#include <linux/types.h> #include <linux/string.h> #include <linux/init.h> #include <linux/module.h> #include <linux/ctype.h> #include <linux/dmi.h> #include <linux/efi.h> #include <linux/bootmem.h> #include <linux/random.h> #include <asm/dmi.h> /* * DMI stands for "Desktop Management Interface". It is part * of and an antecedent to, SMBIOS, which stands for System * Management BIOS. See further: http://www.dmtf.org/standards */ static char dmi_empty_string[] = " "; static u16 __initdata dmi_ver; /* * Catch too early calls to dmi_check_system(): */ static int dmi_initialized; static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) { const u8 *bp = ((u8 *) dm) + dm->length; if (s) { s--; while (s > 0 && *bp) { bp += strlen(bp) + 1; s--; } if (*bp != 0) { size_t len = strlen(bp)+1; size_t cmp_len = len > 8 ? 8 : len; if (!memcmp(bp, dmi_empty_string, cmp_len)) return dmi_empty_string; return bp; } } return ""; } static char * __init dmi_string(const struct dmi_header *dm, u8 s) { const char *bp = dmi_string_nosave(dm, s); char *str; size_t len; if (bp == dmi_empty_string) return dmi_empty_string; len = strlen(bp) + 1; str = dmi_alloc(len); if (str != NULL) strcpy(str, bp); else printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); return str; } /* * We have to be cautious here. We have seen BIOSes with DMI pointers * pointing to completely the wrong place for example */ static void dmi_table(u8 *buf, int len, int num, void (*decode)(const struct dmi_header *, void *), void *private_data) { u8 *data = buf; int i = 0; /* * Stop when we see all the items the table claimed to have * OR we run off the end of the table (also happens) */ while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { const struct dmi_header *dm = (const struct dmi_header *)data; /* * We want to know the total length (formatted area and * strings) before decoding to make sure we won't run off the * table in dmi_decode or dmi_string */ data += dm->length; while ((data - buf < len - 1) && (data[0] || data[1])) data++; if (data - buf < len - 1) decode(dm, private_data); data += 2; i++; } } static u32 dmi_base; static u16 dmi_len; static u16 dmi_num; static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, void *)) { u8 *buf; buf = dmi_ioremap(dmi_base, dmi_len); if (buf == NULL) return -1; dmi_table(buf, dmi_len, dmi_num, decode, NULL); add_device_randomness(buf, dmi_len); dmi_iounmap(buf, dmi_len); return 0; } static int __init dmi_checksum(const u8 *buf, u8 len) { u8 sum = 0; int a; for (a = 0; a < len; a++) sum += buf[a]; return sum == 0; } static char *dmi_ident[DMI_STRING_MAX]; static LIST_HEAD(dmi_devices); int dmi_available; /* * Save a DMI string */ static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) { const char *d = (const char*) dm; char *p; if (dmi_ident[slot]) return; p = dmi_string(dm, d[string]); if (p == NULL) return; dmi_ident[slot] = p; } static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) { const u8 *d = (u8*) dm + index; char *s; int is_ff = 1, is_00 = 1, i; if (dmi_ident[slot]) return; for (i = 0; i < 16 && (is_ff || is_00); i++) { if (d[i] != 0x00) is_00 = 0; if (d[i] != 0xFF) is_ff = 0; } if (is_ff || is_00) return; s = dmi_alloc(16*2+4+1); if (!s) return; /* * As of version 2.6 of the SMBIOS specification, the first 3 fields of * the UUID are supposed to be little-endian encoded. The specification * says that this is the defacto standard. */ if (dmi_ver >= 0x0206) sprintf(s, "%pUL", d); else sprintf(s, "%pUB", d); dmi_ident[slot] = s; } static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) { const u8 *d = (u8*) dm + index; char *s; if (dmi_ident[slot]) return; s = dmi_alloc(4); if (!s) return; sprintf(s, "%u", *d & 0x7F); dmi_ident[slot] = s; } static void __init dmi_save_one_device(int type, const char *name) { struct dmi_device *dev; /* No duplicate device */ if (dmi_find_device(type, name, NULL)) return; dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); if (!dev) { printk(KERN_ERR "dmi_save_one_device: out of memory.