/* * NAND flash simulator. * * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> * * Copyright (C) 2004 Nokia Corporation * * Note: NS means "NAND Simulator". * Note: Input means input TO flash chip, output means output FROM chip. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any later * version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General * Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA */ #include <linux/init.h> #include <linux/types.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/vmalloc.h> #include <linux/math64.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_bch.h> #include <linux/mtd/partitions.h> #include <linux/delay.h> #include <linux/list.h> #include <linux/random.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/pagemap.h> /* Default simulator parameters values */ #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ #endif #ifndef CONFIG_NANDSIM_ACCESS_DELAY #define CONFIG_NANDSIM_ACCESS_DELAY 25 #endif #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 #endif #ifndef CONFIG_NANDSIM_ERASE_DELAY #define CONFIG_NANDSIM_ERASE_DELAY 2 #endif #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 #endif #ifndef CONFIG_NANDSIM_INPUT_CYCLE #define CONFIG_NANDSIM_INPUT_CYCLE 50 #endif #ifndef CONFIG_NANDSIM_BUS_WIDTH #define CONFIG_NANDSIM_BUS_WIDTH 8 #endif #ifndef CONFIG_NANDSIM_DO_DELAYS #define CONFIG_NANDSIM_DO_DELAYS 0 #endif #ifndef CONFIG_NANDSIM_LOG #define CONFIG_NANDSIM_LOG 0 #endif #ifndef CONFIG_NANDSIM_DBG #define CONFIG_NANDSIM_DBG 0 #endif #ifndef CONFIG_NANDSIM_MAX_PARTS #define CONFIG_NANDSIM_MAX_PARTS 32 #endif static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE; static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE; static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE; static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE; static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; static uint log = CONFIG_NANDSIM_LOG; static uint dbg = CONFIG_NANDSIM_DBG; static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; static unsigned int parts_num; static char *badblocks = NULL; static char *weakblocks = NULL; static char *weakpages = NULL; static unsigned int bitflips = 0; static char *gravepages = NULL; static unsigned int rptwear = 0; static unsigned int overridesize = 0; static char *cache_file = NULL; static unsigned int bbt; static unsigned int bch; module_param(first_id_byte, uint, 0400); module_param(second_id_byte, uint, 0400); module_param(third_id_byte, uint, 0400); module_param(fourth_id_byte, uint, 0400); module_param(access_delay, uint, 0400); module_param(programm_delay, uint, 0400); module_param(erase_delay, uint, 0400); module_param(output_cycle, uint, 0400); module_param(input_cycle, uint, 0400); module_param(bus_width, uint, 0400); module_param(do_delays, uint, 0400); module_param(log, uint, 0400); module_param(dbg, uint, 0400); module_param_array(parts, ulong, &parts_num, 0400); module_param(badblocks, charp, 0400); module_param(weakblocks, charp, 0400); module_param(weakpages, charp, 0400); module_param(bitflips, uint, 0400); module_param(gravepages, charp, 0400); module_param(rptwear, uint, 0400); module_param(overridesize, uint, 0400); module_param(cache_file, charp, 0400); module_param(bbt, uint, 0400); module_param(bch, uint, 0400); MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)"); MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)"); MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command"); MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command"); MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); MODULE_PARM_DESC(log, "Perform logging if not zero"); MODULE_PARM_DESC(dbg, "Output debug information if not zero"); MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); /* Page and erase block positions for the following parameters are independent of any partitions */ MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" " separated by commas e.g. 113:2 means eb 113" " can be erased only twice before failing"); MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" " separated by commas e.g. 1401:2 means page 1401" " can be written only twice before failing"); MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" " separated by commas e.g. 1401:2 means page 1401" " can be read only twice before failing"); MODULE_PARM_DESC(rptwear, "Number of erases between reporting wear, if not zero"); MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " "The size is specified in erase blocks and as the exponent of a power of two" " e.g. 5 means a size of 32 erase blocks"); MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " "be correctable in 512-byte blocks"); /* The largest possible page size */ #define NS_LARGEST_PAGE_SIZE 4096 /* The prefix for simulator output */ #define NS_OUTPUT_PREFIX "[nandsim]" /* Simulator's output macros (logging, debugging, warning, error) */ #define NS_LOG(args...) \ do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0) #define NS_DBG(args...) \ do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0) #define NS_WARN(args...) \ do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0) #define NS_ERR(args...) \ do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0) #define NS_INFO(args...) \ do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0) /* Busy-wait delay macros (microseconds, milliseconds) */ #define NS_UDELAY(us) \ do { if (do_delays) udelay(us); } while(0) #define NS_MDELAY(us) \ do { if (do_delays) mdelay(us); } while(0) /* Is the nandsim structure initialized ? */ #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) /* Good operation completion status */ #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) /* Operation failed completion status */ #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) /* Calculate the page offset in flash RAM image by (row, column) address */ #define NS_RAW_OFFSET(ns) \ (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column) /* Calculate the OOB offset in flash RAM image by (row, column) address */ #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) /* After a command is input, the simulator goes to one of the following states */ #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ #define STATE_CMD_STATUS 0x00000007 /* read status */ #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */ #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ #define STATE_CMD_READID 0x0000000A /* read ID */ #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ #define STATE_CMD_RESET 0x0000000C /* reset */ #define STATE_CMD_RNDOUT 0x0000000D /* random output command */ #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ #define STATE_CMD_MASK 0x0000000F /* command states mask */ /* After an address is input, the simulator goes to one of these states */ #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ #define STATE_ADDR_MASK 0x00000070 /* address states mask */ /* During data input/output the simulator is in these states */ #define STATE_DATAIN 0x00000100 /* waiting for data input */ #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */ #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ /* Previous