/* * Copyright (C) 2007 Ben Skeggs. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include "drmP.h" #include "drm.h" #include <linux/ktime.h> #include <linux/hrtimer.h> #include "nouveau_drv.h" #include "nouveau_ramht.h" #include "nouveau_dma.h" #define USE_REFCNT(dev) (nouveau_private(dev)->chipset >= 0x10) #define USE_SEMA(dev) (nouveau_private(dev)->chipset >= 0x17) struct nouveau_fence { struct nouveau_channel *channel; struct kref refcount; struct list_head entry; uint32_t sequence; bool signalled; void (*work)(void *priv, bool signalled); void *priv; }; struct nouveau_semaphore { struct kref ref; struct drm_device *dev; struct drm_mm_node *mem; }; static inline struct nouveau_fence * nouveau_fence(void *sync_obj) { return (struct nouveau_fence *)sync_obj; } static void nouveau_fence_del(struct kref *ref) { struct nouveau_fence *fence = container_of(ref, struct nouveau_fence, refcount); nouveau_channel_ref(NULL, &fence->channel); kfree(fence); } void nouveau_fence_update(struct nouveau_channel *chan) { struct drm_device *dev = chan->dev; struct nouveau_fence *tmp, *fence; uint32_t sequence; spin_lock(&chan->fence.lock); /* Fetch the last sequence if the channel is still up and running */ if (likely(!list_empty(&chan->fence.pending))) { if (USE_REFCNT(dev)) sequence = nvchan_rd32(chan, 0x48); else sequence = atomic_read(&chan->fence.last_sequence_irq); if (chan->fence.sequence_ack == sequence) goto out; chan->fence.sequence_ack = sequence; } list_for_each_entry_safe(fence, tmp, &chan->fence.pending, entry) { sequence = fence->sequence; fence->signalled = true; list_del(&fence->entry); if (unlikely(fence->work)) fence->work(fence->priv, true); kref_put(&fence->refcount, nouveau_fence_del); if (sequence == chan->fence.sequence_ack) break; } out: spin_unlock(&chan->fence.lock); } int nouveau_fence_new(struct nouveau_channel *chan, struct nouveau_fence **pfence, bool emit) { struct nouveau_fence *fence; int ret = 0; fence = kzalloc(sizeof(*fence), GFP_KERNEL); if (!fence) return -ENOMEM; kref_init(&fence->refcount); nouveau_channel_ref(chan, &fence->channel); if (emit) ret = nouveau_fence_emit(fence); if (ret) nouveau_fence_unref(&fence); *pfence = fence; return ret; } struct nouveau_channel * nouveau_fence_channel(struct nouveau_fence *fence) { return fence ? nouveau_channel_get_unlocked(fence->channel) : NULL; } int nouveau_fence_emit(struct nouveau_fence *fence) { struct nouveau_channel *chan = fence->channel; struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; int ret; ret = RING_SPACE(chan, 2); if (ret) return ret; if (unlikely(chan->fence.sequence == chan->fence.sequence_ack - 1)) { nouveau_fence_update(chan); BUG_ON(chan->fence.sequence == chan->fence.sequence_ack - 1); } fence->sequence = ++chan->fence.sequence; kref_get(&fence->refcount); spin_lock(&chan->fence.lock); list_add_tail(&fence->entry, &chan->fence.pending); spin_unlock(&chan->fence.lock); if (USE_REFCNT(dev)) { if (dev_priv->card_type < NV_C0) BEGIN_RING(chan, NvSubSw, 0x0050, 1); else BEGIN_NVC0(chan, 2, NvSubM2MF, 0x0050, 1); } else { BEGIN_RING(chan, NvSubSw, 0x0150, 1); } OUT_RING (chan, fence->sequence); FIRE_RING(chan); return 0; } void nouveau_fence_work(struct nouveau_fence *fence, void (*work)(void *priv, bool signalled), void *priv) { BUG_ON(fence->work); spin_lock(&fence->channel->fence.lock); if (fence->signalled) { work(priv, true); } else { fence->work = work; fence->priv = priv; } spin_unlock(&fence->channel->fence.lock); } void __nouveau_fence_unref(void **sync_obj) { struct nouveau_fence *fence = nouveau_fence(*sync_obj); if (fence) kref_put(&fence->refcount, nouveau_fence_del); *sync_obj = NULL; } void * __nouveau_fence_ref(void *sync_obj) { struct nouveau_fence *fence = nouveau_fence(sync_obj); kref_get(&fence->refcount); return sync_obj; } bool __nouveau_fence_signalled(void *sync_obj, void *sync_arg) { struct nouveau_fence *fence = nouveau_fence(sync_obj); struct nouveau_channel *chan = fence->channel; if (fence->signalled) return true; nouveau_fence_update(chan); return fence->signalled; } int __nouveau_fence_wait(void *sync_obj, void *sync_arg, bool lazy, bool intr) { unsigned long timeout = jiffies + (3 * DRM_HZ); unsigned long sleep_time = NSEC_PER_MSEC / 1000; ktime_t t; int ret = 0; while (1) { if (__nouveau_fence_signalled(sync_obj, sync_arg)) break; if (time_after_eq(jiffies, timeout)) { ret = -EBUSY; break; } __set_current_state(intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); if (lazy) { t = ktime_set(0, sleep_time); schedule_hrtimeout(&t, HRTIMER_MODE_REL); sleep_time *= 2; if (sleep_time > NSEC_PER_MSEC) sleep_time = NSEC_PER_MSEC; } if (intr && signal_pending(current)) { ret = -ERESTARTSYS; break; } } __set_current_state(TASK_RUNNING); return ret; } static struct nouveau_semaphore * semaphore_alloc(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_semaphore *sema; int size = (dev_priv->chipset < 0x84) ? 4 : 16; int ret, i; if (!USE_SEMA(dev)) return NULL; sema = kmalloc(sizeof(*sema), GFP_KERNEL); if (!sema) goto fail; ret = drm_mm_pre_get(&dev_priv->fence.heap); if (ret) goto fail; spin_lock(&dev_priv->fence.lock); sema->mem = drm_mm_search_free(&dev_priv->fence.heap, size, 0, 0); if (sema->mem) sema->mem = drm_mm_get_block_atomic(sema->mem, size, 0); spin_unlock(&dev_priv->fence.lock); if (!sema->mem) goto fail; kref_init(&sema->ref); sema->dev = dev; for (i = sema->mem->start; i < sema->mem->start + size; i += 4) nouveau_bo_wr32(dev_priv->fence.bo, i / 4, 0); return sema; fail: kfree(sema); return NULL; } static void semaphore_free(struct kref *ref) { struct nouveau_semaphore *sema = container_of(ref, struct nouveau_semaphore, ref); struct drm_nouveau_private *dev_priv = sema->dev->dev_private; spin_lock(&dev_priv->fence.lock); drm_mm_put_block(sema->mem); spin_unlock(&dev_priv->fence.lock); kfree(sema); } static void semaphore_work(void *priv, bool signalled) { struct nouveau_semaphore *sema = priv; struct drm_nouveau_private *dev_priv = sema->dev->dev_private; if (unlikely(!signalled)) nouveau_bo_wr32(dev_priv->fence.bo, sema->mem->start / 4, 1); kref_put(&sema->ref, semaphore_free); } static int semaphore_acquire(struct nouveau_channel *chan, struct nouveau_semaphore *sema) { struct drm_nouveau_private *dev_priv = chan->dev->dev_private; struct nouveau_fence *fence = NULL; int ret; if (dev_priv->chipset < 0x84) { ret = RING_SPACE(chan, 4); if (ret) return ret; BEGIN_RING(chan, NvSubSw, NV_SW_DMA_SEMAPHORE, 3); OUT_RING (chan, NvSema); OUT_RING (chan, sema->mem->start); OUT_RING (chan, 1); } else if (dev_priv->chipset < 0xc0) { struct nouveau_vma *vma = &dev_priv->fence.bo->vma; u64 offset = vma->offset + sema->mem->start; ret = RING_SPACE(chan, 7); if (ret) return ret; BEGIN_RING(chan, NvSubSw, NV_SW_DMA_SEMAPHORE, 1); OUT_RING (chan, chan->vram_handle); BEGIN_RING(chan, NvSubSw, 0x0010, 4); OUT_RING (chan, upper_32_bits(offset)); OUT_RING (chan, lower_32_bits(offset)); OUT_RING (chan, 1); OUT_RING (chan, 1); /* ACQUIRE_EQ */ } else { struct nouveau_vma *vma = &dev_priv->fence.bo->vma; u64 offset = vma->offset + sema->mem->start; ret = RING_SPACE(chan, 5); if (ret) return ret; BEGIN_NVC0(chan, 2, NvSubM2MF, 0x0010, 4); OUT_RING (chan, upper_32_bits(offset)); OUT_RING (chan, lower_32_bits(offset)); OUT_RING (chan, 1); OUT_RING (chan, 0x1001); /* ACQUIRE_EQ */ } /* Delay semaphore destruction until its work is done */ ret = nouveau_fence_new(chan, &fence, true); if (ret) return ret; kref_get(&sema->ref); nouveau_fence_work(fence, semaphore_work, sema); nouveau_fence_unref(&fence); return 0; } static int semaphore_release(struct nouveau_channel *chan, struct nouveau_semaphore *sema) { struct drm_nouveau_private *dev_priv = chan->dev->dev_private; struct nouveau_fence *fence = NULL; int ret; if (dev_priv->chipset < 0x84) { ret = RING_SPACE(chan, 5); if (ret) return ret; BEGIN_RING(chan, NvSubSw, NV_SW_DMA_SEMAPHORE, 2); OUT_RING (chan, NvSema); OUT_RING (chan, sema->mem->start); BEGIN_RING(chan, NvSubSw, NV_SW_SEMAPHORE_RELEASE, 1); OUT_RING (chan, 1); } else if (dev_priv->chipset < 0xc0) { struct nouveau_vma *vma = &dev_priv->fence.bo->vma; u64 offset = vma->offset + sema->mem->start; ret = RING_SPACE(chan, 7); if (ret) return ret; BEGIN_RING(chan, NvSubSw, NV_SW_DMA_SEMAPHORE, 1); OUT_RING (chan, chan->vram_handle); BEGIN_RING(chan, NvSubSw, 0x0010, 4); OUT_RING (chan, upper_32_bits(offset)); OUT_RING (chan, lower_32_bits(offset)); OUT_RING (chan, 1); OUT_RING (chan, 2); /* RELEASE */ } else { struct nouveau_vma *vma = &dev_priv->fence.bo->vma; u64 offset = vma->offset + sema->mem->start; ret = RING_SPACE(chan, 5); if (ret) return ret; BEGIN_NVC0(chan, 2, NvSubM2MF, 0x0010, 4); OUT_RING (chan, upper_32_bits(offset)); OUT_RING (chan, lower_32_bits(offset)); OUT_RING (chan, 1); OUT_RING (chan, 0x1002); /* RELEASE */ } /* Delay semaphore destruction until its work is done */ ret = nouveau_fence_new(chan, &fence, true); if (ret) return ret; kref_get(&sema->ref); nouveau_fence_work(fence, semaphore_work, sema); nouveau_fence_unref(&fence); return 0; } int nouveau_fence_sync(struct nouveau_fence *fence, struct nouveau_channel *wchan) { struct nouveau_channel *chan = nouveau_fence_channel(fence); struct drm_device *dev = wchan->dev; struct nouveau_semaphore *sema; int ret = 0; if (likely(!chan || chan == wchan || nouveau_fence_signalled(fence))) goto out; sema = semaphore_alloc(dev); if (!sema) { /* Early card or broken userspace, fall back to * software sync. */ ret = nouveau_fence_wait(fence, true, false); goto out; } /* try to take chan's mutex, if we can't take it right away * we have to fallback to software sync to prevent locking * order issues */ if (!mutex_trylock(&chan->mutex)) { ret = nouveau_fence_wait(fence, true, false); goto out_unref; } /* Make wchan wait until it gets signalled */ ret = semaphore_acquire(wchan, sema); if (ret) goto out_unlock; /* Signal the semaphore from chan */ ret = semaphore_release(chan, sema); out_unlock: mutex_unlock(&chan->mutex); out_unref: kref_put(&sema->ref, semaphore_free); out: if (chan) nouveau_channel_put_unlocked(&chan); return ret; } int __nouveau_fence_flush(void *sync_obj, void *sync_arg) { return 0; } int nouveau_fence_channel_init(struct nouveau_channel *chan) { struct drm_device *dev = chan->dev; struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_gpuobj *obj = NULL; int ret; if (dev_priv->card_type < NV_C0) { /* Create an NV_SW object for various sync purposes */ ret = nouveau_gpuobj_gr_new(chan, NvSw, NV_SW); if (ret) return ret; ret = RING_SPACE(chan, 2); if (ret) return ret; BEGIN_RING(chan, NvSubSw, 0, 1); OUT_RING (chan, NvSw); FIRE_RING (chan); } /* Setup area of memory shared between all channels for x-chan sync */ if (USE_SEMA(dev) && dev_priv->chipset < 0x84) { struct ttm_mem_reg *mem = &dev_priv->fence.bo->bo.mem; ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY, mem->start << PAGE_SHIFT, mem->size, NV_MEM_ACCESS_RW, NV_MEM_TARGET_VRAM, &obj); if (ret) return ret; ret = nouveau_ramht_insert(chan, NvSema, obj); nouveau_gpuobj_ref(NULL, &obj); if (ret) return ret; } atomic_set(&chan->fence.last_sequence_irq, 0); return 0; } void nouveau_fence_channel_fini(struct nouveau_channel *chan) { struct nouveau_fence *tmp, *fence; spin_lock(&chan->fence.lock); list_for_each_entry_safe(fence, tmp, &chan->fence.pending, entry) { fence->signalled = true; list_del(&fence->entry); if (unlikely(fence->work)) fence->work(fence->priv, false); kref_put(&fence->refcount, nouveau_fence_del); } spin_unlock(&chan->fence.lock); } int nouveau_fence_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; int size = (dev_priv->chipset < 0x84) ? 4096 : 16384; int ret; /* Create a shared VRAM heap for cross-channel sync. */ if (USE_SEMA(dev)) { ret = nouveau_bo_new(dev, NULL, size, 0, TTM_PL_FLAG_VRAM, 0, 0, &dev_priv->fence.bo); if (ret) return ret; ret = nouveau_bo_pin(dev_priv->fence.bo, TTM_PL_FLAG_VRAM); if (ret) goto fail; ret = nouveau_bo_map(dev_priv->fence.bo); if (ret) goto fail; ret = drm_mm_init(&dev_priv->fence.heap, 0, dev_priv->fence.bo->bo.mem.size); if (ret) goto fail; spin_lock_init(&dev_priv->fence.lock); } return 0; fail: nouveau_bo_unmap(dev_priv->fence.bo); nouveau_bo_ref(NULL, &dev_priv->fence.bo); return ret; } void nouveau_fence_fini(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; if (USE_SEMA(dev)) { drm_mm_takedown(&dev_priv->fence.heap); nouveau_bo_unmap(dev_priv->fence.bo); nouveau_bo_unpin(dev_priv->fence.bo); nouveau_bo_ref(NULL, &dev_priv->fence.bo); } }