/* * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART. * * Author: Abraham vd Merwe <abraham@2d3d.co.za> * * Copyright (c) 2001, 2d3D, Inc. * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * References: * * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet * - Order Number: 290644-005 * - January 2000 * * [2] MTD internal API documentation * - http://www.linux-mtd.infradead.org/ * * Limitations: * * Even though this driver is written for 3 Volt Fast Boot * Block Flash Memory, it is rather specific to LART. With * Minor modifications, notably the without data/address line * mangling and different bus settings, etc. it should be * trivial to adapt to other platforms. * * If somebody would sponsor me a different board, I'll * adapt the driver (: */ /* debugging */ //#define LART_DEBUG /* partition support */ #define HAVE_PARTITIONS #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/mtd/mtd.h> #ifdef HAVE_PARTITIONS #include <linux/mtd/partitions.h> #endif #ifndef CONFIG_SA1100_LART #error This is for LART architecture only #endif static char module_name[] = "lart"; /* * These values is specific to 28Fxxxx3 flash memory. * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet */ #define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH) #define FLASH_NUMBLOCKS_16m_PARAM 8 #define FLASH_NUMBLOCKS_8m_PARAM 8 /* * These values is specific to 28Fxxxx3 flash memory. * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet */ #define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH) #define FLASH_NUMBLOCKS_16m_MAIN 31 #define FLASH_NUMBLOCKS_8m_MAIN 15 /* * These values are specific to LART */ /* general */ #define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */ #define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */ /* blob */ #define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM #define BLOB_START 0x00000000 #define BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM) /* kernel */ #define NUM_KERNEL_BLOCKS 7 #define KERNEL_START (BLOB_START + BLOB_LEN) #define KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN) /* initial ramdisk */ #define NUM_INITRD_BLOCKS 24 #define INITRD_START (KERNEL_START + KERNEL_LEN) #define INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN) /* * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet */ #define READ_ARRAY 0x00FF00FF /* Read Array/Reset */ #define READ_ID_CODES 0x00900090 /* Read Identifier Codes */ #define ERASE_SETUP 0x00200020 /* Block Erase */ #define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */ #define PGM_SETUP 0x00400040 /* Program */ #define STATUS_READ 0x00700070 /* Read Status Register */ #define STATUS_CLEAR 0x00500050 /* Clear Status Register */ #define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */ #define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */ #define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */ /* * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet */ #define FLASH_MANUFACTURER 0x00890089 #define FLASH_DEVICE_8mbit_TOP 0x88f188f1 #define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2 #define FLASH_DEVICE_16mbit_TOP 0x88f388f3 #define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4 /***************************************************************************************************/ /* * The data line mapping on LART is as follows: * * U2 CPU | U3 CPU * ------------------- * 0 20 | 0 12 * 1 22 | 1 14 * 2 19 | 2 11 * 3 17 | 3 9 * 4 24 | 4 0 * 5 26 | 5 2 * 6 31 | 6 7 * 7 29 | 7 5 * 8 21 | 8 13 * 9 23 | 9 15 * 10 18 | 10 10 * 11 16 | 11 8 * 12 25 | 12 1 * 13 27 | 13 3 * 14 30 | 14 6 * 15 28 | 15 4 */ /* Mangle data (x) */ #define DATA_TO_FLASH(x) \ ( \ (((x) & 0x08009000) >> 11) + \ (((x) & 0x00002000) >> 10) + \ (((x) & 0x04004000) >> 8) + \ (((x) & 0x00000010) >> 4) + \ (((x) & 0x91000820) >> 3) + \ (((x) & 0x22080080) >> 2) + \ ((x) & 0x40000400) + \ (((x) & 0x00040040) << 1) + \ (((x) & 0x00110000) << 4) + \ (((x) & 0x00220100) << 5) + \ (((x) & 0x00800208) << 6) + \ (((x) & 0x00400004) << 9) + \ (((x) & 0x00000001) << 12) + \ (((x) & 0x00000002) << 13) \ ) /* Unmangle data (x) */ #define FLASH_TO_DATA(x) \ ( \ (((x) & 0x00010012) << 11) + \ (((x) & 