->device->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { int region = test_bit(PPC440SPE_DESC_RXOR12, &sw_desc->flags) ? 2 : 3; if (index < region) { /* RXOR multipliers */ iter = ppc440spe_get_group_entry(sw_desc, sw_desc->dst_cnt - 1); if (sw_desc->dst_cnt == 2) iter1 = ppc440spe_get_group_entry( sw_desc, 0); mult_idx = DMA_CUED_MULT1_OFF + (index << 3); mult_dst = DMA_CDB_SG_SRC; } else { /* WXOR multiplier */ iter = ppc440spe_get_group_entry(sw_desc, index - region + sw_desc->dst_cnt); mult_idx = DMA_CUED_MULT1_OFF; mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; } } else { int znum = 0; /* WXOR-only; * skip first slots with destinations (if ZERO_DST has * place) */ if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) znum++; if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) znum++; iter = ppc440spe_get_group_entry(sw_desc, index + znum); mult_idx = DMA_CUED_MULT1_OFF; mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; } if (likely(iter)) { ppc440spe_desc_set_src_mult(iter, chan, mult_idx, mult_dst, mult); if (unlikely(iter1)) { /* if we have two destinations for RXOR, then * we've just set Q mult. Set-up P now. */ ppc440spe_desc_set_src_mult(iter1, chan, mult_idx, mult_dst, 1); } } break; case PPC440SPE_XOR_ID: iter = sw_desc->group_head; if (sw_desc->dst_cnt == 2) { /* both P & Q calculations required; set P mult here */ ppc440spe_adma_dma2rxor_set_mult(iter, index, 1); /* and then set Q mult */ iter = ppc440spe_get_group_entry(sw_desc, sw_desc->descs_per_op); } ppc440spe_adma_dma2rxor_set_mult(iter, index, mult); break; } } /** * ppc440spe_adma_free_chan_resources - free the resources allocated */ static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan) { struct ppc440spe_adma_chan *ppc440spe_chan; struct ppc440spe_adma_desc_slot *iter, *_iter; int in_use_descs = 0; ppc440spe_chan = to_ppc440spe_adma_chan(chan); ppc440spe_adma_slot_cleanup(ppc440spe_chan); spin_lock_bh(&ppc440spe_chan->lock); list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain, chain_node) { in_use_descs++; list_del(&iter->chain_node); } list_for_each_entry_safe_reverse(iter, _iter, &ppc440spe_chan->all_slots, slot_node) { list_del(&iter->slot_node); kfree(iter); ppc440spe_chan->slots_allocated--; } ppc440spe_chan->last_used = NULL; dev_dbg(ppc440spe_chan->device->common.dev, "ppc440spe adma%d %s slots_allocated %d\n", ppc440spe_chan->device->id, __func__, ppc440spe_chan->slots_allocated); spin_unlock_bh(&ppc440spe_chan->lock); /* one is ok since we left it on there on purpose */ if (in_use_descs > 1) printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n", in_use_descs - 1); } /** * ppc440spe_adma_tx_status - poll the status of an ADMA transaction * @chan: ADMA channel handle * @cookie: ADMA transaction identifier * @txstate: a holder for the current state of the channel */ static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct ppc440spe_adma_chan *ppc440spe_chan; dma_cookie_t last_used; dma_cookie_t last_complete; enum dma_status ret; ppc440spe_chan = to_ppc440spe_adma_chan(chan); last_used = chan->cookie; last_complete = ppc440spe_chan->completed_cookie; dma_set_tx_state(txstate, last_complete, last_used, 0); ret = dma_async_is_complete(cookie, last_complete, last_used); if (ret == DMA_SUCCESS) return ret; ppc440spe_adma_slot_cleanup(ppc440spe_chan); last_used = chan->cookie; last_complete = ppc440spe_chan->completed_cookie; dma_set_tx_state(txstate, last_complete, last_used, 0); return dma_async_is_complete(cookie, last_complete, last_used); } /** * ppc440spe_adma_eot_handler - end of transfer interrupt handler */ static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data) { struct ppc440spe_adma_chan *chan = data; dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n", chan->device->id, __func__); tasklet_schedule(&chan->irq_tasklet); ppc440spe_adma_device_clear_eot_status(chan); return