/* * TI HECC (CAN) device driver * * This driver supports TI's HECC (High End CAN Controller module) and the * specs for the same is available at <http://www.ti.com> * * Copyright (C) 2009 Texas Instruments Incorporated - http://www.ti.com/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed as is WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ /* * Your platform definitions should specify module ram offsets and interrupt * number to use as follows: * * static struct ti_hecc_platform_data am3517_evm_hecc_pdata = { * .scc_hecc_offset = 0, * .scc_ram_offset = 0x3000, * .hecc_ram_offset = 0x3000, * .mbx_offset = 0x2000, * .int_line = 0, * .revision = 1, * .transceiver_switch = hecc_phy_control, * }; * * Please see include/linux/can/platform/ti_hecc.h for description of * above fields. * */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/can/dev.h> #include <linux/can/error.h> #include <linux/can/platform/ti_hecc.h> #define DRV_NAME "ti_hecc" #define HECC_MODULE_VERSION "0.7" MODULE_VERSION(HECC_MODULE_VERSION); #define DRV_DESC "TI High End CAN Controller Driver " HECC_MODULE_VERSION /* TX / RX Mailbox Configuration */ #define HECC_MAX_MAILBOXES 32 /* hardware mailboxes - do not change */ #define MAX_TX_PRIO 0x3F /* hardware value - do not change */ /* * Important Note: TX mailbox configuration * TX mailboxes should be restricted to the number of SKB buffers to avoid * maintaining SKB buffers separately. TX mailboxes should be a power of 2 * for the mailbox logic to work. Top mailbox numbers are reserved for RX * and lower mailboxes for TX. * * HECC_MAX_TX_MBOX HECC_MB_TX_SHIFT * 4 (default) 2 * 8 3 * 16 4 */ #define HECC_MB_TX_SHIFT 2 /* as per table above */ #define HECC_MAX_TX_MBOX BIT(HECC_MB_TX_SHIFT) #define HECC_TX_PRIO_SHIFT (HECC_MB_TX_SHIFT) #define HECC_TX_PRIO_MASK (MAX_TX_PRIO << HECC_MB_TX_SHIFT) #define HECC_TX_MB_MASK (HECC_MAX_TX_MBOX - 1) #define HECC_TX_MASK ((HECC_MAX_TX_MBOX - 1) | HECC_TX_PRIO_MASK) #define HECC_TX_MBOX_MASK (~(BIT(HECC_MAX_TX_MBOX) - 1)) #define HECC_DEF_NAPI_WEIGHT HECC_MAX_RX_MBOX /* * Important Note: RX mailbox configuration * RX mailboxes are further logically split into two - main and buffer * mailboxes. The goal is to get all packets into main mailboxes as * driven by mailbox number and receive priority (higher to lower) and * buffer mailboxes are used to receive pkts while main mailboxes are being * processed. This ensures in-order packet reception. * * Here are the recommended values for buffer mailbox. Note that RX mailboxes * start after TX mailboxes: * * HECC_MAX_RX_MBOX HECC_RX_BUFFER_MBOX No of buffer mailboxes * 28 12 8 * 16 20 4 */ #define HECC_MAX_RX_MBOX (HECC_MAX_MAILBOXES - HECC_MAX_TX_MBOX) #define HECC_RX_BUFFER_MBOX 12 /* as per table above */ #define HECC_RX_FIRST_MBOX (HECC_MAX_MAILBOXES - 1) #define HECC_RX_HIGH_MBOX_MASK (~(BIT(HECC_RX_BUFFER_MBOX) - 1)) /* TI HECC module registers */ #define HECC_CANME 0x0 /* Mailbox enable */ #define HECC_CANMD 0x4 /* Mailbox direction */ #define HECC_CANTRS 0x8 /* Transmit request set */ #define HECC_CANTRR 0xC /* Transmit request */ #define HECC_CANTA 0x10 /* Transmission acknowledge */ #define HECC_CANAA 0x14 /* Abort acknowledge */ #define