\n"); return; } dev->type = type; strcpy((char *)(dev + 1), name); dev->name = (char *)(dev + 1); dev->device_data = NULL; list_add(&dev->list, &dmi_devices); } static void __init dmi_save_devices(const struct dmi_header *dm) { int i, count = (dm->length - sizeof(struct dmi_header)) / 2; for (i = 0; i < count; i++) { const char *d = (char *)(dm + 1) + (i * 2); /* Skip disabled device */ if ((*d & 0x80) == 0) continue; dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); } } static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) { int i, count = *(u8 *)(dm + 1); struct dmi_device *dev; for (i = 1; i <= count; i++) { char *devname = dmi_string(dm, i); if (devname == dmi_empty_string) continue; dev = dmi_alloc(sizeof(*dev)); if (!dev) { printk(KERN_ERR "dmi_save_oem_strings_devices: out of memory.\n"); break; } dev->type = DMI_DEV_TYPE_OEM_STRING; dev->name = devname; dev->device_data = NULL; list_add(&dev->list, &dmi_devices); } } static void __init dmi_save_ipmi_device(const struct dmi_header *dm) { struct dmi_device *dev; void * data; data = dmi_alloc(dm->length); if (data == NULL) { printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); return; } memcpy(data, dm, dm->length); dev = dmi_alloc(sizeof(*dev)); if (!dev) { printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); return; } dev->type = DMI_DEV_TYPE_IPMI; dev->name = "IPMI controller"; dev->device_data = data; list_add_tail(&dev->list, &dmi_devices); } static void __init dmi_save_dev_onboard(int instance, int segment, int bus, int devfn, const char *name) { struct dmi_dev_onboard *onboard_dev; onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); if (!onboard_dev) { printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n"); return; } onboard_dev->instance = instance; onboard_dev->segment = segment; onboard_dev->bus = bus; onboard_dev->devfn = devfn; strcpy((char *)&onboard_dev[1], name); onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; onboard_dev->dev.name = (char *)&onboard_dev[1]; onboard_dev->dev.device_data = onboard_dev; list_add(&onboard_dev->dev.list, &dmi_devices); } static void __init dmi_save_extended_devices(const struct dmi_header *dm) { const u8 *d = (u8*) dm + 5; /* Skip disabled device */ if ((*d & 0x80) == 0) return; dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), dmi_string_nosave(dm, *(d-1))); dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); } /* * Process a DMI table entry. Right now all we care about are the BIOS * and machine entries. For 2.5 we should pull the smbus controller info * out of here. */ static void __init dmi_decode(const struct dmi_header *dm, void *dummy) { switch(dm->type) { case 0: /* BIOS Information */ dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); dmi_save_ident(dm, DMI_BIOS_VERSION, 5); dmi_save_ident(dm, DMI_BIOS_DATE, 8); break; case 1: /* System Information */ dmi_save_ident(dm, DMI_SYS_VENDOR, 4); dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); break; case 2: /* Base Board Information */ dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); dmi_save_ident(dm, DMI_BOARD_NAME, 5); dmi_save_ident(dm, DMI_BOARD_VERSION, 6); dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); break; case 3: /* Chassis Information */ dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); break; case 10: /* Onboard Devices Information */ dmi_save_devices(dm); break; case 11: /* OEM Strings */ dmi_save_oem_strings_devices(dm); break; case 38: /* IPMI Device Information */ dmi_save_ipmi_device(dm); break; case 41: /* Onboard Devices Extended Information */ dmi_save_extended_devices(dm); } } static void __init print_filtered(const char *info) { const char *p; if (!info) return; for (p = info; *p; p++) if (isprint(*p)) printk(KERN_CONT "%c", *p); else printk(KERN_CONT "\\x%02x", *p & 0xff); } static void __init dmi_dump_ids(void) { const char *board; /* Board Name is optional */ printk(KERN_DEBUG "DMI: "); print_filtered(dmi_get_system_info(DMI_SYS_VENDOR)); printk(KERN_CONT " "); print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME)); board = dmi_get_system_info(DMI_BOARD_NAME); if (board) { printk(KERN_CONT "/"); print_filtered(board); } printk(KERN_CONT ", BIOS "); print_filtered(dmi_get_system_info(DMI_BIOS_VERSION)); printk(KERN_CONT " "); print_filtered(dmi_get_system_info(DMI_BIOS_DATE)); printk(KERN_CONT "\n"); } static int __init dmi_present(const char __iomem *p) { u8 buf[15]; memcpy_fromio(buf, p, 15); if (dmi_checksum(buf, 15)) { dmi_num = (buf[13] << 8) | buf[12]; dmi_len = (buf[7] << 8) | buf[6]; dmi_base = (buf[11] << 24) | (buf[10] << 16) | (buf[9] << 8) | buf[8]; if (dmi_walk_early(dmi_decode) == 0) { if (dmi_ver) pr_info("SMBIOS %d.