/* * * IPACX specific routines * * Author Joerg Petersohn * Derived from hisax_isac.c, isac.c, hscx.c and others * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include "hisax_if.h" #include "hisax.h" #include "isdnl1.h" #include "ipacx.h" #define DBUSY_TIMER_VALUE 80 #define TIMER3_VALUE 7000 #define MAX_DFRAME_LEN_L1 300 #define B_FIFO_SIZE 64 #define D_FIFO_SIZE 32 // ipacx interrupt mask values #define _MASK_IMASK 0x2E // global mask #define _MASKB_IMASK 0x0B #define _MASKD_IMASK 0x03 // all on //---------------------------------------------------------- // local function declarations //---------------------------------------------------------- static void ph_command(struct IsdnCardState *cs, unsigned int command); static inline void cic_int(struct IsdnCardState *cs); static void dch_l2l1(struct PStack *st, int pr, void *arg); static void dbusy_timer_handler(struct IsdnCardState *cs); static void dch_empty_fifo(struct IsdnCardState *cs, int count); static void dch_fill_fifo(struct IsdnCardState *cs); static inline void dch_int(struct IsdnCardState *cs); static void dch_setstack(struct PStack *st, struct IsdnCardState *cs); static void dch_init(struct IsdnCardState *cs); static void bch_l2l1(struct PStack *st, int pr, void *arg); static void bch_empty_fifo(struct BCState *bcs, int count); static void bch_fill_fifo(struct BCState *bcs); static void bch_int(struct IsdnCardState *cs, u_char hscx); static void bch_mode(struct BCState *bcs, int mode, int bc); static void bch_close_state(struct BCState *bcs); static int bch_open_state(struct IsdnCardState *cs, struct BCState *bcs); static int bch_setstack(struct PStack *st, struct BCState *bcs); static void bch_init(struct IsdnCardState *cs, int hscx); static void clear_pending_ints(struct IsdnCardState *cs); //---------------------------------------------------------- // Issue Layer 1 command to chip //---------------------------------------------------------- static void ph_command(struct IsdnCardState *cs, unsigned int command) { if (cs->debug &L1_DEB_ISAC) debugl1(cs, "ph_command (%#x) in (%#x)", command, cs->dc.isac.ph_state); //################################### // printk(KERN_INFO "ph_command (%#x)\n", command); //################################### cs->writeisac(cs, IPACX_CIX0, (command << 4) | 0x0E); } //---------------------------------------------------------- // Transceiver interrupt handler //---------------------------------------------------------- static inline void cic_int(struct IsdnCardState *cs) { u_char event; event = cs->readisac(cs, IPACX_CIR0) >> 4; if (cs->debug &L1_DEB_ISAC) debugl1(cs, "cic_int(event=%#x)", event); //######################################### // printk(KERN_INFO "cic_int(%x)\n", event); //######################################### cs->dc.isac.ph_state = event; schedule_event(cs, D_L1STATECHANGE); } //========================================================== // D channel functions //========================================================== //---------------------------------------------------------- // Command entry point //---------------------------------------------------------- static void dch_l2l1(struct PStack *st, int pr, void *arg) { struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware; struct sk_buff *skb = arg; u_char cda1_cr; switch (pr) { case (PH_DATA |REQUEST): if (cs->debug &DEB_DLOG_HEX) LogFrame(cs, skb->data, skb->len); if (cs->debug &DEB_DLOG_VERBOSE) dlogframe(cs, skb, 0); if (cs->tx_skb) { skb_queue_tail(&cs->sq, skb); #ifdef L2FRAME_DEBUG if (cs->debug &L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA Queued", 0); #endif } else { cs->tx_skb = skb; cs->tx_cnt = 0; #ifdef L2FRAME_DEBUG if (cs->debug &L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA", 0); #endif dch_fill_fifo(cs); } break; case (PH_PULL |INDICATION): if (cs->tx_skb) { if (cs->debug & L1_DEB_WARN) debugl1(cs, " l2l1 tx_skb exist this shouldn't happen"); skb_queue_tail(&cs->sq, skb); break; } if (cs->debug & DEB_DLOG_HEX) LogFrame(cs, skb->data, skb->len); if (cs->debug & DEB_DLOG_VERBOSE) dlogframe(cs, skb, 0); cs->tx_skb = skb; cs->tx_cnt = 0; #ifdef L2FRAME_DEBUG if (cs->debug & L1_DEB_LAPD) Logl2Frame(cs, skb, "PH_DATA_PULLED", 0); #endif dch_fill_fifo(cs); break; case (PH_PULL | REQUEST): #ifdef L2FRAME_DEBUG if (cs->debug & L1_DEB_LAPD) debugl1(cs, "-> PH_REQUEST_PULL"); #endif if (!cs->tx_skb) { clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags); st->l1.l1l2(st, PH_PULL | CONFIRM, NULL); } else set_bit(FLG_L1_PULL_REQ, &st->l1.Flags); break; case (HW_RESET | REQUEST): case (HW_ENABLE | REQUEST): if ((cs->dc.isac.ph_state == IPACX_IND_RES) || (cs->dc.isac.ph_state == IPACX_IND_DR) || (cs->dc.isac.ph_state == IPACX_IND_DC)) ph_command(cs, IPACX_CMD_TIM); else ph_command(cs, IPACX_CMD_RES); break; case (HW_INFO3 | REQUEST): ph_command(cs, IPACX_CMD_AR8); break; case (HW_TESTLOOP | REQUEST): cs->writeisac(cs, IPACX_CDA_TSDP10, 0x80); // Timeslot 0 is B1 cs->writeisac(cs, IPACX_CDA_TSDP11, 0x81); // Timeslot 0 is B1 cda1_cr = cs->readisac(cs, IPACX_CDA1_CR); (void) cs->readisac(cs, IPACX_CDA2_CR); if ((long)arg &1) { // loop B1 cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr |0x0a); } else { // B1 off cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr &~0x0a); } if ((long)arg &2) { // loop B2 cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr |0x14); } else { // B2 off cs->writeisac(cs, IPACX_CDA1_CR, cda1_cr &~0x14); } break; case (HW_DEACTIVATE | RESPONSE): skb_queue_purge(&cs->rq); skb_queue_purge(&cs->sq); if (cs->tx_skb) { dev_kfree_skb_any(cs->tx_skb); cs->tx_skb = NULL; } if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) del_timer(&cs->dbusytimer); break; default: if (cs->debug &L1_DEB_WARN) debugl1(cs, "dch_l2l1 unknown %04x", pr); break; } } //---------------------------------------------------------- //---------------------------------------------------------- static void dbusy_timer_handler(struct IsdnCardState *cs) { struct PStack *st; int rbchd, stard; if (test_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) { rbchd = cs->readisac(cs, IPACX_RBCHD); stard = cs->readisac(cs, IPACX_STARD); if (cs->debug) debugl1(cs, "D-Channel Busy RBCHD %02x STARD %02x", rbchd, stard); if (!