HECC_CANRMP 0x18 /* Receive message pending */ #define HECC_CANRML 0x1C /* Remote message lost */ #define HECC_CANRFP 0x20 /* Remote frame pending */ #define HECC_CANGAM 0x24 /* SECC only:Global acceptance mask */ #define HECC_CANMC 0x28 /* Master control */ #define HECC_CANBTC 0x2C /* Bit timing configuration */ #define HECC_CANES 0x30 /* Error and status */ #define HECC_CANTEC 0x34 /* Transmit error counter */ #define HECC_CANREC 0x38 /* Receive error counter */ #define HECC_CANGIF0 0x3C /* Global interrupt flag 0 */ #define HECC_CANGIM 0x40 /* Global interrupt mask */ #define HECC_CANGIF1 0x44 /* Global interrupt flag 1 */ #define HECC_CANMIM 0x48 /* Mailbox interrupt mask */ #define HECC_CANMIL 0x4C /* Mailbox interrupt level */ #define HECC_CANOPC 0x50 /* Overwrite protection control */ #define HECC_CANTIOC 0x54 /* Transmit I/O control */ #define HECC_CANRIOC 0x58 /* Receive I/O control */ #define HECC_CANLNT 0x5C /* HECC only: Local network time */ #define HECC_CANTOC 0x60 /* HECC only: Time-out control */ #define HECC_CANTOS 0x64 /* HECC only: Time-out status */ #define HECC_CANTIOCE 0x68 /* SCC only:Enhanced TX I/O control */ #define HECC_CANRIOCE 0x6C /* SCC only:Enhanced RX I/O control */ /* Mailbox registers */ #define HECC_CANMID 0x0 #define HECC_CANMCF 0x4 #define HECC_CANMDL 0x8 #define HECC_CANMDH 0xC #define HECC_SET_REG 0xFFFFFFFF #define HECC_CANID_MASK 0x3FF /* 18 bits mask for extended id's */ #define HECC_CCE_WAIT_COUNT 100 /* Wait for ~1 sec for CCE bit */ #define HECC_CANMC_SCM BIT(13) /* SCC compat mode */ #define HECC_CANMC_CCR BIT(12) /* Change config request */ #define HECC_CANMC_PDR BIT(11) /* Local Power down - for sleep mode */ #define HECC_CANMC_ABO BIT(7) /* Auto Bus On */ #define HECC_CANMC_STM BIT(6) /* Self test mode - loopback */ #define HECC_CANMC_SRES BIT(5) /* Software reset */ #define HECC_CANTIOC_EN BIT(3) /* Enable CAN TX I/O pin */ #define HECC_CANRIOC_EN BIT(3) /* Enable CAN RX I/O pin */ #define HECC_CANMID_IDE BIT(31) /* Extended frame format */ #define HECC_CANMID_AME BIT(30) /* Acceptance mask enable */ #define HECC_CANMID_AAM BIT(29) /* Auto answer mode */ #define HECC_CANES_FE BIT(24) /* form error */ #define HECC_CANES_BE BIT(23) /* bit error */ #define HECC_CANES_SA1 BIT(22) /* stuck at dominant error */ #define HECC_CANES_CRCE BIT(21) /* CRC error */ #define HECC_CANES_SE BIT(20) /* stuff bit error */ #define HECC_CANES_ACKE BIT(19) /* ack error */ #define HECC_CANES_BO BIT(18) /* Bus off status */ #define HECC_CANES_EP BIT(17) /* Error passive status */ #define HECC_CANES_EW BIT(16) /* Error warning status */ #define HECC_CANES_SMA BIT(5) /* suspend mode ack */ #define HECC_CANES_CCE BIT(4) /* Change config enabled */ #define HECC_CANES_PDA BIT(3) /* Power down mode ack */ #define HECC_CANBTC_SAM BIT(7) /* sample points */ #define HECC_BUS_ERROR (HECC_CANES_FE | HECC_CANES_BE |\ HECC_CANES_CRCE | HECC_CANES_SE |\ HECC_CANES_ACKE) #define HECC_CANMCF_RTR BIT(4) /* Remote transmit request */ #define HECC_CANGIF_MAIF BIT(17) /* Message alarm interrupt */ #define HECC_CANGIF_TCOIF BIT(16) /* Timer counter overflow int */ #define HECC_CANGIF_GMIF BIT(15) /* Global mailbox interrupt */ #define HECC_CANGIF_AAIF