operation is done, ready to accept new requests */ #define STATE_READY 0x00000000 /* This state is used to mark that the next state isn't known yet */ #define STATE_UNKNOWN 0x10000000 /* Simulator's actions bit masks */ #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ #define ACTION_SECERASE 0x00300000 /* erase sector */ #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ #define ACTION_MASK 0x00700000 /* action mask */ #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ #define NS_OPER_STATES 6 /* Maximum number of states in operation */ #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ #define OPT_PAGE256 0x00000001 /* 256-byte page chips */ #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */ #define OPT_AUTOINCR 0x00000020 /* page number auto incrementation is possible */ #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */ /* Remove action bits from state */ #define NS_STATE(x) ((x) & ~ACTION_MASK) /* * Maximum previous states which need to be saved. Currently saving is * only needed for page program operation with preceded read command * (which is only valid for 512-byte pages). */ #define NS_MAX_PREVSTATES 1 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ #define NS_MAX_HELD_PAGES 16 /* * A union to represent flash memory contents and flash buffer. */ union ns_mem { u_char *byte; /* for byte access */ uint16_t *word; /* for 16-bit word access */ }; /* * The structure which describes all the internal simulator data. */ struct nandsim { struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; unsigned int nbparts; uint busw; /* flash chip bus width (8 or 16) */ u_char ids[4]; /* chip's ID bytes */ uint32_t options; /* chip's characteristic bits */ uint32_t state; /* current chip state */ uint32_t nxstate; /* next expected state */ uint32_t *op; /* current operation, NULL operations isn't known yet */ uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ uint16_t npstates; /* number of previous states saved */ uint16_t stateidx; /* current state index */ /* The simulated NAND flash pages array */ union ns_mem *pages; /* Slab allocator for nand pages */ struct kmem_cache *nand_pages_slab; /* Internal buffer of page + OOB size bytes */ union ns_mem buf; /* NAND flash "geometry" */ struct { uint64_t totsz; /* total flash size, bytes */ uint32_t secsz; /* flash sector (erase block) size, bytes */ uint pgsz; /* NAND flash page size, bytes */ uint oobsz; /* page OOB area size, bytes */ uint64_t totszoob; /* total flash size including OOB, bytes */ uint pgszoob; /* page size including OOB , bytes*/ uint secszoob; /* sector size including OOB, bytes */ uint pgnum; /* total number of pages */ uint pgsec; /* number of pages per sector */ uint secshift; /* bits number in sector size */ uint pgshift; /* bits number in page size */ uint oobshift; /* bits number in OOB size */ uint pgaddrbytes; /* bytes per page address */ uint secaddrbytes; /* bytes per sector address */ uint idbytes; /* the number ID bytes that this chip outputs */ } geom; /* NAND flash internal registers */ struct { unsigned command; /* the command register */ u_char status; /* the status register */ uint row; /* the page number */ uint column; /* the offset within page */ uint count; /* internal counter */ uint num; /* number of bytes which must be processed */ uint off; /* fixed page offset */ } regs; /* NAND flash lines state */ struct { int ce; /* chip Enable */ int cle; /* command Latch Enable */ int ale; /* address Latch Enable */ int wp; /* write Protect */ } lines; /* Fields needed when using a cache file */ struct file *cfile; /* Open file */ unsigned char *pages_written; /* Which pages have been written */ void *file_buf; struct page *held_pages[NS_MAX_HELD_PAGES]; int held_cnt; }; /* * Operations array. To perform any operation the simulator must pass * through the correspondent states chain. */ static struct nandsim_operations { uint32_t reqopts; /* options which are required to perform the operation */ uint32_t states[NS_OPER_STATES]; /* operation's states */ } ops[NS_OPER_NUM] = { /* Read page + OOB from the beginning */ {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, STATE_DATAOUT, STATE_READY}}, /* Read page + OOB from the second half */ {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, STATE_DATAOUT, STATE_READY}}, /* Read OOB */ {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, STATE_DATAOUT, STATE_READY}}, /* Program page starting from the beginning */ {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, /* Program page starting from the beginning */ {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, /* Program page starting from the second half */ {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, /* Program OOB */ {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, /* Erase sector */ {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, /* Read status */ {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, /* Read multi-plane status */ {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}}, /* Read ID */ {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, /* Large page devices read page */ {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, STATE_DATAOUT, STATE_READY}}, /* Large page devices random page read */ {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, STATE_DATAOUT, STATE_READY}}, }; struct weak_block { struct list_head list; unsigned int erase_block_no; unsigned int max_erases; unsigned int erases_done; }; static LIST_HEAD(weak_blocks); struct weak_page { struct list_head list; unsigned int page_no; unsigned int max_writes; unsigned int writes_done; }; static LIST_HEAD(weak_pages); struct grave_page { struct list_head list; unsigned int page_no; unsigned int max_reads; unsigned int reads_done; }; static LIST_HEAD(grave_pages); static unsigned long *erase_block_wear = NULL; static unsigned int wear_eb_count = 0; static unsigned long total_wear = 0; static unsigned int rptwear_cnt = 0; /* MTD structure for NAND controller */ static struct mtd_info *nsmtd; static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE]; /* * Allocate array of page pointers, create slab allocation for an array * and initialize the array by NULL pointers. * * RETURNS: 0 if success, -ENOMEM if memory alloc fails. */ static int alloc_device(struct nandsim *ns) { struct file *cfile; int i, err; if (cache_file) { cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); if (IS_ERR(cfile)) return PTR_ERR(cfile); if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) { NS_ERR("alloc_device: cache file not readable\n"); err = -EINVAL; goto err_close; } if (!cfile->f_op->write && !cfile->f_op->aio_write) { NS_ERR("alloc_device: cache file not writeable\n"); err = -EINVAL; goto err_close; } ns->pages_written = vzalloc(ns->geom.pgnum); if (!ns->pages_written) { NS_ERR("alloc_device: unable to allocate pages written array\n"); err = -ENOMEM; goto err_close; } ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); if (!ns->file_buf) { NS_ERR("alloc_device: unable to allocate file buf\n"); err = -ENOMEM; goto err_free; } ns->cfile = cfile; return 0; } ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem)); if (!ns->pages) { NS_ERR("alloc_device: unable to allocate page array\n"); return -ENOMEM; } for (i = 0; i < ns->geom.pgnum; i++) { ns->pages[i].byte = NULL; } ns->nand_pages_slab = kmem_cache_create("nandsim", ns->geom.pgszoob, 0, 0, NULL); if (!ns->nand_pages_slab) { NS_ERR("cache_create: unable to create kmem_cache\n"); return -ENOMEM; } return 0; err_free: vfree(ns->pages_written); err_close: filp_close(cfile, NULL); return err; } /* * Free any allocated pages, and free the array of page pointers. */ static void free_device(struct nandsim *ns) { int i; if (ns->cfile) { kfree(ns->file_buf); vfree(ns->pages_written); filp_close(ns->cfile, NULL); return; } if (ns->pages) { for (i = 0; i < ns->geom.pgnum; i++) { if (ns->pages[i].byte) kmem_cache_free(ns->nand_pages_slab, ns->pages[i].byte); } kmem_cache_destroy(ns->nand_pages_slab); vfree(ns->pages); } } static char *get_partition_name(int i) { char buf[64]; sprintf(buf, "NAND simulator partition %d", i); return kstrdup(buf, GFP_KERNEL); } /* * Initialize the nandsim structure. * * RETURNS: 0 if success, -ERRNO if failure. */ static int init_nandsim(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct nandsim *ns = chip->priv; int i, ret = 0; uint64_t remains; uint64_t next_offset; if (NS_IS_INITIALIZED(ns)) { NS_ERR("init_nandsim: nandsim is already initialized\n"); return -EIO; } /* Force mtd to not do delays */ chip->chip_delay = 0; /* Initialize the NAND flash parameters */ ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; ns->geom.totsz = mtd->size; ns->geom.pgsz = mtd->writesize; ns->geom.oobsz = mtd->oobsize; ns->geom.secsz = mtd->erasesize; ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; ns->geom.secshift = ffs(ns->geom.secsz) - 1; ns->geom.pgshift = chip->page_shift; ns->geom.oobshift = ffs(ns->geom.oobsz) - 1; ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; ns->options = 0; if (ns->geom.pgsz == 256) { ns->options |= OPT_PAGE256; } else if (ns->geom.pgsz == 512) { ns->options |= (OPT_PAGE512 | OPT_AUTOINCR); if (ns->busw == 8) ns->options |= OPT_PAGE512_8BIT; } else if (ns->geom.pgsz == 2048) { ns->options |= OPT_PAGE2048; } else if (ns->geom.pgsz == 4096) { ns->options |= OPT_PAGE4096; } else { NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); return -EIO; } if (ns->options & OPT_SMALLPAGE) { if (ns->geom.totsz <= (32 << 20)) { ns->geom.pgaddrbytes = 3; ns->geom.secaddrbytes = 2; } else { ns->geom.pgaddrbytes = 4; ns->geom.secaddrbytes = 3; } } else { if (ns->geom.totsz <= (128 << 20)) { ns->geom.pgaddrbytes = 4; ns->geom.secaddrbytes = 2; } else { ns->geom.pgaddrbytes = 5; ns->geom.secaddrbytes = 3; } } /* Fill the partition_info structure */ if (parts_num > ARRAY_SIZE(ns->partitions)) { NS_ERR("too many partitions.\n"); ret = -EINVAL; goto error; } remains = ns->geom.totsz; next_offset = 0; for (i = 0; i < parts_num; ++i) { uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; if (!part_sz || part_sz > remains) { NS_ERR("bad partition size.\n"); ret = -EINVAL; goto error; } ns->partitions[i].name = get_partition_name(i); ns->partitions[i].offset = next_offset; ns->partitions[i].size = part_sz; next_offset += ns->partitions[i].size; remains -= ns->partitions[i].size; } ns->nbparts = parts_num; if (remains) { if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { NS_ERR("too many partitions.\n"); ret = -EINVAL; goto error; } ns->partitions[i].name = get_partition_name(i); ns->partitions[i].offset = next_offset; ns->partitions[i].size = remains; ns->nbparts += 1; } /* Detect how many ID bytes the NAND chip outputs */ for (i = 0; nand_flash_ids[i].name != NULL; i++) { if (second_id_byte != nand_flash_ids[i].id) continue; if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR)) ns->options |= OPT_AUTOINCR; } if (ns->busw == 16) NS_WARN("16-bit flashes support wasn't tested\n"); printk("flash size: %llu MiB\n", (unsigned long long)ns->geom.totsz >> 20); printk("page size: %u bytes\n", ns->geom.pgsz); printk("OOB area size: %u bytes\n", ns->geom.oobsz); printk("sector size: %u KiB\n", ns->geom.secsz >> 10); printk("pages number: %u\n", ns->geom.pgnum); printk("pages per sector: %u\n", ns->geom.pgsec); printk("bus width: %u\n", ns->busw); printk("bits in sector size: %u\n", ns->geom.secshift); printk("bits in page size: %u\n", ns->geom.pgshift); printk("bits in OOB size: %u\n", ns->geom.oobshift); printk("flash size with OOB: %llu KiB\n", (unsigned long long)ns->geom.totszoob >> 10); printk("page address bytes: %u\n", ns->geom.pgaddrbytes); printk("sector address bytes: %u\n", ns->geom.secaddrbytes); printk("options: %#x\n", ns->options); if ((ret = alloc_device(ns)) != 0) goto error; /* Allocate / initialize the internal buffer */ ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); if (!ns->buf.byte) { NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", ns->geom.pgszoob); ret = -ENOMEM; goto error; } memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); return 0; error: free_device(ns); return ret; } /* * Free the nandsim structure. */ static void free_nandsim(struct nandsim *ns) { kfree(ns->buf.byte); free_device(ns); return; } static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) { char *w; int zero_ok; unsigned int erase_block_no; loff_t offset; if (!badblocks) return 0; w = badblocks; do { zero_ok = (*w == '0' ? 1 : 0); erase_block_no = simple_strtoul(w, &w, 0); if (!zero_ok && !erase_block_no) { NS_ERR("invalid badblocks.\n"); return -EINVAL; } offset = erase_block_no * ns->geom.secsz; if (mtd->block_markbad(mtd, offset)) { NS_ERR("invalid badblocks.\n"); return -EINVAL; } if (*w == ',') w += 1; } while (*w); return 0; } static int parse_weakblocks(void) { char *w; int zero_ok; unsigned int erase_block_no; unsigned int max_erases; struct weak_block *wb; if (!weakblocks) return 0; w = weakblocks; do { zero_ok = (*w == '0' ? 1 : 0); erase_block_no = simple_strtoul(w, &w, 0); if (!zero_ok && !erase_block_no) { NS_ERR("invalid weakblocks.\n"); return -EINVAL; } max_erases = 3; if (*w == ':') { w += 1; max_erases = simple_strtoul(w, &w, 0); } if (*w == ',') w += 1; wb = kzalloc(sizeof(*wb), GFP_KERNEL); if (!wb) { NS_ERR("unable to allocate memory.\n"); return -ENOMEM; } wb->erase_block_no = erase_block_no; wb->max_erases = max_erases; list_add(&wb->list, &weak_blocks); } while (*w); return 0; } static int erase_error(unsigned int erase_block_no) { struct weak_block *wb; list_for_each_entry(wb, &weak_blocks, list) if (wb->erase_block_no == erase_block_no) { if (wb->erases_done >= wb->max_erases) return 1; wb->erases_done += 1; return 0; } return 0; } static int parse_weakpages(void) { char *w; int zero_ok; unsigned int page_no; unsigned int max_writes; struct weak_page *wp; if (!weakpages) return 0; w = weakpages; do { zero_ok = (*w == '0' ? 1 : 0); page_no = simple_strtoul(w, &w, 0); if (!zero_ok && !page_no) { NS_ERR("invalid weakpagess.\n"); return -EINVAL; } max_writes = 3; if (*w == ':') { w += 1; max_writes = simple_strtoul(w, &w, 0); } if (*w == ',') w += 1; wp = kzalloc(sizeof(*wp), GFP_KERNEL); if (!wp) { NS_ERR("unable to allocate memory.