(stard &0x40)) { // D-Channel Busy set_bit(FLG_L1_DBUSY, &cs->HW_Flags); for (st = cs->stlist; st; st = st->next) { st->l1.l1l2(st, PH_PAUSE | INDICATION, NULL); // flow control on } } else { // seems we lost an interrupt; reset transceiver */ clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags); if (cs->tx_skb) { dev_kfree_skb_any(cs->tx_skb); cs->tx_cnt = 0; cs->tx_skb = NULL; } else { printk(KERN_WARNING "HiSax: ISAC D-Channel Busy no skb\n"); debugl1(cs, "D-Channel Busy no skb"); } cs->writeisac(cs, IPACX_CMDRD, 0x01); // Tx reset, generates XPR } } } //---------------------------------------------------------- // Fill buffer from receive FIFO //---------------------------------------------------------- static void dch_empty_fifo(struct IsdnCardState *cs, int count) { u_char *ptr; if ((cs->debug &L1_DEB_ISAC) && !(cs->debug &L1_DEB_ISAC_FIFO)) debugl1(cs, "dch_empty_fifo()"); // message too large, remove if ((cs->rcvidx + count) >= MAX_DFRAME_LEN_L1) { if (cs->debug &L1_DEB_WARN) debugl1(cs, "dch_empty_fifo() incoming message too large"); cs->writeisac(cs, IPACX_CMDRD, 0x80); // RMC cs->rcvidx = 0; return; } ptr = cs->rcvbuf + cs->rcvidx; cs->rcvidx += count; cs->readisacfifo(cs, ptr, count); cs->writeisac(cs, IPACX_CMDRD, 0x80); // RMC if (cs->debug &L1_DEB_ISAC_FIFO) { char *t = cs->dlog; t += sprintf(t, "dch_empty_fifo() cnt %d", count); QuickHex(t, ptr, count); debugl1(cs, cs->dlog); } } //---------------------------------------------------------- // Fill transmit FIFO //---------------------------------------------------------- static void dch_fill_fifo(struct IsdnCardState *cs) { int count; u_char cmd, *ptr; if ((cs->debug &L1_DEB_ISAC) && !(cs->debug &L1_DEB_ISAC_FIFO)) debugl1(cs, "dch_fill_fifo()"); if (!cs->tx_skb) return; count = cs->tx_skb->len; if (count <= 0) return; if (count > D_FIFO_SIZE) { count = D_FIFO_SIZE; cmd = 0x08; // XTF } else { cmd = 0x0A; // XTF | XME } ptr = cs->tx_skb->data; skb_pull(cs->tx_skb, count); cs->tx_cnt += count; cs->writeisacfifo(cs, ptr, count); cs->writeisac(cs, IPACX_CMDRD, cmd); // set timeout for transmission contol if (test_and_set_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) { debugl1(cs, "dch_fill_fifo dbusytimer running"); del_timer(&cs->dbusytimer); } init_timer(&cs->dbusytimer); cs->dbusytimer.expires = jiffies + ((DBUSY_TIMER_VALUE * HZ)/1000); add_timer(&cs->dbusytimer); if (cs->debug &L1_DEB_ISAC_FIFO) { char *t = cs->dlog; t += sprintf(t, "dch_fill_fifo() cnt %d", count); QuickHex(t, ptr, count); debugl1(cs, cs->dlog); } } //---------------------------------------------------------- // D channel interrupt handler //---------------------------------------------------------- static inline void dch_int(struct IsdnCardState *cs) { struct sk_buff *skb; u_char istad, rstad; int count; istad = cs->readisac(cs, IPACX_ISTAD); //############################################## // printk(KERN_WARNING "dch_int(istad=%02x)\n", istad); //############################################## if (istad &0x80) { // RME rstad = cs->readisac(cs, IPACX_RSTAD); if ((rstad &0xf0) != 0xa0) { // !(VFR && !RDO && CRC && !RAB) if (!(rstad &0x80)) if (cs->debug &L1_DEB_WARN) debugl1(cs, "dch_int(): invalid frame"); if ((rstad &0x40)) if (cs->debug &L1_DEB_WARN) debugl1(cs, "dch_int(): RDO"); if (!