IRQ_HANDLED; } /** * ppc440spe_adma_err_handler - DMA error interrupt handler; * do the same things as a eot handler */ static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data) { struct ppc440spe_adma_chan *chan = data; dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n", chan->device->id, __func__); tasklet_schedule(&chan->irq_tasklet); ppc440spe_adma_device_clear_eot_status(chan); return IRQ_HANDLED; } /** * ppc440spe_test_callback - called when test operation has been done */ static void ppc440spe_test_callback(void *unused) { complete(&ppc440spe_r6_test_comp); } /** * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w */ static void ppc440spe_adma_issue_pending(struct dma_chan *chan) { struct ppc440spe_adma_chan *ppc440spe_chan; ppc440spe_chan = to_ppc440spe_adma_chan(chan); dev_dbg(ppc440spe_chan->device->common.dev, "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id, __func__, ppc440spe_chan->pending); if (ppc440spe_chan->pending) { ppc440spe_chan->pending = 0; ppc440spe_chan_append(ppc440spe_chan); } } /** * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines * use FIFOs (as opposite to chains used in XOR) so this is a XOR * specific operation) */ static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan) { struct ppc440spe_adma_desc_slot *sw_desc, *group_start; dma_cookie_t cookie; int slot_cnt, slots_per_op; dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n", chan->device->id, __func__); spin_lock_bh(&chan->lock); slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op); sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op); if (sw_desc) { group_start = sw_desc->group_head; list_splice_init(&sw_desc->group_list, &chan->chain); async_tx_ack(&sw_desc->async_tx); ppc440spe_desc_init_null_xor(group_start); cookie = chan->common.cookie; cookie++; if (cookie <= 1) cookie = 2; /* initialize the completed cookie to be less than * the most recently used cookie */ chan->completed_cookie = cookie - 1; chan->common.cookie = sw_desc->async_tx.cookie = cookie; /* channel should not be busy */ BUG_ON(ppc440spe_chan_is_busy(chan)); /* set the descriptor address */ ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc); /* run the descriptor */ ppc440spe_chan_run(chan); } else printk(KERN_ERR "ppc440spe adma%d" " failed to allocate null descriptor\n", chan->device->id); spin_unlock_bh(&chan->lock); } /** * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully. * For this we just perform one WXOR operation with the same source * and destination addresses, the GF-multiplier is 1; so if RAID-6 * capabilities are enabled then we'll get src/dst filled with zero. */ static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan) { struct ppc440spe_adma_desc_slot *sw_desc, *iter; struct page *pg; char *a; dma_addr_t dma_addr, addrs[2]; unsigned long op = 0; int rval = 0; set_bit(PPC440SPE_DESC_WXOR, &op); pg = alloc_page(GFP_KERNEL); if (!pg) return -ENOMEM; spin_lock_bh(&chan->lock); sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1); if (sw_desc) { /* 1 src, 1 dsr, int_ena, WXOR */ ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op); list_for_each_entry(iter, &sw_desc->group_list, chain_node) { ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE); iter->unmap_len = PAGE_SIZE; } } else { rval = -EFAULT; spin_unlock_bh(&chan->lock); goto exit; } spin_unlock_bh(&chan->lock); /* Fill the test page with ones */ memset(page_address(pg), 0xFF, PAGE_SIZE); dma_addr = dma_map_page(chan->device->dev, pg, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); /* Setup addresses */ ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0); ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0); addrs[0] = dma_addr; addrs[1] = 0; ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q); async_tx_ack(&sw_desc->async_tx); sw_desc->async_tx.callback = ppc440spe_test_callback; sw_desc->async_tx.callback_param = NULL; init_completion(&ppc440spe_r6_test_comp); ppc440spe_adma_tx_submit(&sw_desc->async_tx); ppc440spe_adma_issue_pending(&chan->common); wait_for_completion(&ppc440spe_r6_test_comp); /* Now check if the test page is zeroed */ a = page_address(pg); if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) { /* page is zero - RAID-6 enabled */ rval = 0; } else { /* RAID-6 was not enabled */ rval = -EINVAL; } exit: __free_page(pg); return rval; } static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev) { switch (adev->id) { case PPC440SPE_DMA0_ID: case PPC440SPE_DMA1_ID: dma_cap_set(DMA_MEMCPY, adev->common.cap_mask); dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); dma_cap_set(DMA_MEMSET, adev->common.cap_mask); dma_cap_set(DMA_PQ, adev->common.cap_mask); dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask); dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask); break; case PPC440SPE_XOR_ID: dma_cap_set(DMA_XOR, adev->common.cap_mask); dma_cap_set(DMA_PQ, adev->common.cap_mask); dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); adev->common.cap_mask = adev->common.cap_mask; break; } /* Set base routines */ adev->common.device_alloc_chan_resources = ppc440spe_adma_alloc_chan_resources; adev->common.device_free_chan_resources = ppc440spe_adma_free_chan_resources; adev->common.device_tx_status = ppc440spe_adma_tx_status; adev->common.device_issue_pending = ppc440spe_adma_issue_pending; /* Set prep routines based on capability */ if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) { adev->common.device_prep_dma_memcpy = ppc440spe_adma_prep_dma_memcpy; } if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) { adev->common.device_prep_dma_memset = ppc440spe_adma_prep_dma_memset; } if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) { adev->common.max_xor = XOR_MAX_OPS; adev->common.device_prep_dma_xor = ppc440spe_adma_prep_dma_xor; } if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) { switch (adev->id) { case PPC440SPE_DMA0_ID: dma_set_maxpq(&adev->common, DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0); break; case PPC440SPE_DMA1_ID: dma_set_maxpq(&adev->common, DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0); break; case PPC440SPE_XOR_ID: adev->common.max_pq = XOR_MAX_OPS * 3; break; } adev->common.device_prep_dma_pq = ppc440spe_adma_prep_dma_pq; } if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) { switch (adev->id) { case PPC440SPE_DMA0_ID: adev->common.max_pq = DMA0_FIFO_SIZE / sizeof(struct dma_cdb); break; case PPC440SPE_DMA1_ID: adev->common.max_pq = DMA1_FIFO_SIZE / sizeof(struct dma_cdb); break; } adev->common.device_prep_dma_pq_val = ppc440spe_adma_prep_dma_pqzero_sum; } if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) { switch (adev->id) { case PPC440SPE_DMA0_ID: adev->common.max_xor = DMA0_FIFO_SIZE / sizeof(struct dma_cdb); break; case PPC440SPE_DMA1_ID: adev->common.max_xor = DMA1_FIFO_SIZE / sizeof(struct dma_cdb); break; } adev->common.device_prep_dma_xor_val = ppc440spe_adma_prep_dma_xor_zero_sum; } if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) { adev->common.device_prep_dma_interrupt = ppc440spe_adma_prep_dma_interrupt; } pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: " "( %s%s%s%s%s%s%s)\n", dev_name(adev->dev), dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "", dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "", dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "", dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "", dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "", dma_has_cap(DMA_MEMSET, adev->common.cap_mask) ? "memset " : "", dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : ""); } static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev, struct ppc440spe_adma_chan *chan, int *initcode) { struct platform_device *ofdev; struct device_node *np; int ret; ofdev = container_of(adev->dev, struct platform_device, dev); np = ofdev->dev.of_node; if (adev->id != PPC440SPE_XOR_ID) { adev->err_irq = irq_of_parse_and_map(np, 1); if (adev->err_irq == NO_IRQ) { dev_warn(adev->dev, "no err irq resource?