\n"); return -ENOMEM; } wp->page_no = page_no; wp->max_writes = max_writes; list_add(&wp->list, &weak_pages); } while (*w); return 0; } static int write_error(unsigned int page_no) { struct weak_page *wp; list_for_each_entry(wp, &weak_pages, list) if (wp->page_no == page_no) { if (wp->writes_done >= wp->max_writes) return 1; wp->writes_done += 1; return 0; } return 0; } static int parse_gravepages(void) { char *g; int zero_ok; unsigned int page_no; unsigned int max_reads; struct grave_page *gp; if (!gravepages) return 0; g = gravepages; do { zero_ok = (*g == '0' ? 1 : 0); page_no = simple_strtoul(g, &g, 0); if (!zero_ok && !page_no) { NS_ERR("invalid gravepagess.\n"); return -EINVAL; } max_reads = 3; if (*g == ':') { g += 1; max_reads = simple_strtoul(g, &g, 0); } if (*g == ',') g += 1; gp = kzalloc(sizeof(*gp), GFP_KERNEL); if (!gp) { NS_ERR("unable to allocate memory.\n"); return -ENOMEM; } gp->page_no = page_no; gp->max_reads = max_reads; list_add(&gp->list, &grave_pages); } while (*g); return 0; } static int read_error(unsigned int page_no) { struct grave_page *gp; list_for_each_entry(gp, &grave_pages, list) if (gp->page_no == page_no) { if (gp->reads_done >= gp->max_reads) return 1; gp->reads_done += 1; return 0; } return 0; } static void free_lists(void) { struct list_head *pos, *n; list_for_each_safe(pos, n, &weak_blocks) { list_del(pos); kfree(list_entry(pos, struct weak_block, list)); } list_for_each_safe(pos, n, &weak_pages) { list_del(pos); kfree(list_entry(pos, struct weak_page, list)); } list_for_each_safe(pos, n, &grave_pages) { list_del(pos); kfree(list_entry(pos, struct grave_page, list)); } kfree(erase_block_wear); } static int setup_wear_reporting(struct mtd_info *mtd) { size_t mem; if (!rptwear) return 0; wear_eb_count = div_u64(mtd->size, mtd->erasesize); mem = wear_eb_count * sizeof(unsigned long); if (mem / sizeof(unsigned long) != wear_eb_count) { NS_ERR("Too many erase blocks for wear reporting\n"); return -ENOMEM; } erase_block_wear = kzalloc(mem, GFP_KERNEL); if (!erase_block_wear) { NS_ERR("Too many erase blocks for wear reporting\n"); return -ENOMEM; } return 0; } static void update_wear(unsigned int erase_block_no) { unsigned long wmin = -1, wmax = 0, avg; unsigned long deciles[10], decile_max[10], tot = 0; unsigned int i; if (!erase_block_wear) return; total_wear += 1; if (total_wear == 0) NS_ERR("Erase counter total overflow\n"); erase_block_wear[erase_block_no] += 1; if (erase_block_wear[erase_block_no] == 0) NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); rptwear_cnt += 1; if (rptwear_cnt < rptwear) return; rptwear_cnt = 0; /* Calc wear stats */ for (i = 0; i < wear_eb_count; ++i) { unsigned long wear = erase_block_wear[i]; if (wear < wmin) wmin = wear; if (wear > wmax) wmax = wear; tot += wear; } for (i = 0; i < 9; ++i) { deciles[i] = 0; decile_max[i] = (wmax * (i + 1) + 5) / 10; } deciles[9] = 0; decile_max[9] = wmax; for (i = 0; i < wear_eb_count; ++i) { int d; unsigned long wear = erase_block_wear[i]; for (d = 0; d < 10; ++d) if (wear <= decile_max[d]) { deciles[d] += 1; break; } } avg = tot / wear_eb_count; /* Output wear report */ NS_INFO("*** Wear Report ***\n"); NS_INFO("Total numbers of erases: %lu\n", tot); NS_INFO("Number of erase blocks: %u\n", wear_eb_count); NS_INFO("Average number of erases: %lu\n", avg); NS_INFO("Maximum number of erases: %lu\n", wmax); NS_INFO("Minimum number of erases: %lu\n", wmin); for (i = 0; i < 10; ++i) { unsigned long from = (i ? decile_max[i - 1] + 1 : 0); if (from > decile_max[i]) continue; NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n", from, decile_max[i], deciles[i]); } NS_INFO("*** End of Wear Report ***\n"); } /* * Returns the string representation of 'state' state. */ static char *get_state_name(uint32_t state) { switch (NS_STATE(state)) { case STATE_CMD_READ0: return "STATE_CMD_READ0"; case STATE_CMD_READ1: return "STATE_CMD_READ1"; case STATE_CMD_PAGEPROG: return "STATE_CMD_PAGEPROG"; case STATE_CMD_READOOB: return "STATE_CMD_READOOB"; case STATE_CMD_READSTART: return "STATE_CMD_READSTART"; case STATE_CMD_ERASE1: return "STATE_CMD_ERASE1"; case STATE_CMD_STATUS: return "STATE_CMD_STATUS"; case STATE_CMD_STATUS_M: return "STATE_CMD_STATUS_M"; case STATE_CMD_SEQIN: return "STATE_CMD_SEQIN"; case STATE_CMD_READID: return "STATE_CMD_READID"; case STATE_CMD_ERASE2: return "STATE_CMD_ERASE2"; case STATE_CMD_RESET: return "STATE_CMD_RESET"; case STATE_CMD_RNDOUT: return "STATE_CMD_RNDOUT"; case STATE_CMD_RNDOUTSTART: return "STATE_CMD_RNDOUTSTART"; case STATE_ADDR_PAGE: return "STATE_ADDR_PAGE"; case STATE_ADDR_SEC: return "STATE_ADDR_SEC"; case STATE_ADDR_ZERO: return "STATE_ADDR_ZERO"; case STATE_ADDR_COLUMN: return "STATE_ADDR_COLUMN"; case STATE_DATAIN: return "STATE_DATAIN"; case STATE_DATAOUT: return "STATE_DATAOUT"; case STATE_DATAOUT_ID: return "STATE_DATAOUT_ID"; case STATE_DATAOUT_STATUS: return "STATE_DATAOUT_STATUS"; case STATE_DATAOUT_STATUS_M: return "STATE_DATAOUT_STATUS_M"; case STATE_READY: return "STATE_READY"; case STATE_UNKNOWN: return "STATE_UNKNOWN"; } NS_ERR("get_state_name: unknown state, BUG\n"); return NULL; } /* * Check if command is valid. * * RETURNS: 1 if wrong command, 0 if right. */ static int check_command(int cmd) { switch (cmd) { case NAND_CMD_READ0: case NAND_CMD_READ1: case NAND_CMD_READSTART: case NAND_CMD_PAGEPROG: case NAND_CMD_READOOB: case NAND_CMD_ERASE1: case NAND_CMD_STATUS: case NAND_CMD_SEQIN: case NAND_CMD_READID: case NAND_CMD_ERASE2: case NAND_CMD_RESET: case NAND_CMD_RNDOUT: case NAND_CMD_RNDOUTSTART: return 0; case NAND_CMD_STATUS_MULTI: default: return 1; } } /* * Returns state after command is accepted by command number. */ static uint32_t get_state_by_command(unsigned command) { switch (command) { case NAND_CMD_READ0: return STATE_CMD_READ0; case NAND_CMD_READ1: return STATE_CMD_READ1; case NAND_CMD_PAGEPROG: return STATE_CMD_PAGEPROG; case NAND_CMD_READSTART: return STATE_CMD_READSTART; case NAND_CMD_READOOB: return STATE_CMD_READOOB; case NAND_CMD_ERASE1: return STATE_CMD_ERASE1; case NAND_CMD_STATUS: return STATE_CMD_STATUS; case NAND_CMD_STATUS_MULTI: return STATE_CMD_STATUS_M; case NAND_CMD_SEQIN: return STATE_CMD_SEQIN; case NAND_CMD_READID: return STATE_CMD_READID; case NAND_CMD_ERASE2: return STATE_CMD_ERASE2; case NAND_CMD_RESET: return STATE_CMD_RESET; case NAND_CMD_RNDOUT: return STATE_CMD_RNDOUT; case NAND_CMD_RNDOUTSTART: return STATE_CMD_RNDOUTSTART; } NS_ERR("get_state_by_command: unknown command, BUG\n"); return 0; } /* * Move an address byte to the correspondent internal register. */ static inline void accept_addr_byte(struct nandsim *ns, u_char bt) { uint byte = (uint)bt; if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) ns->regs.column |= (byte << 8 * ns->regs.count); else { ns->regs.row |= (byte << 8 * (ns->regs.count - ns->geom.pgaddrbytes + ns->geom.secaddrbytes)); } return; } /* * Switch to STATE_READY state. */ static inline void switch_to_ready_state(struct nandsim *ns, u_char status) { NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); ns->state = STATE_READY; ns->nxstate = STATE_UNKNOWN; ns->op = NULL; ns->npstates = 0; ns->stateidx = 0; ns->regs.num = 0; ns->regs.count = 0; ns->regs.off = 0; ns->regs.row = 0; ns->regs.column = 0; ns->regs.status = status; } /* * If the operation