BIT(14) /* Abort ack interrupt */ #define HECC_CANGIF_WDIF BIT(13) /* Write denied interrupt */ #define HECC_CANGIF_WUIF BIT(12) /* Wake up interrupt */ #define HECC_CANGIF_RMLIF BIT(11) /* Receive message lost interrupt */ #define HECC_CANGIF_BOIF BIT(10) /* Bus off interrupt */ #define HECC_CANGIF_EPIF BIT(9) /* Error passive interrupt */ #define HECC_CANGIF_WLIF BIT(8) /* Warning level interrupt */ #define HECC_CANGIF_MBOX_MASK 0x1F /* Mailbox number mask */ #define HECC_CANGIM_I1EN BIT(1) /* Int line 1 enable */ #define HECC_CANGIM_I0EN BIT(0) /* Int line 0 enable */ #define HECC_CANGIM_DEF_MASK 0x700 /* only busoff/warning/passive */ #define HECC_CANGIM_SIL BIT(2) /* system interrupts to int line 1 */ /* CAN Bittiming constants as per HECC specs */ static struct can_bittiming_const ti_hecc_bittiming_const = { .name = DRV_NAME, .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 256, .brp_inc = 1, }; struct ti_hecc_priv { struct can_priv can; /* MUST be first member/field */ struct napi_struct napi; struct net_device *ndev; struct clk *clk; void __iomem *base; u32 scc_ram_offset; u32 hecc_ram_offset; u32 mbx_offset; u32 int_line; spinlock_t mbx_lock; /* CANME register needs protection */ u32 tx_head; u32 tx_tail; u32 rx_next; void (*transceiver_switch)(int); }; static inline int get_tx_head_mb(struct ti_hecc_priv *priv) { return priv->tx_head & HECC_TX_MB_MASK; } static inline int get_tx_tail_mb(struct ti_hecc_priv *priv) { return priv->tx_tail & HECC_TX_MB_MASK; } static inline int get_tx_head_prio(struct ti_hecc_priv *priv) { return (priv->tx_head >> HECC_TX_PRIO_SHIFT) & MAX_TX_PRIO; } static inline void hecc_write_lam(struct ti_hecc_priv *priv, u32 mbxno, u32 val) { __raw_writel(val, priv->base + priv->hecc_ram_offset + mbxno * 4); } static inline void hecc_write_mbx(struct ti_hecc_priv *priv, u32 mbxno, u32 reg, u32 val) { __raw_writel(val, priv->base + priv->mbx_offset + mbxno * 0x10 + reg); } static inline u32 hecc_read_mbx(struct ti_hecc_priv *priv, u32 mbxno, u32 reg) { return __raw_readl(priv->base + priv->mbx_offset + mbxno * 0x10 + reg); } static inline void hecc_write(struct ti_hecc_priv *priv, u32 reg, u32 val) { __raw_writel(val, priv->base + reg); } static inline u32 hecc_read(struct ti_hecc_priv *priv, int reg) { return __raw_readl(priv->base + reg); } static inline void hecc_set_bit(struct ti_hecc_priv *priv, int reg, u32 bit_mask) { hecc_write(priv, reg, hecc_read(priv, reg) | bit_mask); } static inline void hecc_clear_bit(struct ti_hecc_priv *priv, int reg, u32 bit_mask) { hecc_write(priv, reg, hecc_read(priv, reg) & ~bit_mask); } static inline u32 hecc_get_bit(struct ti_hecc_priv *priv, int reg, u32 bit_mask) { return (hecc_read(priv, reg) & bit_mask) ? 1 : 0; } static int ti_hecc_get_state(const struct net_device *ndev, enum can_state *state) { struct ti_hecc_priv *priv = netdev_priv(ndev); *state = priv->can.state; return 0; } static int ti_hecc_set_btc(struct ti_hecc_priv *priv) { struct can_bittiming *bit_timing = &priv->can.bittiming; u32 can_btc; can_btc = (bit_timing->phase_seg2 - 1) & 0x7; can_btc |= ((bit_timing->phase_seg1 + bit_timing->prop_seg - 1) & 0xF) << 3; if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) { if (bit_timing->brp > 4) can_btc |= HECC_CANBTC_SAM; else dev_warn(priv->ndev->dev.parent, "WARN: Triple" \ "sampling not set due to h/w limitations"); } can_btc |= ((bit_timing->sjw - 1) & 0x3) << 8; can_btc |= ((bit_timing->brp - 1) & 0xFF) << 16; /* ERM being set to 0 by default meaning resync at falling edge */ hecc_write(priv, HECC_CANBTC, can_btc); dev_info(priv->ndev->dev.parent, "setting CANBTC=%#x\n", can_btc); return 0; } static void ti_hecc_transceiver_switch(const struct ti_hecc_priv *priv, int on) { if (priv->transceiver_switch) priv->transceiver_switch(on); } static void ti_hecc_reset(struct net_device *ndev) { u32 cnt; struct ti_hecc_priv *priv = netdev_priv(ndev); dev_dbg(ndev->dev.parent, "resetting hecc ...\n"); hecc_set_bit(priv, HECC_CANMC, HECC_CANMC_SRES); /* Set change control request and wait till enabled */ hecc_set_bit(priv, HECC_CANMC, HECC_CANMC_CCR); /* * INFO: It has been observed that at times CCE bit may not be * set and hw seems to be ok even if this bit is not set so * timing out with a timing of 1ms to respect the specs */ cnt = HECC_CCE_WAIT_COUNT; while (!hecc_get_bit(priv, HECC_CANES, HECC_CANES_CCE) && cnt != 0) { --cnt; udelay(10); } /* * Note: On HECC, BTC can be programmed only in initialization mode, so * it is expected that the can bittiming parameters are set via ip * utility before the device is opened */ ti_hecc_set_btc(priv); /* Clear CCR (and CANMC register) and wait for CCE = 0 enable */ hecc_write(priv, HECC_CANMC, 0); /* * INFO: CAN net stack handles bus off and hence disabling auto-bus-on * hecc_set_bit(priv, HECC_CANMC, HECC_CANMC_ABO); */ /* * INFO: It has been observed that at times CCE bit may not be * set and hw seems to be ok even if this bit is not set so */ cnt = HECC_CCE_WAIT_COUNT; while (hecc_get_bit(priv, HECC_CANES, HECC_CANES_CCE) && cnt != 0) { --cnt; udelay(10); } /* Enable TX and RX I/O Control pins */ hecc_write(priv, HECC_CANTIOC, HECC_CANTIOC_EN); hecc_write(priv, HECC_CANRIOC, HECC_CANRIOC_EN); /* Clear registers for clean operation */ hecc_write(priv, HECC_CANTA, HECC_SET_REG); hecc_write(priv, HECC_CANRMP, HECC_SET_REG); hecc_write(priv, HECC_CANGIF0, HECC_SET_REG); hecc_write(priv, HECC_CANGIF1, HECC_SET_REG); hecc_write(priv, HECC_CANME, 0); hecc_write(priv, HECC_CANMD, 0); /* SCC compat mode NOT supported (and not needed too) */ hecc_set_bit(priv, HECC_CANMC, HECC_CANMC_SCM); } static void ti_hecc_start(struct net_device *ndev) { struct ti_hecc_priv *priv = netdev_priv(ndev); u32 cnt, mbxno, mbx_mask; /* put HECC in initialization mode and set btc */ ti_hecc_reset(ndev); priv->tx_head = priv->tx_tail = HECC_TX_MASK; priv->rx_next = HECC_RX_FIRST_MBOX; /* Enable local and global acceptance mask registers */ hecc_write(priv, HECC_CANGAM, HECC_SET_REG); /* Prepare configured mailboxes to receive messages */ for (cnt = 0; cnt < HECC_MAX_RX_MBOX; cnt++) { mbxno = HECC_MAX_MAILBOXES - 1 - cnt; mbx_mask = BIT(mbxno); hecc_clear_bit(priv, HECC_CANME, mbx_mask); hecc_write_mbx(priv, mbxno, HECC_CANMID, HECC_CANMID_AME); hecc_write_lam(priv, mbxno, HECC_SET_REG); hecc_set_bit(priv, HECC_CANMD, mbx_mask); hecc_set_bit(priv, HECC_CANME, mbx_mask); hecc_set_bit(priv, HECC_CANMIM, mbx_mask); } /* Prevent