(rstad &0x20)) if (cs->debug &L1_DEB_WARN) debugl1(cs, "dch_int(): CRC error"); cs->writeisac(cs, IPACX_CMDRD, 0x80); // RMC } else { // received frame ok count = cs->readisac(cs, IPACX_RBCLD); if (count) count--; // RSTAB is last byte count &= D_FIFO_SIZE-1; if (count == 0) count = D_FIFO_SIZE; dch_empty_fifo(cs, count); if ((count = cs->rcvidx) > 0) { cs->rcvidx = 0; if (!(skb = dev_alloc_skb(count))) printk(KERN_WARNING "HiSax dch_int(): receive out of memory\n"); else { memcpy(skb_put(skb, count), cs->rcvbuf, count); skb_queue_tail(&cs->rq, skb); } } } cs->rcvidx = 0; schedule_event(cs, D_RCVBUFREADY); } if (istad &0x40) { // RPF dch_empty_fifo(cs, D_FIFO_SIZE); } if (istad &0x20) { // RFO if (cs->debug &L1_DEB_WARN) debugl1(cs, "dch_int(): RFO"); cs->writeisac(cs, IPACX_CMDRD, 0x40); //RRES } if (istad &0x10) { // XPR if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) del_timer(&cs->dbusytimer); if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags)) schedule_event(cs, D_CLEARBUSY); if (cs->tx_skb) { if (cs->tx_skb->len) { dch_fill_fifo(cs); goto afterXPR; } else { dev_kfree_skb_irq(cs->tx_skb); cs->tx_skb = NULL; cs->tx_cnt = 0; } } if ((cs->tx_skb = skb_dequeue(&cs->sq))) { cs->tx_cnt = 0; dch_fill_fifo(cs); } else { schedule_event(cs, D_XMTBUFREADY); } } afterXPR: if (istad &0x0C) { // XDU or XMR if (cs->debug &L1_DEB_WARN) debugl1(cs, "dch_int(): XDU"); if (cs->tx_skb) { skb_push(cs->tx_skb, cs->tx_cnt); // retransmit cs->tx_cnt = 0; dch_fill_fifo(cs); } else { printk(KERN_WARNING "HiSax: ISAC XDU no skb\n"); debugl1(cs, "ISAC XDU no skb"); } } } //---------------------------------------------------------- //---------------------------------------------------------- static void dch_setstack(struct PStack *st, struct IsdnCardState *cs) { st->l1.l1hw = dch_l2l1; } //---------------------------------------------------------- //---------------------------------------------------------- static void dch_init(struct IsdnCardState *cs) { printk(KERN_INFO "HiSax: IPACX ISDN driver v0.1.0\n"); cs->setstack_d = dch_setstack; cs->dbusytimer.function = (void *) dbusy_timer_handler; cs->dbusytimer.data = (long) cs; init_timer(&cs->dbusytimer); cs->writeisac(cs, IPACX_TR_CONF0, 0x00); // clear LDD cs->writeisac(cs, IPACX_TR_CONF2, 0x00); // enable transmitter cs->writeisac(cs, IPACX_MODED, 0xC9); // transparent mode 0, RAC, stop/go cs->writeisac(cs, IPACX_MON_CR, 0x00); // disable monitor channel } //========================================================== // B channel functions //========================================================== //---------------------------------------------------------- // Entry point for commands //---------------------------------------------------------- static void bch_l2l1(struct PStack *st, int pr, void *arg) { struct BCState *bcs = st->l1.bcs; struct sk_buff *skb = arg; u_long flags; switch (pr) { case (PH_DATA | REQUEST): spin_lock_irqsave(&bcs->cs->lock, flags); if (bcs->tx_skb) { skb_queue_tail(&bcs->squeue, skb); } else { bcs->tx_skb = skb; set_bit(BC_FLG_BUSY, &bcs->Flag); bcs->hw.hscx.count = 0; bch_fill_fifo(bcs); } spin_unlock_irqrestore(&bcs->cs->lock, flags); break; case (PH_PULL | INDICATION): spin_lock_irqsave(&bcs->cs->lock, flags); if (bcs->tx_skb) { printk(KERN_WARNING "HiSax bch_l2l1(): this shouldn't happen\n"); } else { set_bit(BC_FLG_BUSY, &bcs->Flag); bcs->tx_skb = skb; bcs->hw.hscx.count = 0; bch_fill_fifo(bcs); } spin_unlock_irqrestore(&bcs->cs->lock, flags); break; case (PH_PULL | REQUEST): if (!bcs->tx_skb) { clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags); st->l1.l1l2(st, PH_PULL | CONFIRM, NULL); } else set_bit(FLG_L1_PULL_REQ, &st->l1.Flags); break; case (PH_ACTIVATE | REQUEST): spin_lock_irqsave(&bcs->cs->lock, flags); set_bit(BC_FLG_ACTIV, &bcs->Flag); bch_mode(bcs, st->l1.mode, st->l1.bc); spin_unlock_irqrestore(&bcs->cs->lock, flags); l1_msg_b(st, pr, arg); break; case (PH_DEACTIVATE | REQUEST): l1_msg_b(st, pr, arg); break; case (PH_DEACTIVATE | CONFIRM): spin_lock_irqsave(&bcs->cs->lock, flags); clear_bit(BC_FLG_ACTIV, &bcs->Flag); clear_bit(BC_FLG_BUSY, &bcs->Flag); bch_mode(bcs, 0, st->l1.bc); spin_unlock_irqrestore(&bcs->cs->lock, flags); st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL); break; } } //---------------------------------------------------------- // Read B channel fifo to receive buffer //---------------------------------------------------------- static void bch_empty_fifo(struct BCState *bcs, int count) { u_char *ptr, hscx; struct IsdnCardState *cs; int cnt; cs = bcs->cs; hscx = bcs->hw.hscx.hscx; if ((cs->debug &L1_DEB_HSCX) && !(cs->debug &L1_DEB_HSCX_FIFO)) debugl1(cs, "bch_empty_fifo()"); // message too large, remove if (bcs->hw.hscx.rcvidx + count > HSCX_BUFMAX) { if (cs->debug &L1_DEB_WARN) debugl1(cs, "bch_empty_fifo() incoming packet too large"); cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x80); // RMC bcs->hw.hscx.rcvidx = 0; return; } ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx; cnt = count; while (cnt--) *ptr++ = cs->BC_Read_Reg(cs, hscx, IPACX_RFIFOB); cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x80); // RMC ptr = bcs->hw.hscx.rcvbuf + bcs->hw.hscx.rcvidx; bcs->hw.hscx.rcvidx += count; if (cs->debug &L1_DEB_HSCX_FIFO) { char *t = bcs->blog; t += sprintf(t, "bch_empty_fifo() B-%d cnt %d", hscx, count); QuickHex(t, ptr, count); debugl1(cs, bcs->blog); } } //---------------------------------------------------------- // Fill buffer to transmit FIFO //---------------------------------------------------------- static void bch_fill_fifo(struct BCState *bcs) { struct IsdnCardState *cs; int more, count, cnt; u_char *ptr, *p, hscx; cs = bcs->cs; if ((cs->debug &L1_DEB_HSCX) && !(cs->debug &L1_DEB_HSCX_FIFO)) debugl1(cs, "bch_fill_fifo()"); if (!bcs->tx_skb) return; if (bcs->tx_skb->len <= 0) return; hscx = bcs->hw.hscx.hscx; more = (bcs->mode == L1_MODE_TRANS) ? 1 : 0; if (bcs->tx_skb->len > B_FIFO_SIZE) { more = 1; count = B_FIFO_SIZE; } else { count = bcs->tx_skb->len; } cnt = count; p = ptr = bcs->tx_skb->data; skb_pull(bcs->tx_skb, count); bcs->tx_cnt -= count; bcs->hw.hscx.count += count; while (cnt--) cs->BC_Write_Reg(cs, hscx, IPACX_XFIFOB, *p++); cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, (more ? 