isn't known yet, try to find it in the global array * of supported operations. * * Operation can be unknown because of the following. * 1. New command was accepted and this is the first call to find the * correspondent states chain. In this case ns->npstates = 0; * 2. There are several operations which begin with the same command(s) * (for example program from the second half and read from the * second half operations both begin with the READ1 command). In this * case the ns->pstates[] array contains previous states. * * Thus, the function tries to find operation containing the following * states (if the 'flag' parameter is 0): * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state * * If (one and only one) matching operation is found, it is accepted ( * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is * zeroed). * * If there are several matches, the current state is pushed to the * ns->pstates. * * The operation can be unknown only while commands are input to the chip. * As soon as address command is accepted, the operation must be known. * In such situation the function is called with 'flag' != 0, and the * operation is searched using the following pattern: * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> * * It is supposed that this pattern must either match one operation or * none. There can't be ambiguity in that case. * * If no matches found, the function does the following: * 1. if there are saved states present, try to ignore them and search * again only using the last command. If nothing was found, switch * to the STATE_READY state. * 2. if there are no saved states, switch to the STATE_READY state. * * RETURNS: -2 - no matched operations found. * -1 - several matches. * 0 - operation is found. */ static int find_operation(struct nandsim *ns, uint32_t flag) { int opsfound = 0; int i, j, idx = 0; for (i = 0; i < NS_OPER_NUM; i++) { int found = 1; if (!(ns->options & ops[i].reqopts)) /* Ignore operations we can't perform */ continue; if (flag) { if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) continue; } else { if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) continue; } for (j = 0; j < ns->npstates; j++) if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) && (ns->options & ops[idx].reqopts)) { found = 0; break; } if (found) { idx = i; opsfound += 1; } } if (opsfound == 1) { /* Exact match */ ns->op = &ops[idx].states[0]; if (flag) { /* * In this case the find_operation function was * called when address has just began input. But it isn't * yet fully input and the current state must * not be one of STATE_ADDR_*, but the STATE_ADDR_* * state must be the next state (ns->nxstate). */ ns->stateidx = ns->npstates - 1; } else { ns->stateidx = ns->npstates; } ns->npstates = 0; ns->state = ns->op[ns->stateidx]; ns->nxstate = ns->op[ns->stateidx + 1]; NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", idx, get_state_name(ns->state), get_state_name(ns->nxstate)); return 0; } if (opsfound == 0) { /* Nothing was found. Try to ignore previous commands (if any) and search again */ if (ns->npstates != 0) { NS_DBG("find_operation: no operation found, try again with state %s\n", get_state_name(ns->state)); ns->npstates = 0; return find_operation(ns, 0); } NS_DBG("find_operation: no operations found\n"); switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); return -2; } if (flag) { /* This shouldn't happen */ NS_DBG("find_operation: BUG, operation must be known if address is input\n"); return -2; } NS_DBG("find_operation: there is still ambiguity\n"); ns->pstates[ns->npstates++] = ns->state; return -1; } static void put_pages(struct nandsim *ns) { int i; for (i = 0; i < ns->held_cnt; i++) page_cache_release(ns->held_pages[i]); } /* Get page cache pages in advance to provide NOFS memory allocation */ static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos) { pgoff_t index, start_index, end_index; struct page *page; struct address_space *mapping = file->f_mapping; start_index = pos >> PAGE_CACHE_SHIFT; end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT; if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) return -EINVAL; ns->held_cnt = 0; for (index = start_index; index <= end_index; index++) { page = find_get_page(mapping, index); if (page == NULL) { page = find_or_create_page(mapping, index, GFP_NOFS); if (page == NULL) { write_inode_now(mapping->host, 1); page = find_or_create_page(mapping, index, GFP_NOFS); } if (page == NULL) { put_pages(ns); return -ENOMEM; } unlock_page(page); } ns->held_pages[ns->held_cnt++] = page; } return 0; } static int set_memalloc(void) { if (current->flags & PF_MEMALLOC) return 0; current->flags |= PF_MEMALLOC; return 1; } static void clear_memalloc(int memalloc) { if (memalloc) current->flags &= ~PF_MEMALLOC; } static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos) { mm_segment_t old_fs; ssize_t tx; int err, memalloc; err = get_pages(ns, file, count, *pos); if (err) return err; old_fs = get_fs(); set_fs(get_ds()); memalloc = set_memalloc(); tx = vfs_read(file, (char __user *)buf, count, pos); clear_memalloc(memalloc); set_fs(old_fs); put_pages(ns); return tx; } static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos) { mm_segment_t old_fs; ssize_t tx; int err, memalloc; err = get_pages(ns, file, count, *pos); if (err) return err; old_fs = get_fs(); set_fs(get_ds()); memalloc = set_memalloc(); tx = vfs_write(file, (char __user *)buf, count, pos); clear_memalloc(memalloc); set_fs(old_fs); put_pages(ns); return tx; } /* * Returns a pointer to the current page. */ static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) { return &(ns->pages[ns->regs.row]); } /* * Retuns a pointer to the current byte, within the current page. */ static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) { return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; } int do_read_error(struct nandsim *ns, int num) { unsigned int page_no = ns->regs.row; if (read_error(page_no)) { int i; memset(ns->buf.byte, 0xFF, num); for (i = 0; i < num; ++i) ns->buf.byte[i] = random32(); NS_WARN("simulating read error in page %u\n", page_no); return 1; } return 0; } void do_bit_flips(struct nandsim *ns, int num) { if (bitflips && random32() < (1 << 22)) { int flips = 1; if (bitflips > 1) flips = (random32() % (int) bitflips) + 1; while (flips--) { int pos = random32() % (num * 8); ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); NS_WARN("read_page: flipping bit %d in page %d " "reading from %d ecc: corrected=%u failed=%u\n", pos, ns->regs.row, ns->regs.column + ns->regs.off, nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); } } } /* * Fill the NAND buffer with data read from the specified page. */ static void read_page(struct nandsim *ns, int num) { union ns_mem *mypage; if (ns->cfile) { if (!ns->pages_written[ns->regs.row]) { NS_DBG("read_page: page %d not written\n", ns->regs.row); memset(ns->buf.byte, 0xFF, num); } else { loff_t pos; ssize_t tx; NS_DBG("read_page: page %d written, reading from %d\n", ns->regs.row, ns->regs.column + ns->regs.off); if (do_read_error(ns, num)) return; pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off; tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos); if (tx != num) { NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); return; } do_bit_flips(ns, num); } return; } mypage = NS_GET_PAGE(ns); if (mypage->byte == NULL) { NS_DBG("read_page: page %d not allocated\n", ns->regs.row); memset(ns->buf.byte, 0xFF, num); } else { NS_DBG("read_page: page %d allocated, reading from %d\n", ns->regs.row, ns->regs.column + ns->regs.off); if (do_read_error(ns, num)) return; memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); do_bit_flips(ns, num); } } /* * Erase all pages in the specified sector. */ static void erase_sector(struct nandsim *ns) { union ns_mem *mypage; int i; if (ns->cfile) { for (i = 0; i < ns->geom.pgsec; i++) if (ns->pages_written[ns->regs.row + i]) { NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); ns->pages_written[ns->regs.row + i] = 0; } return; } mypage = NS_GET_PAGE(ns); for (i = 0; i < ns->geom.pgsec; i++) { if (mypage->byte != NULL) { NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); kmem_cache_free(ns->nand_pages_slab, mypage->byte); mypage->byte = NULL; } mypage++; } } /* * Program the specified page with the contents from the NAND buffer. */ static int prog_page(struct nandsim *ns, int num) { int i; union ns_mem *mypage; u_char *pg_off; if (ns->cfile) { loff_t off, pos; ssize_t tx; int all; NS_DBG("prog_page: writing page %d\n", ns->regs.row); pg_off = ns->file_buf + ns->regs.column + ns->regs.off; off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off; if (!ns->pages_written[ns->regs.row]) { all = 1; memset(ns->file_buf, 0xff, ns->geom.pgszoob); } else { all = 0; pos = off; tx = read_file(ns, ns->cfile, pg_off, num, &pos); if (tx != num) { NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); return -1; } } for (i = 0; i < num; i++) pg_off[i] &= ns->buf.byte[i]; if (all) { pos = (loff_t)ns->regs.row * ns->geom.pgszoob; tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos); if (tx != ns->geom.pgszoob) { NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); return -1; } ns->pages_written[ns->regs.row] = 1; } else { pos = off; tx = write_file(ns, ns->cfile, pg_off, num, &pos); if (tx != num) { NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); return -1; } } return 0; } mypage = NS_GET_PAGE(ns); if (mypage->byte == NULL) { NS_DBG("prog_page: allocating page %d\n", ns->regs.row); /* * We allocate memory with GFP_NOFS because a flash FS may * utilize this. If it is holding an FS lock, then gets here, * then kernel memory alloc runs writeback which goes to the FS * again and deadlocks. This was seen in practice. */ mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); if (mypage->byte == NULL) { NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); return -1; } memset(mypage->byte, 0xFF, ns->geom.pgszoob); } pg_off = NS_PAGE_BYTE_OFF(ns); for (i = 0; i < num; i++) pg_off[i] &= ns->buf.byte[i]; return 0; } /* * If state has any action bit, perform this action. * * RETURNS: 0 if success, -1 if error. */ static int do_state_action(struct nandsim *ns, uint32_t action) { int num; int busdiv = ns->busw == 8 ? 1 : 2; unsigned int erase_block_no, page_no; action &= ACTION_MASK; /* Check that page address input is correct */ if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); return -1; } switch (action) { case ACTION_CPY: /* * Copy page data to the internal buffer. */ /* Column shouldn't be very large */ if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { NS_ERR("do_state_action: column number is too large\n"); break; } num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; read_page(ns, num); NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", num, NS_RAW_OFFSET(ns) + ns->regs.off); if (ns->regs.off == 0) NS_LOG("read page %d\n", ns->regs.row); else if (ns->regs.off < ns->geom.pgsz) NS_LOG("read page %d (second half)\n", ns->regs.row); else NS_LOG("read OOB of page %d\n", ns->regs.row); NS_UDELAY(access_delay); NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); break; case ACTION_SECERASE: /* * Erase sector. */ if (ns->lines.wp) { NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); return -1; } if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec || (ns->regs.row & ~(ns->geom.secsz - 1))) { NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); return -1; } ns->regs.row = (ns->regs.row << 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; ns->regs.column = 0; erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", ns->regs.row, NS_RAW_OFFSET(ns)); NS_LOG("erase sector %u\n", erase_block_no); erase_sector(ns); NS_MDELAY(erase_delay); if (erase_block_wear) update_wear(erase_block_no); if (erase_error(erase_block_no)) { NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); return -1; } break; case ACTION_PRGPAGE: /* * Program page - move internal buffer data to the page. */ if (ns->lines.wp) { NS_WARN("do_state_action: device is write-protected, programm\n"); return -1; } num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; if (num != ns->regs.count) { NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", ns->regs.count, num); return -1; } if (prog_page(ns, num) == -1) return -1; page_no = ns->regs.row; NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); NS_LOG("programm page %d\n", ns->regs.row); NS_UDELAY(programm_delay); NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); if (write_error(page_no)) { NS_WARN("simulating write failure in page %u\n", page_no); return -1; } break; case ACTION_ZEROOFF: NS_DBG("do_state_action: set internal offset to 0\n"); ns->regs.off = 0; break; case ACTION_HALFOFF: if (!(ns->options & OPT_PAGE512_8BIT)) { NS_ERR("do_state_action: BUG! can't skip half of page for non-512" "byte page size 8x chips\n"); return -1; } NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); ns->regs.off = ns->geom.pgsz/2; break; case ACTION_OOBOFF: NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); ns->regs.off = ns->geom.pgsz; break; default: NS_DBG("do_state_action: BUG! unknown action\n"); } return 0; } /* * Switch simulator's state. */ static void switch_state(struct nandsim *ns) { if (ns->op) { /* * The current operation have already been identified. * Just follow the states chain. */ ns->stateidx += 1; ns->state = ns->nxstate; ns->nxstate = ns->op[ns->stateidx + 1]; NS_DBG("switch_state: operation is known, switch to the next state, " "state: %s, nxstate: %s\n", get_state_name(ns->state), get_state_name(ns->nxstate)); /* See, whether we need to do some action */ if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); return; } } else { /* * We don't yet know which operation we perform. * Try to identify it. */ /* * The only event causing the switch_state function to * be called with yet unknown operation is new command. */ ns->state = get_state_by_command(ns->regs.command); NS_DBG("switch_state: operation is unknown, try to find it\n"); if (find_operation(ns, 0) != 0) return; if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); return; } } /* For 16x devices column means the page offset in words */ if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { NS_DBG("switch_state: double the column number for 16x device\n"); ns->regs.column <<= 1; } if (NS_STATE(ns->nxstate) == STATE_READY) { /* * The current state is the last. Return to STATE_READY */ u_char status = NS_STATUS_OK(ns); /* In case of data states, see if all bytes were input/output */ if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) && ns->regs.count != ns->regs.num) { NS_WARN("switch_state: not all bytes were processed, %d left\n", ns->regs.num - ns->regs.count); status = NS_STATUS_FAILED(ns); } NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); switch_to_ready_state(ns, status); return; } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { /* * If the next state is data input/output, switch to it now */ ns->state = ns->nxstate; ns->nxstate = ns->op[++ns->stateidx + 1]; ns->regs.num = ns->regs.count = 0; NS_DBG("switch_state: the next state is data I/O, switch, " "state: %s, nxstate: %s\n", get_state_name(ns->state), get_state_name(ns->nxstate)); /* * Set the internal register to the count of bytes which * are expected to be input or output */ switch (NS_STATE(ns->state)) { case STATE_DATAIN: case STATE_DATAOUT: ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; break; case STATE_DATAOUT_ID: ns->regs.num = ns->geom.idbytes; break; case STATE_DATAOUT_STATUS: case STATE_DATAOUT_STATUS_M: ns->regs.count = ns->regs.num = 0; break; default: NS_ERR("switch_state: BUG! unknown data state\n"); } } else if (ns->nxstate & STATE_ADDR_MASK) { /* * If the next state is address input, set the internal * register to the number of expected address bytes */ ns->regs.count = 0; switch (NS_STATE(ns->nxstate)) { case STATE_ADDR_PAGE: ns->regs.num = ns->geom.pgaddrbytes; break; case STATE_ADDR_SEC: ns->regs.num = ns->geom.secaddrbytes; break; case STATE_ADDR_ZERO: ns->regs.num = 1; break; case STATE_ADDR_COLUMN: /* Column address is always 2 bytes */ ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; break; default: NS_ERR("switch_state: BUG! unknown address state\n"); } } else { /* * Just reset internal counters. */ ns->regs.num = 0; ns->regs.count = 0; } } static u_char ns_nand_read_byte(struct mtd_info *mtd) { struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; u_char outb = 0x00; /* Sanity and correctness checks */ if (!ns->lines.ce) { NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); return outb; } if (ns->lines.ale || ns->lines.cle) { NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); return outb; } if (!(ns->state & STATE_DATAOUT_MASK)) { NS_WARN("read_byte: unexpected data output cycle, state is %s " "return %#x\n", get_state_name(ns->state), (uint)outb); return outb; } /* Status register may be read as many times as it is wanted */ if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { NS_DBG("read_byte: return %#x status\n", ns->regs.status); return ns->regs.status; } /* Check if there is any data in the internal buffer which may be read */ if (ns->regs.count == ns->regs.num) { NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); return outb; } switch (NS_STATE(ns->state)) { case STATE_DATAOUT: if (ns->busw == 8) { outb = ns->buf.byte[ns->regs.count]; ns->regs.count += 1; } else { outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); ns->regs.count += 2; } break; case STATE_DATAOUT_ID: NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); outb = ns->ids[ns->regs.count]; ns->regs.count += 1; break; default: BUG(); } if (ns->regs.count == ns->regs.num) { NS_DBG("read_byte: all bytes were read\n"); /* * The OPT_AUTOINCR allows to read next consecutive pages without * new read operation cycle. */ if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) { ns->regs.count = 0; if (ns->regs.row + 1 < ns->geom.pgnum) ns->regs.row += 1; NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row); do_state_action(ns, ACTION_CPY); } else if (NS_STATE(ns->nxstate) == STATE_READY) switch_state(ns); } return outb; } static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte) { struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; /* Sanity and correctness checks */ if (!ns->lines.ce) { NS_ERR("write_byte: chip is disabled, ignore write\n"); return; } if (ns->lines.ale && ns->lines.cle) { NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); return; } if (ns->lines.cle == 1) { /* * The byte written is a command. */ if (byte == NAND_CMD_RESET) { NS_LOG("reset chip\n"); switch_to_ready_state(ns, NS_STATUS_OK(ns)); return; } /* Check that the command byte is correct */ if (check_command(byte)) { NS_ERR("write_byte: unknown command %#x\n", (uint)byte); return; } if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M || NS_STATE(ns->state) == STATE_DATAOUT) { int row = ns->regs.row; switch_state(ns); if (byte == NAND_CMD_RNDOUT) ns->regs.row = row; } /* Check if chip is expecting command */ if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { /* Do not warn if only 2 id bytes are read */ if (!(ns->regs.command == NAND_CMD_READID && NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { /* * We are in situation when something else (not command) * was expected but command was input. In this case ignore * previous command(s)/state(s) and accept the last one. */ NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); } switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); } NS_DBG("command byte corresponding to %s state accepted\n", get_state_name(get_state_by_command(byte))); ns->regs.command = byte; switch_state(ns); } else if (ns->lines.ale == 1) { /* * The byte written is an address. */ if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { NS_DBG("write_byte: operation isn't known yet, identify it\n"); if (find_operation(ns, 1) < 0) return; if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); return; } ns->regs.count = 0; switch (NS_STATE(ns->nxstate)) { case STATE_ADDR_PAGE: ns->regs.num = ns->geom.pgaddrbytes; break; case STATE_ADDR_SEC: ns->regs.num = ns->geom.secaddrbytes; break; case STATE_ADDR_ZERO: ns->regs.num = 1; break; default: BUG(); } } /* Check that chip is expecting address */ if (!(ns->nxstate & STATE_ADDR_MASK)) { NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); return; } /* Check if this is expected byte */ if (ns->regs.count == ns->regs.num) { NS_ERR("write_byte: no more address bytes expected\n"); switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); return; } accept_addr_byte(ns, byte); ns->regs.count += 1; NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", (uint)byte, ns->regs.count, ns->regs.num); if (ns->regs.count == ns->regs.num) { NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); switch_state(ns); } } else { /* * The byte written is an input data. */ /* Check that chip is expecting data input */ if (!(ns->state & STATE_DATAIN_MASK)) { NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " "switch to %s\n", (uint)byte, get_state_name(ns->state), get_state_name(STATE_READY)); switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); return; } /* Check if this is expected byte */ if (ns->regs.count == ns->regs.num) { NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", ns->regs.num); return; } if (ns->busw == 8) { ns->buf.byte[ns->regs.count] = byte; ns->regs.count += 1; } else { ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); ns->regs.count += 2; } } return; } static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask) { struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; ns->lines.cle = bitmask & NAND_CLE ? 