message over-write & Enable interrupts */ hecc_write(priv, HECC_CANOPC, HECC_SET_REG); if (priv->int_line) { hecc_write(priv, HECC_CANMIL, HECC_SET_REG); hecc_write(priv, HECC_CANGIM, HECC_CANGIM_DEF_MASK | HECC_CANGIM_I1EN | HECC_CANGIM_SIL); } else { hecc_write(priv, HECC_CANMIL, 0); hecc_write(priv, HECC_CANGIM, HECC_CANGIM_DEF_MASK | HECC_CANGIM_I0EN); } priv->can.state = CAN_STATE_ERROR_ACTIVE; } static void ti_hecc_stop(struct net_device *ndev) { struct ti_hecc_priv *priv = netdev_priv(ndev); /* Disable interrupts and disable mailboxes */ hecc_write(priv, HECC_CANGIM, 0); hecc_write(priv, HECC_CANMIM, 0); hecc_write(priv, HECC_CANME, 0); priv->can.state = CAN_STATE_STOPPED; } static int ti_hecc_do_set_mode(struct net_device *ndev, enum can_mode mode) { int ret = 0; switch (mode) { case CAN_MODE_START: ti_hecc_start(ndev); netif_wake_queue(ndev); break; default: ret = -EOPNOTSUPP; break; } return ret; } /* * ti_hecc_xmit: HECC Transmit * * The transmit mailboxes start from 0 to HECC_MAX_TX_MBOX. In HECC the * priority of the mailbox for tranmission is dependent upon priority setting * field in mailbox registers. The mailbox with highest value in priority field * is transmitted first. Only when two mailboxes have the same value in * priority field the highest numbered mailbox is transmitted first. * * To utilize the HECC priority feature as described above we start with the * highest numbered mailbox with highest priority level and move on to the next * mailbox with the same priority level and so on. Once we loop through all the * transmit mailboxes we choose the next priority level (lower) and so on * until we reach the lowest priority level on the lowest numbered mailbox * when we stop transmission until all mailboxes are transmitted and then * restart at highest numbered mailbox with highest priority. * * Two counters (head and tail) are used to track the next mailbox to transmit * and to track the echo buffer for already transmitted mailbox. The queue * is stopped when all the mailboxes are busy or when there is a priority * value roll-over happens. */ static netdev_tx_t ti_hecc_xmit(struct sk_buff *skb, struct net_device *ndev) { struct ti_hecc_priv *priv = netdev_priv(ndev); struct can_frame *cf = (struct can_frame *)skb->data; u32 mbxno, mbx_mask, data; unsigned long flags; if (can_dropped_invalid_skb(ndev, skb)) return NETDEV_TX_OK; mbxno = get_tx_head_mb(priv); mbx_mask = BIT(mbxno); spin_lock_irqsave(&priv->mbx_lock, flags); if (unlikely(hecc_read(priv, HECC_CANME) & mbx_mask)) { spin_unlock_irqrestore(&priv->mbx_lock, flags); netif_stop_queue(ndev); dev_err(priv->ndev->dev.parent, "BUG: TX mbx not ready tx_head=%08X, tx_tail=%08X\n", priv->tx_head, priv->tx_tail); return NETDEV_TX_BUSY; } spin_unlock_irqrestore(&priv->mbx_lock, flags); /* Prepare mailbox for transmission */ if (cf->can_id & CAN_RTR_FLAG) /* Remote transmission request */ data |= HECC_CANMCF_RTR; data |= get_tx_head_prio(priv) << 8; hecc_write_mbx(priv, mbxno, HECC_CANMCF, data); if (cf->can_id & CAN_EFF_FLAG) /* Extended frame format */ data = (cf->can_id & CAN_EFF_MASK) | HECC_CANMID_IDE; else /* Standard frame format */ data = (cf->can_id & CAN_SFF_MASK) << 