\n"); *initcode = PPC_ADMA_INIT_IRQ2; adev->err_irq = -ENXIO; } else atomic_inc(&ppc440spe_adma_err_irq_ref); } else { adev->err_irq = -ENXIO; } adev->irq = irq_of_parse_and_map(np, 0); if (adev->irq == NO_IRQ) { dev_err(adev->dev, "no irq resource\n"); *initcode = PPC_ADMA_INIT_IRQ1; ret = -ENXIO; goto err_irq_map; } dev_dbg(adev->dev, "irq %d, err irq %d\n", adev->irq, adev->err_irq); ret = request_irq(adev->irq, ppc440spe_adma_eot_handler, 0, dev_driver_string(adev->dev), chan); if (ret) { dev_err(adev->dev, "can't request irq %d\n", adev->irq); *initcode = PPC_ADMA_INIT_IRQ1; ret = -EIO; goto err_req1; } /* only DMA engines have a separate error IRQ * so it's Ok if err_irq < 0 in XOR engine case. */ if (adev->err_irq > 0) { /* both DMA engines share common error IRQ */ ret = request_irq(adev->err_irq, ppc440spe_adma_err_handler, IRQF_SHARED, dev_driver_string(adev->dev), chan); if (ret) { dev_err(adev->dev, "can't request irq %d\n", adev->err_irq); *initcode = PPC_ADMA_INIT_IRQ2; ret = -EIO; goto err_req2; } } if (adev->id == PPC440SPE_XOR_ID) { /* enable XOR engine interrupts */ iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT, &adev->xor_reg->ier); } else { u32 mask, enable; np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); if (!np) { pr_err("%s: can't find I2O device tree node\n", __func__); ret = -ENODEV; goto err_req2; } adev->i2o_reg = of_iomap(np, 0); if (!adev->i2o_reg) { pr_err("%s: failed to map I2O registers\n", __func__); of_node_put(np); ret = -EINVAL; goto err_req2; } of_node_put(np); /* Unmask 'CS FIFO Attention' interrupts and * enable generating interrupts on errors */ enable = (adev->id == PPC440SPE_DMA0_ID) ? ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); mask = ioread32(&adev->i2o_reg->iopim) & enable; iowrite32(mask, &adev->i2o_reg->iopim); } return 0; err_req2: free_irq(adev->irq, chan); err_req1: irq_dispose_mapping(adev->irq); err_irq_map: if (adev->err_irq > 0) { if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) irq_dispose_mapping(adev->err_irq); } return ret; } static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev, struct ppc440spe_adma_chan *chan) { u32 mask, disable; if (adev->id == PPC440SPE_XOR_ID) { /* disable XOR engine interrupts */ mask = ioread32be(&adev->xor_reg->ier); mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT); iowrite32be(mask, &adev->xor_reg->ier); } else { /* disable DMAx engine interrupts */ disable = (adev->id == PPC440SPE_DMA0_ID) ? (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); mask = ioread32(&adev->i2o_reg->iopim) | disable; iowrite32(mask, &adev->i2o_reg->iopim); } free_irq(adev->irq, chan); irq_dispose_mapping(adev->irq); if (adev->err_irq > 0) { free_irq(adev->err_irq, chan); if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) { irq_dispose_mapping(adev->err_irq); iounmap(adev->i2o_reg); } } } /** * ppc440spe_adma_probe - probe the asynch device */ static int __devinit ppc440spe_adma_probe(struct platform_device *ofdev) { struct device_node *np = ofdev->dev.of_node; struct resource res; struct ppc440spe_adma_device *adev; struct ppc440spe_adma_chan *chan; struct ppc_dma_chan_ref *ref, *_ref; int ret = 0, initcode = PPC_ADMA_INIT_OK; const u32 *idx; int len; void *regs; u32 id, pool_size; if (of_device_is_compatible(np, "amcc,xor-accelerator")) { id = PPC440SPE_XOR_ID; /* As far as the XOR engine is concerned, it does not * use FIFOs but uses linked list. So there is no dependency * between pool size to allocate and the engine configuration. */ pool_size = PAGE_SIZE << 1; } else { /* it is DMA0 or DMA1 */ idx = of_get_property(np, "cell-index", &len); if (!idx || (len != sizeof(u32))) { dev_err(&ofdev->dev, "Device node %s has missing " "or invalid cell-index property\n", np->full_name); return -EINVAL; } id = *idx; /* DMA0,1 engines use FIFO to maintain CDBs, so we * should allocate the pool accordingly to size of this * FIFO. Thus, the pool size depends on the FIFO depth: * how much CDBs pointers the FIFO may contain then so * much CDBs we should provide in the pool. * That is * CDB size = 32B; * CDBs number = (DMA0_FIFO_SIZE >> 3); * Pool size = CDBs number * CDB size = * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2. */ pool_size = (id == PPC440SPE_DMA0_ID) ? DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; pool_size <<= 2; } if (of_address_to_resource(np, 0, &res)) { dev_err(&ofdev->dev, "failed to get memory resource\n"); initcode = PPC_ADMA_INIT_MEMRES; ret = -ENODEV; goto out; } if (!request_mem_region(res.start, resource_size(&res), dev_driver_string(&ofdev->dev))) { dev_err(&ofdev->dev, "failed to request memory region %pR\n", &res); initcode = PPC_ADMA_INIT_MEMREG; ret = -EBUSY; goto out; } /* create a device */ adev = kzalloc(sizeof(*adev), GFP_KERNEL); if (!adev) { dev_err(&ofdev->dev, "failed to allocate device\n"); initcode = PPC_ADMA_INIT_ALLOC; ret = -ENOMEM; goto err_adev_alloc; } adev->id = id; adev->pool_size = pool_size; /* allocate coherent memory for hardware descriptors */ adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev, adev->pool_size, &adev->dma_desc_pool, GFP_KERNEL); if (adev->dma_desc_pool_virt == NULL) { dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent " "memory for hardware descriptors\n", adev->pool_size); initcode = PPC_ADMA_INIT_COHERENT; ret = -ENOMEM; goto err_dma_alloc; } dev_dbg(&ofdev->dev, "allocted descriptor pool virt 0x%p phys 0x%llx\n", adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool); regs = ioremap(res.start, resource_size(&res)); if (!regs) { dev_err(&ofdev->dev, "failed to ioremap regs!\n"); goto err_regs_alloc; } if (adev->id == PPC440SPE_XOR_ID) { adev->xor_reg = regs; /* Reset XOR */ iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr); iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr); } else { size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ? DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; adev->dma_reg = regs; /* DMAx_FIFO_SIZE is defined in bytes, * <fsiz> - is defined in number of CDB pointers (8byte). * DMA FIFO Length = CSlength + CPlength, where * CSlength = CPlength = (fsiz + 1) * 8. */ iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2), &adev->dma_reg->fsiz); /* Configure DMA engine */ iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN, &adev->dma_reg->cfg); /* Clear Status */ iowrite32(~0, &adev->dma_reg->dsts); } adev->dev = &ofdev->dev; adev->common.dev = &ofdev->dev; INIT_LIST_HEAD(&adev->common.channels); dev_set_drvdata(&ofdev->dev, adev); /* create a channel */ chan = kzalloc(sizeof(*chan), GFP_KERNEL); if (!chan) { dev_err(&ofdev->dev, "can't allocate channel structure\n"); initcode = PPC_ADMA_INIT_CHANNEL; ret = -ENOMEM; goto err_chan_alloc; } spin_lock_init(&chan->lock); INIT_LIST_HEAD(&chan->chain); INIT_LIST_HEAD(&chan->all_slots); chan->device = adev; chan->common.device = &adev->common; list_add_tail(&chan->common.device_node, &adev->common.channels); tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet, (unsigned long)chan); /* allocate and map helper pages for async validation or * async_mult/async_sum_product operations on DMA0/1. */ if (adev->id != PPC440SPE_XOR_ID) { chan->pdest_page = alloc_page(GFP_KERNEL); chan->qdest_page = alloc_page(GFP_KERNEL); if (!chan->pdest_page || !chan->qdest_page) { if (chan->pdest_page) __free_page(chan->pdest_page); if (chan->qdest_page) __free_page(chan->qdest_page); ret = -ENOMEM; goto err_page_alloc; } chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); } ref = kmalloc(sizeof(*ref), GFP_KERNEL); if (ref) { ref->chan = &chan->common; INIT_LIST_HEAD(&ref->node); list_add_tail(&ref->node, &ppc440spe_adma_chan_list); } else { dev_err(&ofdev->dev, "failed to allocate channel reference!