1 : 0; ns->lines.ale = bitmask & NAND_ALE ? 1 : 0; ns->lines.ce = bitmask & NAND_NCE ? 1 : 0; if (cmd != NAND_CMD_NONE) ns_nand_write_byte(mtd, cmd); } static int ns_device_ready(struct mtd_info *mtd) { NS_DBG("device_ready\n"); return 1; } static uint16_t ns_nand_read_word(struct mtd_info *mtd) { struct nand_chip *chip = (struct nand_chip *)mtd->priv; NS_DBG("read_word\n"); return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8); } static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; /* Check that chip is expecting data input */ if (!(ns->state & STATE_DATAIN_MASK)) { NS_ERR("write_buf: data input isn't expected, state is %s, " "switch to STATE_READY\n", get_state_name(ns->state)); switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); return; } /* Check if these are expected bytes */ if (ns->regs.count + len > ns->regs.num) { NS_ERR("write_buf: too many input bytes\n"); switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); return; } memcpy(ns->buf.byte + ns->regs.count, buf, len); ns->regs.count += len; if (ns->regs.count == ns->regs.num) { NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); } } static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; /* Sanity and correctness checks */ if (!ns->lines.ce) { NS_ERR("read_buf: chip is disabled\n"); return; } if (ns->lines.ale || ns->lines.cle) { NS_ERR("read_buf: ALE or CLE pin is high\n"); return; } if (!(ns->state & STATE_DATAOUT_MASK)) { NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", get_state_name(ns->state)); return; } if (NS_STATE(ns->state) != STATE_DATAOUT) { int i; for (i = 0; i < len; i++) buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd); return; } /* Check if these are expected bytes */ if (ns->regs.count + len > ns->regs.num) { NS_ERR("read_buf: too many bytes to read\n"); switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); return; } memcpy(buf, ns->buf.byte + ns->regs.count, len); ns->regs.count += len; if (ns->regs.count == ns->regs.num) { if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) { ns->regs.count = 0; if (ns->regs.row + 1 < ns->geom.pgnum) ns->regs.row += 1; NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row); do_state_action(ns, ACTION_CPY); } else if (NS_STATE(ns->nxstate) == STATE_READY) switch_state(ns); } return; } static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len); if (!memcmp(buf, &ns_verify_buf[0], len)) { NS_DBG("verify_buf: the buffer is OK\n"); return 0; } else { NS_DBG("verify_buf: the buffer is wrong\n"); return -EFAULT; } } /* * Module initialization function */ static int __init ns_init_module(void) { struct nand_chip *chip; struct nandsim *nand; int retval = -ENOMEM, i; if (bus_width != 8 && bus_width != 16) { NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); return -EINVAL; } /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip) + sizeof(struct nandsim), GFP_KERNEL); if (!nsmtd) { NS_ERR("unable to allocate core structures.\n"); return -ENOMEM; } chip = (struct nand_chip *)(nsmtd + 1); nsmtd->priv = (void *)chip; nand = (struct nandsim *)(chip + 1); chip->priv = (void *)nand; /* * Register simulator's callbacks. */ chip->cmd_ctrl = ns_hwcontrol; chip->read_byte = ns_nand_read_byte; chip->dev_ready = ns_device_ready; chip->write_buf = ns_nand_write_buf; chip->read_buf = ns_nand_read_buf; chip->verify_buf = ns_nand_verify_buf; chip->read_word = ns_nand_read_word; chip->ecc.mode = NAND_ECC_SOFT; /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ /* and 'badblocks' parameters to work */ chip->options |= NAND_SKIP_BBTSCAN; switch (bbt) { case 2: chip->options |= NAND_USE_FLASH_BBT_NO_OOB; case 1: chip->options |= NAND_USE_FLASH_BBT; case 0: break; default: NS_ERR("bbt has to be 0..2\n"); retval = -EINVAL; goto error; } /* * Perform minimum nandsim structure initialization to handle * the initial ID read command correctly */ if (third_id_byte != 0xFF || fourth_id_byte != 0xFF) nand->geom.idbytes = 4; else nand->geom.idbytes = 2; nand->regs.status = NS_STATUS_OK(nand); nand->nxstate = STATE_UNKNOWN; nand->options |= OPT_PAGE256; /* temporary value */ nand->ids[0] = first_id_byte; nand->ids[1] = second_id_byte; nand->ids[2] = third_id_byte; nand->ids[3] = fourth_id_byte; if (bus_width == 16) { nand->busw = 16; chip->options |= NAND_BUSWIDTH_16; } nsmtd->owner = THIS_MODULE; if ((retval = parse_weakblocks()) != 0) goto error; if ((retval = parse_weakpages()) != 0) goto error; if ((retval = parse_gravepages()) != 0) goto error; retval = nand_scan_ident(nsmtd, 1, NULL); if (retval) { NS_ERR("cannot scan NAND Simulator device\n"); if (retval > 0) retval = -ENXIO; goto error; } if (bch) { unsigned int eccsteps, eccbytes; if (!mtd_nand_has_bch()) { NS_ERR("BCH ECC support is disabled\n"); retval = -EINVAL; goto error; } /* use 512-byte ecc blocks */ eccsteps = nsmtd->writesize/512; eccbytes = (bch*13+7)/8; /* do not bother supporting small page devices */ if ((nsmtd->oobsize < 64) || !eccsteps) { NS_ERR("bch not available on small page devices\n"); retval = -EINVAL; goto error; } if ((eccbytes*eccsteps+2) > nsmtd->oobsize) { NS_ERR("invalid bch value %u\n", bch); retval = -EINVAL; goto error; } chip->ecc.mode = NAND_ECC_SOFT_BCH; chip->ecc.size = 512; chip->ecc.bytes = eccbytes; NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); } retval = nand_scan_tail(nsmtd); if (retval) { NS_ERR("can't register NAND Simulator\n"); if (retval > 0) retval = -ENXIO; goto error; } if (overridesize) { uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; if (new_size >> overridesize != nsmtd->erasesize) { NS_ERR("overridesize is too big\n"); retval = -EINVAL; goto err_exit; } /* N.B. This relies on nand_scan not doing anything with the size before we change it */ nsmtd->size = new_size; chip->chipsize = new_size; chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; } if ((retval = setup_wear_reporting(nsmtd)) != 0) goto err_exit; if ((retval = init_nandsim(nsmtd)) != 0) goto err_exit; if ((retval = nand_default_bbt(nsmtd)) != 0) goto err_exit; if ((retval = parse_badblocks(nand, nsmtd)) != 0) goto err_exit; /* Register NAND partitions */ retval = mtd_device_register(nsmtd, &nand->partitions[0], nand->nbparts); if (retval != 0) goto err_exit; return 0; err_exit: free_nandsim(nand); nand_release(nsmtd); for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i) kfree(nand->partitions[i].name); error: kfree(nsmtd); free_lists(); return retval; } module_init(ns_init_module); /* * Module clean-up function */ static void __exit ns_cleanup_module(void) { struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv; int i; free_nandsim(ns); /* Free nandsim private resources */ nand_release(nsmtd); /* Unregister driver */ for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) kfree(ns->partitions[i].name); kfree(nsmtd); /* Free other structures */ free_lists(); } module_exit(ns_cleanup_module); MODULE_LICENSE ("GPL"); MODULE_AUTHOR ("Artem B. Bityuckiy"); MODULE_DESCRIPTION ("The NAND flash simulator");