18; hecc_write_mbx(priv, mbxno, HECC_CANMID, data); hecc_write_mbx(priv, mbxno, HECC_CANMDL, be32_to_cpu(*(u32 *)(cf->data))); if (cf->can_dlc > 4) hecc_write_mbx(priv, mbxno, HECC_CANMDH, be32_to_cpu(*(u32 *)(cf->data + 4))); else *(u32 *)(cf->data + 4) = 0; can_put_echo_skb(skb, ndev, mbxno); spin_lock_irqsave(&priv->mbx_lock, flags); --priv->tx_head; if ((hecc_read(priv, HECC_CANME) & BIT(get_tx_head_mb(priv))) || (priv->tx_head & HECC_TX_MASK) == HECC_TX_MASK) { netif_stop_queue(ndev); } hecc_set_bit(priv, HECC_CANME, mbx_mask); spin_unlock_irqrestore(&priv->mbx_lock, flags); hecc_clear_bit(priv, HECC_CANMD, mbx_mask); hecc_set_bit(priv, HECC_CANMIM, mbx_mask); hecc_write(priv, HECC_CANTRS, mbx_mask); return NETDEV_TX_OK; } static int ti_hecc_rx_pkt(struct ti_hecc_priv *priv, int mbxno) { struct net_device_stats *stats = &priv->ndev->stats; struct can_frame *cf; struct sk_buff *skb; u32 data, mbx_mask; unsigned long flags; skb = alloc_can_skb(priv->ndev, &cf); if (!skb) { if (printk_ratelimit()) dev_err(priv->ndev->dev.parent, "ti_hecc_rx_pkt: alloc_can_skb() failed\n"); return -ENOMEM; } mbx_mask = BIT(mbxno); data = hecc_read_mbx(priv, mbxno, HECC_CANMID); if (data & HECC_CANMID_IDE) cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG; else cf->can_id = (data >> 18) & CAN_SFF_MASK; data = hecc_read_mbx(priv, mbxno, HECC_CANMCF); if (data & HECC_CANMCF_RTR) cf->can_id |= CAN_RTR_FLAG; cf->can_dlc = get_can_dlc(data & 0xF); data = hecc_read_mbx(priv, mbxno, HECC_CANMDL); *(u32 *)(cf->data) = cpu_to_be32(data); if (cf->can_dlc > 4) { data = hecc_read_mbx(priv, mbxno, HECC_CANMDH); *(u32 *)(cf->data + 4) = cpu_to_be32(data); } else { *(u32 *)(cf->data + 4) = 0; } spin_lock_irqsave(&priv->mbx_lock, flags); hecc_clear_bit(priv, HECC_CANME, mbx_mask); hecc_write(priv, HECC_CANRMP, mbx_mask); /* enable mailbox only if it is part of rx buffer mailboxes */ if (priv->rx_next < HECC_RX_BUFFER_MBOX) hecc_set_bit(priv, HECC_CANME, mbx_mask); spin_unlock_irqrestore(&priv->mbx_lock, flags); stats->rx_bytes += cf->can_dlc; netif_receive_skb(skb); stats->rx_packets++; return 0; } /* * ti_hecc_rx_poll - HECC receive pkts * * The receive mailboxes start from highest numbered mailbox till last xmit * mailbox. On CAN frame reception the hardware places the data into highest * numbered mailbox that matches the CAN ID filter. Since all receive mailboxes * have same filtering (ALL CAN frames) packets will arrive in the highest * available RX mailbox and we need to ensure in-order packet reception. * * To ensure the packets are received in the right order we logically divide * the RX mailboxes into main and buffer mailboxes. Packets are received as per * mailbox priotity (higher to lower) in the main bank and once it is full we * disable further reception into main mailboxes. While the main mailboxes are * processed in NAPI, further packets are received in buffer mailboxes. * * We maintain a RX next mailbox counter to process packets and once all main * mailboxe packets are passed to the upper stack we enable all of them but * continue to process packets received in buffer mailboxes. With each packet * received from buffer mailbox we enable it immediately so as to handle the * overflow from higher mailboxes. */ static int ti_hecc_rx_poll(struct napi_struct *napi, int quota) { struct net_device *ndev = napi->dev; struct ti_hecc_priv *priv = netdev_priv(ndev); u32 num_pkts = 0; u32 mbx_mask; unsigned long pending_pkts, flags; if (!netif_running(ndev)) return 0; while ((pending_pkts = hecc_read(priv, HECC_CANRMP)) && num_pkts < quota) { mbx_mask = BIT(priv->rx_next); /* next rx mailbox to process */ if (mbx_mask & pending_pkts) { if (ti_hecc_rx_pkt(priv, priv->rx_next) < 0) return num_pkts; ++num_pkts; } else if (priv->rx_next > HECC_RX_BUFFER_MBOX) { break; /* pkt not received yet */ } --priv->rx_next; if (priv->rx_next == HECC_RX_BUFFER_MBOX) { /* enable high bank mailboxes */ spin_lock_irqsave(&priv->mbx_lock, flags); mbx_mask = hecc_read(priv, HECC_CANME); mbx_mask |= HECC_RX_HIGH_MBOX_MASK; hecc_write(priv, HECC_CANME, mbx_mask); spin_unlock_irqrestore(&priv->mbx_lock, flags); } else if (priv->rx_next == HECC_MAX_TX_MBOX - 1) { priv->rx_next = HECC_RX_FIRST_MBOX; break; } } /* Enable packet interrupt if all pkts are handled */ if (hecc_read(priv, HECC_CANRMP) == 0) { napi_complete(napi); /* Re-enable RX mailbox interrupts */ mbx_mask = hecc_read(priv, HECC_CANMIM); mbx_mask |= HECC_TX_MBOX_MASK; hecc_write(priv, HECC_CANMIM, mbx_mask); } return num_pkts; } static int ti_hecc_error(struct net_device *ndev, int int_status, int err_status) { struct ti_hecc_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; struct can_frame *cf; struct sk_buff *skb; /* propagate the error condition to the can stack */ skb = alloc_can_err_skb(ndev, &cf); if (!skb) { if (printk_ratelimit()) dev_err(priv->ndev->dev.parent, "ti_hecc_error: alloc_can_err_skb() failed\n"); return -ENOMEM; } if (int_status & HECC_CANGIF_WLIF) { /* warning level int */ if ((int_status & HECC_CANGIF_BOIF) == 0) { priv->can.state = CAN_STATE_ERROR_WARNING; ++priv->can.can_stats.error_warning; cf->can_id |= CAN_ERR_CRTL; if (hecc_read(priv, HECC_CANTEC) > 96) cf->data[1] |= CAN_ERR_CRTL_TX_WARNING; if (hecc_read(priv, HECC_CANREC) > 96) cf->data[1] |= CAN_ERR_CRTL_RX_WARNING; } hecc_set_bit(priv, HECC_CANES, HECC_CANES_EW); dev_dbg(priv->ndev->dev.parent, "Error Warning interrupt\n"); hecc_clear_bit(priv, HECC_CANMC, HECC_CANMC_CCR); } if (int_status & HECC_CANGIF_EPIF) { /* error passive int */ if ((int_status & HECC_CANGIF_BOIF) == 0) { priv->can.state = CAN_STATE_ERROR_PASSIVE; ++priv->can.can_stats.error_passive; cf->can_id |= CAN_ERR_CRTL; if (hecc_read(priv, HECC_CANTEC) > 127) cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; if (hecc_read(priv, HECC_CANREC) > 127) cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; } hecc_set_bit(priv, HECC_CANES, HECC_CANES_EP); dev_dbg(priv->ndev->dev.parent, "Error passive interrupt\n"); hecc_clear_bit(priv, HECC_CANMC, HECC_CANMC_CCR); } /* * Need to check busoff condition in error status register too to * ensure warning interrupts don't hog the system */ if ((int_status & HECC_CANGIF_BOIF) || (err_status & HECC_CANES_BO)) { priv->can.state = CAN_STATE_BUS_OFF; cf->can_id |= CAN_ERR_BUSOFF; hecc_set_bit(priv, HECC_CANES, HECC_CANES_BO); hecc_clear_bit(priv, HECC_CANMC, HECC_CANMC_CCR); /* Disable all interrupts in