\n"); ret = -ENOMEM; goto err_ref_alloc; } ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode); if (ret) goto err_irq; ppc440spe_adma_init_capabilities(adev); ret = dma_async_device_register(&adev->common); if (ret) { initcode = PPC_ADMA_INIT_REGISTER; dev_err(&ofdev->dev, "failed to register dma device\n"); goto err_dev_reg; } goto out; err_dev_reg: ppc440spe_adma_release_irqs(adev, chan); err_irq: list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) { if (chan == to_ppc440spe_adma_chan(ref->chan)) { list_del(&ref->node); kfree(ref); } } err_ref_alloc: if (adev->id != PPC440SPE_XOR_ID) { dma_unmap_page(&ofdev->dev, chan->pdest, PAGE_SIZE, DMA_BIDIRECTIONAL); dma_unmap_page(&ofdev->dev, chan->qdest, PAGE_SIZE, DMA_BIDIRECTIONAL); __free_page(chan->pdest_page); __free_page(chan->qdest_page); } err_page_alloc: kfree(chan); err_chan_alloc: if (adev->id == PPC440SPE_XOR_ID) iounmap(adev->xor_reg); else iounmap(adev->dma_reg); err_regs_alloc: dma_free_coherent(adev->dev, adev->pool_size, adev->dma_desc_pool_virt, adev->dma_desc_pool); err_dma_alloc: kfree(adev); err_adev_alloc: release_mem_region(res.start, resource_size(&res)); out: if (id < PPC440SPE_ADMA_ENGINES_NUM) ppc440spe_adma_devices[id] = initcode; return ret; } /** * ppc440spe_adma_remove - remove the asynch device */ static int __devexit ppc440spe_adma_remove(struct platform_device *ofdev) { struct ppc440spe_adma_device *adev = dev_get_drvdata(&ofdev->dev); struct device_node *np = ofdev->dev.of_node; struct resource res; struct dma_chan *chan, *_chan; struct ppc_dma_chan_ref *ref, *_ref; struct ppc440spe_adma_chan *ppc440spe_chan; dev_set_drvdata(&ofdev->dev, NULL); if (adev->id < PPC440SPE_ADMA_ENGINES_NUM) ppc440spe_adma_devices[adev->id] = -1; dma_async_device_unregister(&adev->common); list_for_each_entry_safe(chan, _chan, &adev->common.channels, device_node) { ppc440spe_chan = to_ppc440spe_adma_chan(chan); ppc440spe_adma_release_irqs(adev, ppc440spe_chan); tasklet_kill(&ppc440spe_chan->irq_tasklet); if (adev->id != PPC440SPE_XOR_ID) { dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest, PAGE_SIZE, DMA_BIDIRECTIONAL); dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest, PAGE_SIZE, DMA_BIDIRECTIONAL); __free_page(ppc440spe_chan->pdest_page); __free_page(ppc440spe_chan->qdest_page); } list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) { if (ppc440spe_chan == to_ppc440spe_adma_chan(ref->chan)) { list_del(&ref->node); kfree(ref); } } list_del(&chan->device_node); kfree(ppc440spe_chan); } dma_free_coherent(adev->dev, adev->pool_size, adev->dma_desc_pool_virt, adev->dma_desc_pool); if (adev->id == PPC440SPE_XOR_ID) iounmap(adev->xor_reg); else iounmap(adev->dma_reg); of_address_to_resource(np, 0, &res); release_mem_region(res.start, resource_size(&res)); kfree(adev); return 0; } /* * /sys driver interface to enable h/w RAID-6 capabilities * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/ * directory are "devices", "enable" and "poly". * "devices" shows available engines. * "enable" is used to enable RAID-6 capabilities or to check * whether these has been activated. * "poly" allows setting/checking used polynomial (for PPC440SPe only). */ static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf) { ssize_t size = 0; int i; for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) { if (ppc440spe_adma_devices[i] == -1) continue; size += snprintf(buf + size, PAGE_SIZE - size, "PPC440SP(E)-ADMA.%d: %s\n", i, ppc_adma_errors[ppc440spe_adma_devices[i]]); } return size; } static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf) { return snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 capabilities are %sABLED.