0x08 : 0x0a)); if (cs->debug &L1_DEB_HSCX_FIFO) { char *t = bcs->blog; t += sprintf(t, "chb_fill_fifo() B-%d cnt %d", hscx, count); QuickHex(t, ptr, count); debugl1(cs, bcs->blog); } } //---------------------------------------------------------- // B channel interrupt handler //---------------------------------------------------------- static void bch_int(struct IsdnCardState *cs, u_char hscx) { u_char istab; struct BCState *bcs; struct sk_buff *skb; int count; u_char rstab; bcs = cs->bcs + hscx; istab = cs->BC_Read_Reg(cs, hscx, IPACX_ISTAB); //############################################## // printk(KERN_WARNING "bch_int(istab=%02x)\n", istab); //############################################## if (!test_bit(BC_FLG_INIT, &bcs->Flag)) return; if (istab &0x80) { // RME rstab = cs->BC_Read_Reg(cs, hscx, IPACX_RSTAB); if ((rstab &0xf0) != 0xa0) { // !(VFR && !RDO && CRC && !RAB) if (!(rstab &0x80)) if (cs->debug &L1_DEB_WARN) debugl1(cs, "bch_int() B-%d: invalid frame", hscx); if ((rstab &0x40) && (bcs->mode != L1_MODE_NULL)) if (cs->debug &L1_DEB_WARN) debugl1(cs, "bch_int() B-%d: RDO mode=%d", hscx, bcs->mode); if (!(rstab &0x20)) if (cs->debug &L1_DEB_WARN) debugl1(cs, "bch_int() B-%d: CRC error", hscx); cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x80); // RMC } else { // received frame ok count = cs->BC_Read_Reg(cs, hscx, IPACX_RBCLB) &(B_FIFO_SIZE-1); if (count == 0) count = B_FIFO_SIZE; bch_empty_fifo(bcs, count); if ((count = bcs->hw.hscx.rcvidx - 1) > 0) { if (cs->debug &L1_DEB_HSCX_FIFO) debugl1(cs, "bch_int Frame %d", count); if (!(skb = dev_alloc_skb(count))) printk(KERN_WARNING "HiSax bch_int(): receive frame out of memory\n"); else { memcpy(skb_put(skb, count), bcs->hw.hscx.rcvbuf, count); skb_queue_tail(&bcs->rqueue, skb); } } } bcs->hw.hscx.rcvidx = 0; schedule_event(bcs, B_RCVBUFREADY); } if (istab &0x40) { // RPF bch_empty_fifo(bcs, B_FIFO_SIZE); if (bcs->mode == L1_MODE_TRANS) { // queue every chunk // receive transparent audio data if (!(skb = dev_alloc_skb(B_FIFO_SIZE))) printk(KERN_WARNING "HiSax bch_int(): receive transparent out of memory\n"); else { memcpy(skb_put(skb, B_FIFO_SIZE), bcs->hw.hscx.rcvbuf, B_FIFO_SIZE); skb_queue_tail(&bcs->rqueue, skb); } bcs->hw.hscx.rcvidx = 0; schedule_event(bcs, B_RCVBUFREADY); } } if (istab &0x20) { // RFO if (cs->debug &L1_DEB_WARN) debugl1(cs, "bch_int() B-%d: RFO error", hscx); cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x40); // RRES } if (istab &0x10) { // XPR if (bcs->tx_skb) { if (bcs->tx_skb->len) { bch_fill_fifo(bcs); goto afterXPR; } else { if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) && (PACKET_NOACK != bcs->tx_skb->pkt_type)) { u_long flags; spin_lock_irqsave(&bcs->aclock, flags); bcs->ackcnt += bcs->hw.hscx.count; spin_unlock_irqrestore(&bcs->aclock, flags); schedule_event(bcs, B_ACKPENDING); } } dev_kfree_skb_irq(bcs->tx_skb); bcs->hw.hscx.count = 0; bcs->tx_skb = NULL; } if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) { bcs->hw.hscx.count = 0; set_bit(BC_FLG_BUSY, &bcs->Flag); bch_fill_fifo(bcs); } else { clear_bit(BC_FLG_BUSY, &bcs->Flag); schedule_event(bcs, B_XMTBUFREADY); } } afterXPR: if (istab &0x04) { // XDU if (bcs->mode == L1_MODE_TRANS) { bch_fill_fifo(bcs); } else { if (bcs->tx_skb) { // restart transmitting the whole frame skb_push(bcs->tx_skb, bcs->hw.hscx.count); bcs->tx_cnt += bcs->hw.hscx.count; bcs->hw.hscx.count = 0; } cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x01); // XRES if (cs->debug &L1_DEB_WARN) debugl1(cs, "bch_int() B-%d XDU error", hscx); } } } //---------------------------------------------------------- //---------------------------------------------------------- static void bch_mode(struct BCState *bcs, int mode, int bc) { struct IsdnCardState *cs = bcs->cs; int hscx = bcs->hw.hscx.hscx; bc = bc ? 