%d present.\n", dmi_ver >> 8, dmi_ver & 0xFF); else { dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); pr_info("Legacy DMI %d.%d present.\n", dmi_ver >> 8, dmi_ver & 0xFF); } dmi_dump_ids(); return 0; } } dmi_ver = 0; return 1; } static int __init smbios_present(const char __iomem *p) { u8 buf[32]; memcpy_fromio(buf, p, 32); if ((buf[5] < 32) && dmi_checksum(buf, buf[5])) { dmi_ver = (buf[6] << 8) + buf[7]; /* Some BIOS report weird SMBIOS version, fix that up */ switch (dmi_ver) { case 0x021F: case 0x0221: pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", dmi_ver & 0xFF, 3); dmi_ver = 0x0203; break; case 0x0233: pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6); dmi_ver = 0x0206; break; } return memcmp(p + 16, "_DMI_", 5) || dmi_present(p + 16); } return 1; } void __init dmi_scan_machine(void) { char __iomem *p, *q; int rc; if (efi_enabled) { if (efi.smbios == EFI_INVALID_TABLE_ADDR) goto error; /* This is called as a core_initcall() because it isn't * needed during early boot. This also means we can * iounmap the space when we're done with it. */ p = dmi_ioremap(efi.smbios, 32); if (p == NULL) goto error; rc = smbios_present(p); dmi_iounmap(p, 32); if (!rc) { dmi_available = 1; goto out; } } else { /* * no iounmap() for that ioremap(); it would be a no-op, but * it's so early in setup that sucker gets confused into doing * what it shouldn't if we actually call it. */ p = dmi_ioremap(0xF0000, 0x10000); if (p == NULL) goto error; for (q = p; q < p + 0x10000; q += 16) { if (memcmp(q, "_SM_", 4) == 0 && q - p <= 0xFFE0) rc = smbios_present(q); else if (memcmp(q, "_DMI_", 5) == 0) rc = dmi_present(q); else continue; if (!rc) { dmi_available = 1; dmi_iounmap(p, 0x10000); goto out; } } dmi_iounmap(p, 0x10000); } error: printk(KERN_INFO "DMI not present or invalid.\n"); out: dmi_initialized = 1; } /** * dmi_matches - check if dmi_system_id structure matches system DMI data * @dmi: pointer to the dmi_system_id structure to check */ static bool dmi_matches(const struct dmi_system_id *dmi) { int i; WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { int s = dmi->matches[i].slot; if (s == DMI_NONE) break; if (dmi_ident[s] && strstr(dmi_ident[s], dmi->matches[i].substr)) continue; /* No match */ return false; } return true; } /** * dmi_is_end_of_table - check for end-of-table marker * @dmi: pointer to the dmi_system_id structure to check */ static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) { return dmi->matches[0].slot == DMI_NONE; } /** * dmi_check_system - check system DMI data * @list: array of dmi_system_id structures to match against * All non-null elements of the list must match * their slot's (field index's) data (i.e., each * list string must be a substring of the specified * DMI slot's string data) to be considered a * successful match. * * Walk the blacklist table running matching functions until someone * returns non zero or we hit the end. Callback function is called for * each successful match. Returns the number of matches. */ int dmi_check_system(const struct dmi_system_id *list) { int count = 0; const struct dmi_system_id *d; for (d = list; !dmi_is_end_of_table(d); d++) if (dmi_matches(d)) { count++; if (d->callback && d->callback(d)) break; } return count; } EXPORT_SYMBOL(dmi_check_system); /** * dmi_first_match - find dmi_system_id structure matching system DMI data * @list: array of dmi_system_id structures to match against * All non-null elements of the list must match * their slot's (field index's) data (i.e., each * list string must be a substring of the specified * DMI slot's string data) to be considered a * successful match. * * Walk the blacklist table until the first match is found. Return the * pointer to the matching entry or NULL if there's no match. */ const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) { const struct dmi_system_id *d; for (d = list; !dmi_is_end_of_table(d); d++) if (dmi_matches(d)) return d; return NULL; } EXPORT_SYMBOL(dmi_first_match); /** * dmi_get_system_info - return DMI data value * @field: data index (see enum dmi_field) * * Returns one DMI data value, can be used to perform * complex DMI data checks. */ const char *dmi_get_system_info(int field) { return