\n", ppc440spe_r6_enabled ? "EN" : "DIS"); } static ssize_t store_ppc440spe_r6enable(struct device_driver *dev, const char *buf, size_t count) { unsigned long val; if (!count || count > 11) return -EINVAL; if (!ppc440spe_r6_tchan) return -EFAULT; /* Write a key */ sscanf(buf, "%lx", &val); dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val); isync(); /* Verify whether it really works now */ if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) { pr_info("PPC440SP(e) RAID-6 has been activated " "successfully\n"); ppc440spe_r6_enabled = 1; } else { pr_info("PPC440SP(e) RAID-6 hasn't been activated!" " Error key ?\n"); ppc440spe_r6_enabled = 0; } return count; } static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf) { ssize_t size = 0; u32 reg; #ifdef CONFIG_440SP /* 440SP has fixed polynomial */ reg = 0x4d; #else reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); reg >>= MQ0_CFBHL_POLY; reg &= 0xFF; #endif size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver " "uses 0x1%02x polynomial.\n", reg); return size; } static ssize_t store_ppc440spe_r6poly(struct device_driver *dev, const char *buf, size_t count) { unsigned long reg, val; #ifdef CONFIG_440SP /* 440SP uses default 0x14D polynomial only */ return -EINVAL; #endif if (!count || count > 6) return -EINVAL; /* e.g., 0x14D or 0x11D */ sscanf(buf, "%lx", &val); if (val & ~0x1FF) return -EINVAL; val &= 0xFF; reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); reg &= ~(0xFF << MQ0_CFBHL_POLY); reg |= val << MQ0_CFBHL_POLY; dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg); return count; } static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL); static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable, store_ppc440spe_r6enable); static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly, store_ppc440spe_r6poly); /* * Common initialisation for RAID engines; allocate memory for * DMAx FIFOs, perform configuration common for all DMA engines. * Further DMA engine specific configuration is done at probe time. */ static int ppc440spe_configure_raid_devices(void) { struct device_node *np; struct resource i2o_res; struct i2o_regs __iomem *i2o_reg; dcr_host_t i2o_dcr_host; unsigned int dcr_base, dcr_len; int i, ret; np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); if (!np) { pr_err("%s: can't find I2O device tree node\n", __func__); return -ENODEV; } if (of_address_to_resource(np, 0, &i2o_res)) { of_node_put(np); return -EINVAL; } i2o_reg = of_iomap(np, 0); if (!i2o_reg) { pr_err("%s: failed to map I2O registers\n", __func__); of_node_put(np); return -EINVAL; } /* Get I2O DCRs base */ dcr_base = dcr_resource_start(np, 0); dcr_len = dcr_resource_len(np, 0); if (!dcr_base && !dcr_len) { pr_err("%s: can't get DCR registers base/len!\n", np->full_name); of_node_put(np); iounmap(i2o_reg); return -ENODEV; } i2o_dcr_host = dcr_map(np, dcr_base, dcr_len); if (!DCR_MAP_OK(i2o_dcr_host)) { pr_err("%s: failed to map DCRs!\n", np->full_name); of_node_put(np); iounmap(i2o_reg); return -ENODEV; } of_node_put(np); /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share * the base address of FIFO memory space. * Actually we need twice more physical memory than programmed in the * <fsiz> register (because there are two FIFOs for each DMA: CP and CS) */ ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1, GFP_KERNEL); if (!ppc440spe_dma_fifo_buf) { pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__); iounmap(i2o_reg); dcr_unmap(i2o_dcr_host, dcr_len); return -ENOMEM; } /* * Configure h/w */ /* Reset I2O/DMA */ mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA); mtdcri(SDR0, DCRN_SDR0_SRST, 0); /* Setup the base address of mmaped registers */ dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32)); dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) | I2O_REG_ENABLE); dcr_unmap(i2o_dcr_host, dcr_len); /* Setup