/* * drivers/mtd/ndfc.c * * Overview: * Platform independent driver for NDFC (NanD Flash Controller) * integrated into EP440 cores * * Ported to an OF platform driver by Sean MacLennan * * The NDFC supports multiple chips, but this driver only supports a * single chip since I do not have access to any boards with * multiple chips. * * Author: Thomas Gleixner * * Copyright 2006 IBM * Copyright 2008 PIKA Technologies * Sean MacLennan <smaclennan@pikatech.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include <linux/module.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> #include <linux/mtd/partitions.h> #include <linux/mtd/ndfc.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/of_platform.h> #include <asm/io.h> #define NDFC_MAX_CS 4 struct ndfc_controller { struct platform_device *ofdev; void __iomem *ndfcbase; struct mtd_info mtd; struct nand_chip chip; int chip_select; struct nand_hw_control ndfc_control; struct mtd_partition *parts; }; static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS]; static void ndfc_select_chip(struct mtd_info *mtd, int chip) { uint32_t ccr; struct nand_chip *nchip = mtd->priv; struct ndfc_controller *ndfc = nchip->priv; ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); if (chip >= 0) { ccr &= ~NDFC_CCR_BS_MASK; ccr |= NDFC_CCR_BS(chip + ndfc->chip_select); } else ccr |= NDFC_CCR_RESET_CE; out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); } static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *chip = mtd->priv; struct ndfc_controller *ndfc = chip->priv; if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_CMD); else writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_ALE); } static int ndfc_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct ndfc_controller *ndfc = chip->priv; return in_be32(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY; } static void ndfc_enable_hwecc(struct mtd_info *mtd, int mode) { uint32_t ccr; struct nand_chip *chip = mtd->priv; struct ndfc_controller *ndfc = chip->priv; ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); ccr |= NDFC_CCR_RESET_ECC; out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); wmb(); } static int ndfc_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct nand_chip *chip = mtd->priv; struct ndfc_controller *ndfc = chip->priv; uint32_t ecc; uint8_t *p = (uint8_t *)&ecc; wmb(); ecc = in_be32(ndfc->ndfcbase + NDFC_ECC); /* The NDFC uses Smart Media (SMC) bytes order */ ecc_code[0] = p[1]; ecc_code[1] = p[2]; ecc_code[2] = p[3]; return 0; } /* * Speedups for buffer read/write/verify * * NDFC allows 32bit read/write of data. So we can speed up the buffer * functions. No further checking, as nand_base will always read/write * page aligned. */ static void ndfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *chip = mtd->priv; struct ndfc_controller *ndfc = chip->priv; uint32_t *p = (uint32_t *) buf; for(;len > 0; len -= 4) *p++ = in_be32(ndfc->ndfcbase + NDFC_DATA); } static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *chip = mtd->priv; struct ndfc_controller *ndfc = chip->priv; uint32_t *p = (uint32_t *) buf; for(;len > 0; len -= 4) out_be32(ndfc->ndfcbase + NDFC_DATA, *p++); } static int ndfc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *chip = mtd->priv; struct ndfc_controller *ndfc = chip->priv; uint32_t *p = (uint32_t *) buf; for(;len > 0; len -= 4) if (*p++ != in_be32(ndfc->ndfcbase + NDFC_DATA)) return -EFAULT; return 0; } /* * Initialize chip structure */ static int ndfc_chip_init(struct ndfc_controller *ndfc, struct device_node *node) { #ifdef CONFIG_MTD_CMDLINE_PARTS static const char *part_types[] = { "cmdlinepart", NULL }; #else static const char *part_types[] = { NULL }; #endif struct device_node *flash_np; struct nand_chip *chip = &ndfc->chip; int ret; chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA; chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA; chip->cmd_ctrl = ndfc_hwcontrol; chip->dev_ready = ndfc_ready; chip->select_chip = ndfc_select_chip; chip->chip_delay = 50; chip->controller = &ndfc->ndfc_control; chip->read_buf = ndfc_read_buf; chip->write_buf = ndfc_write_buf; chip->verify_buf = ndfc_verify_buf; chip->ecc.correct = nand_correct_data; chip->ecc.hwctl = ndfc_enable_hwecc; chip->ecc.calculate = ndfc_calculate_ecc; chip->ecc.mode = NAND_ECC_HW; chip->ecc.size = 256; chip->ecc.bytes = 3; chip->priv = ndfc; ndfc->mtd.priv = chip; ndfc->mtd.owner = THIS_MODULE; flash_np = of_get_next_child(node, NULL); if (!flash_np) return -ENODEV; ndfc->mtd.name = kasprintf(GFP_KERNEL, "%s.%s", dev_name(&ndfc->ofdev->dev), flash_np->name); if (!ndfc->mtd.name) { ret = -ENOMEM; goto err; } ret = nand_scan(&ndfc->mtd, 1); if (ret) goto err; ret = parse_mtd_partitions(&ndfc->mtd, part_types, &ndfc->parts, 0); if (ret < 0) goto err; if (ret == 0) { ret = of_mtd_parse_partitions(&ndfc->ofdev->dev, flash_np, &ndfc->parts); if (ret < 0) goto err; } ret = mtd_device_register(&ndfc->mtd, ndfc->parts, ret); err: of_node_put(flash_np); if (ret) kfree(ndfc->mtd.name); return ret; } static int __devinit ndfc_probe(struct platform_device *ofdev) { struct ndfc_controller *ndfc; const __be32 *reg; u32 ccr; int err, len, cs; /* Read the reg property to get the chip select */ reg = of_get_property(ofdev->dev.of_node, "reg", &len); if (reg == NULL || len != 12) { dev_err(&ofdev->dev, "unable read reg property (%d)\n", len); return -ENOENT; } cs = be32_to_cpu(reg[0]); if (cs >= NDFC_MAX_CS) { dev_err(&ofdev->dev, "invalid CS number (%d)\n", cs); return -EINVAL; } ndfc = &ndfc_ctrl[cs]; ndfc->chip_select = cs; spin_lock_init(&ndfc->ndfc_control.lock); init_waitqueue_head(&ndfc->ndfc_control.wq); ndfc->ofdev = ofdev; dev_set_drvdata(&ofdev->dev, ndfc); ndfc->ndfcbase = of_iomap(ofdev->dev.of_node, 0); if (!ndfc->ndfcbase) { dev_err(&ofdev->dev, "failed to get memory\n"); return -EIO; } ccr = NDFC_CCR_BS(ndfc->chip_select); /* It is ok if ccr does not exist - just default to 0 */ reg = of_get_property(ofdev->dev.of_node, "ccr", NULL); if (reg) ccr |= be32_to_cpup(reg); out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); /* Set the bank settings if given */ reg = of_get_property(ofdev->dev.of_node, "bank-settings", NULL); if (reg) { int offset = NDFC_BCFG0 + (ndfc->chip_select << 2); out_be32(ndfc->ndfcbase + offset, be32_to_cpup(reg)); } err = ndfc_chip_init(ndfc, ofdev->dev.of_node); if (err) { iounmap(ndfc->ndfcbase); return err; } return 0; } static int __devexit ndfc_remove(struct platform_device *ofdev) { struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev); nand_release(&ndfc->mtd); return 0; } static const struct of_device_id ndfc_match[] = { { .compatible = "ibm,ndfc", }, {} }; MODULE_DEVICE_TABLE(of, ndfc_match); static struct platform_driver ndfc_driver = { .driver = { .name = "ndfc", .owner = THIS_MODULE, .of_match_table = ndfc_match, }, .probe = ndfc_probe, .remove = __devexit_p(ndfc_remove), }; static int __init ndfc_nand_init(void) { return platform_driver_register(&ndfc_driver); } static void __exit ndfc_nand_exit(void) { platform_driver_unregister(&ndfc_driver); } module_init(ndfc_nand_init); module_exit(ndfc_nand_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); MODULE_DESCRIPTION("OF Platform driver for NDFC");