0x00000008) << 10) + \ (((x) & 0x00040040) << 8) + \ (((x) & 0x00000001) << 4) + \ (((x) & 0x12200104) << 3) + \ (((x) & 0x08820020) << 2) + \ ((x) & 0x40000400) + \ (((x) & 0x00080080) >> 1) + \ (((x) & 0x01100000) >> 4) + \ (((x) & 0x04402000) >> 5) + \ (((x) & 0x20008200) >> 6) + \ (((x) & 0x80000800) >> 9) + \ (((x) & 0x00001000) >> 12) + \ (((x) & 0x00004000) >> 13) \ ) /* * The address line mapping on LART is as follows: * * U3 CPU | U2 CPU * ------------------- * 0 2 | 0 2 * 1 3 | 1 3 * 2 9 | 2 9 * 3 13 | 3 8 * 4 8 | 4 7 * 5 12 | 5 6 * 6 11 | 6 5 * 7 10 | 7 4 * 8 4 | 8 10 * 9 5 | 9 11 * 10 6 | 10 12 * 11 7 | 11 13 * * BOOT BLOCK BOUNDARY * * 12 15 | 12 15 * 13 14 | 13 14 * 14 16 | 14 16 * * MAIN BLOCK BOUNDARY * * 15 17 | 15 18 * 16 18 | 16 17 * 17 20 | 17 20 * 18 19 | 18 19 * 19 21 | 19 21 * * As we can see from above, the addresses aren't mangled across * block boundaries, so we don't need to worry about address * translations except for sending/reading commands during * initialization */ /* Mangle address (x) on chip U2 */ #define ADDR_TO_FLASH_U2(x) \ ( \ (((x) & 0x00000f00) >> 4) + \ (((x) & 0x00042000) << 1) + \ (((x) & 0x0009c003) << 2) + \ (((x) & 0x00021080) << 3) + \ (((x) & 0x00000010) << 4) + \ (((x) & 0x00000040) << 5) + \ (((x) & 0x00000024) << 7) + \ (((x) & 0x00000008) << 10) \ ) /* Unmangle address (x) on chip U2 */ #define FLASH_U2_TO_ADDR(x) \ ( \ (((x) << 4) & 0x00000f00) + \ (((x) >> 1) & 0x00042000) + \ (((x) >> 2) & 0x0009c003) + \ (((x) >> 3) & 0x00021080) + \ (((x) >> 4) & 0x00000010) + \ (((x) >> 5) & 0x00000040) + \ (((x) >> 7) & 0x00000024) + \ (((x) >> 10) & 0x00000008) \ ) /* Mangle address (x) on chip U3 */ #define ADDR_TO_FLASH_U3(x) \ ( \ (((x) & 0x00000080) >> 3) + \ (((x) & 0x00000040) >> 1) + \ (((x) & 0x00052020) << 1) + \ (((x) & 0x00084f03) << 2) + \ (((x) & 0x00029010) << 3) + \ (((x) & 0x00000008) << 5) + \ (((x) & 0x00000004) << 7) \ ) /* Unmangle address (x) on chip U3 */ #define FLASH_U3_TO_ADDR(x) \ ( \ (((x) << 3) & 0x00000080) + \ (((x) << 1) & 0x00000040) + \ (((x) >> 1) & 0x00052020) + \ (((x) >> 2) & 0x00084f03) + \ (((x) >> 3) & 0x00029010) + \ (((x) >> 5) & 0x00000008) + \ (((x) >> 7) & 0x00000004) \ ) /***************************************************************************************************/ static __u8 read8 (__u32 offset) { volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset); #ifdef LART_DEBUG printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data); #endif return (*data); } static __u32 read32 (__u32 offset) { volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); #ifdef LART_DEBUG printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data); #endif return (*data); } static void write32 (__u32 x,__u32 offset) { volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); *data = x; #ifdef LART_DEBUG printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data); #endif } /***************************************************************************************************/ /* * Probe for 16mbit flash memory on a LART board without doing * too much damage. Since we need to write 1 dword to memory, * we're f**cked if this happens to be DRAM since we can't * restore the memory (otherwise we might exit Read Array mode). * * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise. */ static int flash_probe (void) { __u32 manufacturer,devtype; /* setup "Read Identifier Codes" mode */ write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000); /* probe U2. U2/U3 returns the same data since the first 3 * address lines is mangled in the same way */ manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000))); devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001))); /* put the flash back into command mode */ write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000); return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM)); } /* * Erase one block of flash memory at offset ``offset'' which is any * address within the block which should be erased. * * Returns 1 if successful, 0 otherwise. */ static inline int erase_block (__u32 offset) { __u32 status; #ifdef LART_DEBUG printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset); #endif /* erase and confirm */ write32 (DATA_TO_FLASH (ERASE_SETUP),offset); write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset); /* wait for block erase to finish */ do { write32 (DATA_TO_FLASH (STATUS_READ),offset); status = FLASH_TO_DATA (read32 (offset)); } while ((~status & STATUS_BUSY) != 0); /* put the flash back into command mode */ write32 (DATA_TO_FLASH (READ_ARRAY),offset); /* was the erase successful? */ if ((status & STATUS_ERASE_ERR)) { printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset); return (0); } return (1); } static int flash_erase (struct mtd_info *mtd,struct erase_info *instr) { __u32 addr,len; int i,first; #ifdef LART_DEBUG printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len); #endif /* sanity checks */ if (instr->addr + instr->len > mtd->size) return (-EINVAL); /* * check that both start and end of the requested erase are * aligned with the erasesize at the appropriate addresses. * * skip all erase regions which are ended before the start of * the requested erase. Actually, to save on the calculations, * we skip to the first erase region which starts after the * start of the requested erase, and then go back one. */ for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ; i--; /* * ok, now i is pointing at the erase region in which this * erase request starts. Check the start of the requested * erase range is aligned with the erase size which is in * effect here. */ if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1))) return -EINVAL; /* Remember the erase region we start on */ first = i; /* * next, check that the end of the requested erase is aligned * with the erase region at that address. * * as before, drop back one to point at the region in which * the address actually falls */ for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ; i--; /* is the end aligned on a block boundary? */ if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1))) return -EINVAL; addr = instr->addr; len = instr->len; i = first; /* now erase those blocks */ while (len) { if (!erase_block (addr)) { instr->state = MTD_ERASE_FAILED; return (-EIO); } addr += mtd->eraseregions[i].erasesize; len -= mtd->eraseregions[i].erasesize; if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++; } instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return (0); } static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf) { #ifdef LART_DEBUG printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len); #endif /* sanity checks */ if (!len) return (0); if (from + len > mtd->size) return (-EINVAL); /* we always read len bytes */ *retlen = len; /* first, we read bytes until we reach a dword boundary */ if (from & (BUSWIDTH - 1)) { int gap = BUSWIDTH - (from & (BUSWIDTH - 1)); while (len && gap--) *buf++ = read8 (from++), len--; } /* now we read dwords until we reach a non-dword boundary */ while (len >= BUSWIDTH) { *((__u32 *) buf) = read32 (from); buf += BUSWIDTH; from += BUSWIDTH; len -= BUSWIDTH; } /* top up the last unaligned bytes */ if (len & (BUSWIDTH - 1)) while (len--) *buf++ = read8 (from++); return (0); } /* * Write one dword ``x'' to flash memory at offset ``offset''. ``offset'' * must be 32 bits, i.e. it must be on a dword boundary. * * Returns 1 if successful, 0 otherwise. */ static inline int write_dword (__u32 offset,__u32 x) { __u32 status; #ifdef LART_DEBUG printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x); #endif /* setup writing */ write32 (DATA_TO_FLASH (PGM_SETUP),offset); /* write the data */ write32 (x,offset); /* wait for the write to finish */ do { write32 (DATA_TO_FLASH (STATUS_READ),offset); status = FLASH_TO_DATA (read32 (offset)); } while ((~status & STATUS_BUSY) != 0); /* put the flash back into command mode */ write32 (DATA_TO_FLASH (READ_ARRAY),offset); /* was the write successful? */ if ((status & STATUS_PGM_ERR) || read32 (offset) != x) { printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset); return (0); } return (1); } static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf) { __u8 tmp[4]; int i,n; #ifdef LART_DEBUG printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len); #endif *retlen = 0; /* sanity checks */ if (!len) return (0); if (to + len > mtd->size) return (-EINVAL); /* first, we write a 0xFF.... padded byte until we reach a dword boundary */ if (to & (BUSWIDTH - 1)) { __u32 aligned = to & ~(BUSWIDTH - 1); int gap = to - aligned; i = n = 0; while (gap--) tmp[i++] = 0xFF; while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--; while (i < BUSWIDTH) tmp[i++] = 0xFF; if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO); to += n; buf += n; *retlen += n; } /* now we write dwords until we reach a non-dword boundary */ while (len >= BUSWIDTH) { if (!write_dword (to,*((__u32 *) buf))) return (-EIO); to += BUSWIDTH; buf += BUSWIDTH; *retlen += BUSWIDTH; len -= BUSWIDTH; } /* top up the last unaligned bytes, padded with 0xFF.... */ if (len & (BUSWIDTH - 1)) { i = n = 0; while (len--) tmp[i++] = buf[n++]; while (i < BUSWIDTH) tmp[i++] = 0xFF; if (!write_dword (to,*((__u32 *) tmp))) return (-EIO); *retlen += n; } return (0); } /***************************************************************************************************/ static struct mtd_info mtd; static struct mtd_erase_region_info erase_regions[] = { /* parameter blocks */ { .offset = 0x00000000, .erasesize = FLASH_BLOCKSIZE_PARAM, .numblocks = FLASH_NUMBLOCKS_16m_PARAM, }, /* main blocks */ { .offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM, .erasesize = FLASH_BLOCKSIZE_MAIN, .numblocks = FLASH_NUMBLOCKS_16m_MAIN, } }; #ifdef HAVE_PARTITIONS static struct mtd_partition lart_partitions[] = { /* blob */ { .name = "blob", .offset = BLOB_START, .size = BLOB_LEN, }, /* kernel */ { .name = "kernel", .offset = KERNEL_START, /* MTDPART_OFS_APPEND */ .size = KERNEL_LEN, }, /* initial ramdisk / file system */ { .name = "file system", .offset = INITRD_START, /* MTDPART_OFS_APPEND */ .size = INITRD_LEN, /* MTDPART_SIZ_FULL */ } }; #endif static int __init lart_flash_init (void) { int result; memset (&mtd,0,sizeof (mtd)); printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n"); printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name); if (!flash_probe ()) { printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name); return (-ENXIO); } printk ("%s: This looks like a LART board to me.\n",module_name); mtd.name = module_name; mtd.type = MTD_NORFLASH; mtd.writesize = 1; mtd.writebufsize = 4; mtd.flags = MTD_CAP_NORFLASH; mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN; mtd.erasesize = FLASH_BLOCKSIZE_MAIN; mtd.numeraseregions = ARRAY_SIZE(erase_regions); mtd.eraseregions = erase_regions; mtd.erase = flash_erase; mtd.read = flash_read; mtd.write = flash_write; mtd.owner = THIS_MODULE; #ifdef LART_DEBUG printk (KERN_DEBUG "mtd.name = %s\n" "mtd.size = 0x%.8x (%uM)\n" "mtd.erasesize = 0x%.8x (%uK)\n" "mtd.numeraseregions = %d\n", mtd.name, mtd.size,mtd.size / (1024*1024), mtd.erasesize,mtd.erasesize / 1024, mtd.numeraseregions); if (mtd.numeraseregions) for (result = 0; result < mtd.numeraseregions; result++) printk (KERN_DEBUG "\n\n" "mtd.eraseregions[%d].offset = 0x%.8x\n" "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n" "mtd.eraseregions[%d].numblocks = %d\n", result,mtd.eraseregions[result].offset, result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024, result,mtd.eraseregions[result].numblocks); #ifdef HAVE_PARTITIONS printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions)); for (result = 0; result < ARRAY_SIZE(lart_partitions); result++) printk (KERN_DEBUG "\n\n" "lart_partitions[%d].name = %s\n" "lart_partitions[%d].offset = 0x%.8x\n" "lart_partitions[%d].size = 0x%.8x (%uK)\n", result,lart_partitions[result].name, result,lart_partitions[result].offset, result,lart_partitions[result].size,lart_partitions[result].size / 1024); #endif #endif #ifndef HAVE_PARTITIONS result = mtd_device_register(&mtd, NULL, 0); #else result = mtd_device_register(&mtd, lart_partitions, ARRAY_SIZE(lart_partitions)); #endif return (result); } static void __exit lart_flash_exit (void) { #ifndef HAVE_PARTITIONS mtd_device_unregister(&mtd); #else mtd_device_unregister(&mtd); #endif } module_init (lart_flash_init); module_exit (lart_flash_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>"); MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");