1 : 0; // in case bc is greater than 1 if (cs->debug & L1_DEB_HSCX) debugl1(cs, "mode_bch() switch B-%d mode %d chan %d", hscx, mode, bc); bcs->mode = mode; bcs->channel = bc; // map controller to according timeslot if (!hscx) { cs->writeisac(cs, IPACX_BCHA_TSDP_BC1, 0x80 | bc); cs->writeisac(cs, IPACX_BCHA_CR, 0x88); } else { cs->writeisac(cs, IPACX_BCHB_TSDP_BC1, 0x80 | bc); cs->writeisac(cs, IPACX_BCHB_CR, 0x88); } switch (mode) { case (L1_MODE_NULL): cs->BC_Write_Reg(cs, hscx, IPACX_MODEB, 0xC0); // rec off cs->BC_Write_Reg(cs, hscx, IPACX_EXMB, 0x30); // std adj. cs->BC_Write_Reg(cs, hscx, IPACX_MASKB, 0xFF); // ints off cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x41); // validate adjustments break; case (L1_MODE_TRANS): cs->BC_Write_Reg(cs, hscx, IPACX_MODEB, 0x88); // ext transp mode cs->BC_Write_Reg(cs, hscx, IPACX_EXMB, 0x00); // xxx00000 cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x41); // validate adjustments cs->BC_Write_Reg(cs, hscx, IPACX_MASKB, _MASKB_IMASK); break; case (L1_MODE_HDLC): cs->BC_Write_Reg(cs, hscx, IPACX_MODEB, 0xC8); // transp mode 0 cs->BC_Write_Reg(cs, hscx, IPACX_EXMB, 0x01); // idle=hdlc flags crc enabled cs->BC_Write_Reg(cs, hscx, IPACX_CMDRB, 0x41); // validate adjustments cs->BC_Write_Reg(cs, hscx, IPACX_MASKB, _MASKB_IMASK); break; } } //---------------------------------------------------------- //---------------------------------------------------------- static void bch_close_state(struct BCState *bcs) { bch_mode(bcs, 0, bcs->channel); if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) { kfree(bcs->hw.hscx.rcvbuf); bcs->hw.hscx.rcvbuf = NULL; kfree(bcs->blog); bcs->blog = NULL; skb_queue_purge(&bcs->rqueue); skb_queue_purge(&bcs->squeue); if (bcs->tx_skb) { dev_kfree_skb_any(bcs->tx_skb); bcs->tx_skb = NULL; clear_bit(BC_FLG_BUSY, &bcs->Flag); } } } //---------------------------------------------------------- //---------------------------------------------------------- static int bch_open_state(struct IsdnCardState *cs, struct BCState *bcs) { if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) { if (!(bcs->hw.hscx.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) { printk(KERN_WARNING "HiSax open_bchstate(): No memory for hscx.rcvbuf\n"); clear_bit(BC_FLG_INIT, &bcs->Flag); return (1); } if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) { printk(KERN_WARNING "HiSax open_bchstate: No memory for bcs->blog\n"); clear_bit(BC_FLG_INIT, &bcs->Flag); kfree(bcs->hw.hscx.rcvbuf); bcs->hw.hscx.rcvbuf = NULL; return (2); } skb_queue_head_init(&bcs->rqueue); skb_queue_head_init(&bcs->squeue); } bcs->tx_skb = NULL; clear_bit(BC_FLG_BUSY, &bcs->Flag); bcs->event = 0; bcs->hw.hscx.rcvidx = 0; bcs->tx_cnt = 0; return (0); } //---------------------------------------------------------- //---------------------------------------------------------- static int bch_setstack(struct PStack *st, struct BCState *bcs) { bcs->channel = st->l1.bc; if (bch_open_state(st->l1.hardware, bcs)) return (-1); st->l1.bcs = bcs; st->l2.l2l1 = bch_l2l1; setstack_manager(st); bcs->st = st; setstack_l1_B(st); return (0); } //---------------------------------------------------------- //---------------------------------------------------------- static void bch_init(struct IsdnCardState *cs, int hscx) { cs->bcs[hscx].BC_SetStack = bch_setstack; cs->bcs[hscx].BC_Close = bch_close_state; cs->bcs[hscx].hw.hscx.hscx = hscx; cs->bcs[hscx].cs = cs; bch_mode(cs->bcs + hscx, 0, hscx); } //========================================================== // Shared functions //========================================================== //---------------------------------------------------------- // Main interrupt handler //---------------------------------------------------------- void interrupt_ipacx(struct IsdnCardState *cs) { u_char ista; while ((ista = cs->readisac(cs, IPACX_ISTA))) { //################################################# // printk(KERN_WARNING "interrupt_ipacx(ista=%02x)\n", ista); //################################################# if (ista &0x80) bch_int(cs, 0); // B channel interrupts if (ista &0x40) bch_int(cs, 1); if (ista &0x01) dch_int(cs); // D channel if (ista &0x10) cic_int(cs); // Layer 1 state } } //---------------------------------------------------------- // Clears chip interrupt status //---------------------------------------------------------- static void clear_pending_ints(struct IsdnCardState *cs) { int ista; // all interrupts off cs->writeisac(cs, IPACX_MASK, 0xff); cs->writeisac(cs, IPACX_MASKD, 0xff); cs->BC_Write_Reg(cs, 0, IPACX_MASKB, 0xff); cs->BC_Write_Reg(cs, 1, IPACX_MASKB, 0xff); ista = cs->readisac(cs, IPACX_ISTA); if (ista &0x80) cs->BC_Read_Reg(cs, 0, IPACX_ISTAB); if (ista &0x40) cs->BC_Read_Reg(cs, 1, IPACX_ISTAB); if (ista &0x10) cs->readisac(cs, IPACX_CIR0); if (ista &0x01) cs->readisac(cs, IPACX_ISTAD); } //---------------------------------------------------------- // Does chip configuration work // Work to do depends on bit mask in part //---------------------------------------------------------- void init_ipacx(struct IsdnCardState *cs, int part) { if (part &1) { // initialise chip //################################################## // printk(KERN_INFO "init_ipacx(%x)\n", part); //################################################## clear_pending_ints(cs); bch_init(cs, 0); bch_init(cs, 1); dch_init(cs); } if (part &2) { // reenable all interrupts and start chip cs->BC_Write_Reg(cs, 0, IPACX_MASKB, _MASKB_IMASK); cs->BC_Write_Reg(cs, 1, IPACX_MASKB, _MASKB_IMASK); cs->writeisac(cs, IPACX_MASKD, _MASKD_IMASK); cs->writeisac(cs, IPACX_MASK, _MASK_IMASK); // global mask register // reset HDLC Transmitters/receivers cs->writeisac(cs, IPACX_CMDRD, 0x41); cs->BC_Write_Reg(cs, 0, IPACX_CMDRB, 0x41); cs->BC_Write_Reg(cs, 1, IPACX_CMDRB, 0x41); ph_command(cs, IPACX_CMD_RES); } } //----------------- end of file -----------------------