FIFO memory space base address */ iowrite32(0, &i2o_reg->ifbah); iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal); /* set zero FIFO size for I2O, so the whole * ppc440spe_dma_fifo_buf is used by DMAs. * DMAx_FIFOs will be configured while probe. */ iowrite32(0, &i2o_reg->ifsiz); iounmap(i2o_reg); /* To prepare WXOR/RXOR functionality we need access to * Memory Queue Module DCRs (finally it will be enabled * via /sys interface of the ppc440spe ADMA driver). */ np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe"); if (!np) { pr_err("%s: can't find MQ device tree node\n", __func__); ret = -ENODEV; goto out_free; } /* Get MQ DCRs base */ dcr_base = dcr_resource_start(np, 0); dcr_len = dcr_resource_len(np, 0); if (!dcr_base && !dcr_len) { pr_err("%s: can't get DCR registers base/len!\n", np->full_name); ret = -ENODEV; goto out_mq; } ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len); if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) { pr_err("%s: failed to map DCRs!\n", np->full_name); ret = -ENODEV; goto out_mq; } of_node_put(np); ppc440spe_mq_dcr_len = dcr_len; /* Set HB alias */ dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB); /* Set: * - LL transaction passing limit to 1; * - Memory controller cycle limit to 1; * - Galois Polynomial to 0x14d (default) */ dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) | (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY)); atomic_set(&ppc440spe_adma_err_irq_ref, 0); for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) ppc440spe_adma_devices[i] = -1; return 0; out_mq: of_node_put(np); out_free: kfree(ppc440spe_dma_fifo_buf); return ret; } static const struct of_device_id ppc440spe_adma_of_match[] __devinitconst = { { .compatible = "ibm,dma-440spe", }, { .compatible = "amcc,xor-accelerator", }, {}, }; MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match); static struct platform_driver ppc440spe_adma_driver = { .probe = ppc440spe_adma_probe, .remove = __devexit_p(ppc440spe_adma_remove), .driver = { .name = "PPC440SP(E)-ADMA", .owner = THIS_MODULE, .of_match_table = ppc440spe_adma_of_match, }, }; static __init int ppc440spe_adma_init(void) { int ret; ret = ppc440spe_configure_raid_devices(); if (ret) return ret; ret = platform_driver_register(&ppc440spe_adma_driver); if (ret) { pr_err("%s: failed to register platform driver\n", __func__); goto out_reg; } /* Initialization status */ ret = driver_create_file(&ppc440spe_adma_driver.driver, &driver_attr_devices); if (ret) goto out_dev; /* RAID-6 h/w enable entry */ ret = driver_create_file(&ppc440spe_adma_driver.driver, &driver_attr_enable); if (ret) goto out_en; /* GF polynomial to use */ ret = driver_create_file(&ppc440spe_adma_driver.driver, &driver_attr_poly); if (!ret) return ret; driver_remove_file(&ppc440spe_adma_driver.driver, &driver_attr_enable); out_en: driver_remove_file(&ppc440spe_adma_driver.driver, &driver_attr_devices); out_dev: /* User will not be able to enable h/w RAID-6 */ pr_err("%s: failed to create RAID-6 driver interface\n", __func__); platform_driver_unregister(&ppc440spe_adma_driver); out_reg: dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); kfree(ppc440spe_dma_fifo_buf); return ret; } static void __exit ppc440spe_adma_exit(void) { driver_remove_file(&ppc440spe_adma_driver.driver, &driver_attr_poly); driver_remove_file(&ppc440spe_adma_driver.driver, &driver_attr_enable); driver_remove_file(&ppc440spe_adma_driver.driver, &driver_attr_devices); platform_driver_unregister(&ppc440spe_adma_driver); dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); kfree(ppc440spe_dma_fifo_buf); } arch_initcall(ppc440spe_adma_init); module_exit(ppc440spe_adma_exit); MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>"); MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver"); MODULE_LICENSE("GPL");