dmi_ident[field]; } EXPORT_SYMBOL(dmi_get_system_info); /** * dmi_name_in_serial - Check if string is in the DMI product serial information * @str: string to check for */ int dmi_name_in_serial(const char *str) { int f = DMI_PRODUCT_SERIAL; if (dmi_ident[f] && strstr(dmi_ident[f], str)) return 1; return 0; } /** * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. * @str: Case sensitive Name */ int dmi_name_in_vendors(const char *str) { static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; int i; for (i = 0; fields[i] != DMI_NONE; i++) { int f = fields[i]; if (dmi_ident[f] && strstr(dmi_ident[f], str)) return 1; } return 0; } EXPORT_SYMBOL(dmi_name_in_vendors); /** * dmi_find_device - find onboard device by type/name * @type: device type or %DMI_DEV_TYPE_ANY to match all device types * @name: device name string or %NULL to match all * @from: previous device found in search, or %NULL for new search. * * Iterates through the list of known onboard devices. If a device is * found with a matching @vendor and @device, a pointer to its device * structure is returned. Otherwise, %NULL is returned. * A new search is initiated by passing %NULL as the @from argument. * If @from is not %NULL, searches continue from next device. */ const struct dmi_device * dmi_find_device(int type, const char *name, const struct dmi_device *from) { const struct list_head *head = from ? &from->list : &dmi_devices; struct list_head *d; for(d = head->next; d != &dmi_devices; d = d->next) { const struct dmi_device *dev = list_entry(d, struct dmi_device, list); if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && ((name == NULL) || (strcmp(dev->name, name) == 0))) return dev; } return NULL; } EXPORT_SYMBOL(dmi_find_device); /** * dmi_get_date - parse a DMI date * @field: data index (see enum dmi_field) * @yearp: optional out parameter for the year * @monthp: optional out parameter for the month * @dayp: optional out parameter for the day * * The date field is assumed to be in the form resembling * [mm[/dd]]/yy[yy] and the result is stored in the out * parameters any or all of which can be omitted. * * If the field doesn't exist, all out parameters are set to zero * and false is returned. Otherwise, true is returned with any * invalid part of date set to zero. * * On return, year, month and day are guaranteed to be in the * range of [0,9999], [0,12] and [0,31] respectively. */ bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) { int year = 0, month = 0, day = 0; bool exists; const char *s, *y; char *e; s = dmi_get_system_info(field); exists = s; if (!exists) goto out; /* * Determine year first. We assume the date string resembles * mm/dd/yy[yy] but the original code extracted only the year * from the end. Keep the behavior in the spirit of no * surprises. */ y = strrchr(s, '/'); if (!y) goto out; y++; year = simple_strtoul(y, &e, 10); if (y != e && year < 100) { /* 2-digit year */ year += 1900; if (year < 1996) /* no dates < spec 1.0 */ year += 100; } if (year > 9999) /* year should fit in %04d */ year = 0; /* parse the mm and dd */ month = simple_strtoul(s, &e, 10); if (s == e || *e != '/' || !month || month > 12) { month = 0; goto out; } s = e + 1; day = simple_strtoul(s, &e, 10); if (s == y || s == e || *e != '/' || day > 31) day = 0; out: if (yearp) *yearp = year; if (monthp) *monthp = month; if (dayp) *dayp = day; return exists; } EXPORT_SYMBOL(dmi_get_date); /** * dmi_walk - Walk the DMI table and get called back for every record * @decode: Callback function * @private_data: Private data to be passed to the callback function * * Returns -1 when the DMI table can't be reached, 0 on success. */ int dmi_walk(void (*decode)(const struct dmi_header *, void *), void *private_data) { u8 *buf; if (!dmi_available) return -1; buf = ioremap(dmi_base, dmi_len); if (buf == NULL) return -1; dmi_table(buf, dmi_len, dmi_num, decode, private_data); iounmap(buf); return 0; } EXPORT_SYMBOL_GPL(dmi_walk); /** * dmi_match - compare a string to the dmi field (if exists) * @f: DMI field identifier * @str: string to compare the DMI field to * * Returns true if the requested field equals to the str (including NULL). */ bool dmi_match(enum dmi_field f, const char *str) { const char *info = dmi_get_system_info(f); if (info == NULL || str == NULL) return info == str; return !strcmp(info, str); } EXPORT_SYMBOL_GPL(dmi_match);