bus-off to avoid int hog */ hecc_write(priv, HECC_CANGIM, 0); can_bus_off(ndev); } if (err_status & HECC_BUS_ERROR) { ++priv->can.can_stats.bus_error; cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT; cf->data[2] |= CAN_ERR_PROT_UNSPEC; if (err_status & HECC_CANES_FE) { hecc_set_bit(priv, HECC_CANES, HECC_CANES_FE); cf->data[2] |= CAN_ERR_PROT_FORM; } if (err_status & HECC_CANES_BE) { hecc_set_bit(priv, HECC_CANES, HECC_CANES_BE); cf->data[2] |= CAN_ERR_PROT_BIT; } if (err_status & HECC_CANES_SE) { hecc_set_bit(priv, HECC_CANES, HECC_CANES_SE); cf->data[2] |= CAN_ERR_PROT_STUFF; } if (err_status & HECC_CANES_CRCE) { hecc_set_bit(priv, HECC_CANES, HECC_CANES_CRCE); cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ | CAN_ERR_PROT_LOC_CRC_DEL; } if (err_status & HECC_CANES_ACKE) { hecc_set_bit(priv, HECC_CANES, HECC_CANES_ACKE); cf->data[3] |= CAN_ERR_PROT_LOC_ACK | CAN_ERR_PROT_LOC_ACK_DEL; } } netif_receive_skb(skb); stats->rx_packets++; stats->rx_bytes += cf->can_dlc; return 0; } static irqreturn_t ti_hecc_interrupt(int irq, void *dev_id) { struct net_device *ndev = (struct net_device *)dev_id; struct ti_hecc_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; u32 mbxno, mbx_mask, int_status, err_status; unsigned long ack, flags; int_status = hecc_read(priv, (priv->int_line) ? HECC_CANGIF1 : HECC_CANGIF0); if (!int_status) return IRQ_NONE; err_status = hecc_read(priv, HECC_CANES); if (err_status & (HECC_BUS_ERROR | HECC_CANES_BO | HECC_CANES_EP | HECC_CANES_EW)) ti_hecc_error(ndev, int_status, err_status); if (int_status & HECC_CANGIF_GMIF) { while (priv->tx_tail - priv->tx_head > 0) { mbxno = get_tx_tail_mb(priv); mbx_mask = BIT(mbxno); if (!(mbx_mask & hecc_read(priv, HECC_CANTA))) break; hecc_clear_bit(priv, HECC_CANMIM, mbx_mask); hecc_write(priv, HECC_CANTA, mbx_mask); spin_lock_irqsave(&priv->mbx_lock, flags); hecc_clear_bit(priv, HECC_CANME, mbx_mask); spin_unlock_irqrestore(&priv->mbx_lock, flags); stats->tx_bytes += hecc_read_mbx(priv, mbxno, HECC_CANMCF) & 0xF; stats->tx_packets++; can_get_echo_skb(ndev, mbxno); --priv->tx_tail; } /* restart queue if wrap-up or if queue stalled on last pkt */ if (((priv->tx_head == priv->tx_tail) && ((priv->tx_head & HECC_TX_MASK) != HECC_TX_MASK)) || (((priv->tx_tail & HECC_TX_MASK) == HECC_TX_MASK) && ((priv->tx_head & HECC_TX_MASK) == HECC_TX_MASK))) netif_wake_queue(ndev); /* Disable RX mailbox interrupts and let NAPI reenable them */ if (hecc_read(priv, HECC_CANRMP)) { ack = hecc_read(priv, HECC_CANMIM); ack &= BIT(HECC_MAX_TX_MBOX) - 1; hecc_write(priv, HECC_CANMIM, ack); napi_schedule(&priv->napi); } } /* clear all interrupt conditions - read back to avoid spurious ints */ if (priv->int_line) { hecc_write(priv, HECC_CANGIF1, HECC_SET_REG); int_status = hecc_read(priv, HECC_CANGIF1); } else { hecc_write(priv, HECC_CANGIF0, HECC_SET_REG); int_status = hecc_read(priv, HECC_CANGIF0); } return IRQ_HANDLED; } static int ti_hecc_open(struct net_device *ndev) { struct ti_hecc_priv *priv = netdev_priv(ndev); int err; err = request_irq(ndev->irq, ti_hecc_interrupt, IRQF_SHARED, ndev->name, ndev); if (err) { dev_err(ndev->dev.parent, "error requesting interrupt\n"); return err; } ti_hecc_transceiver_switch(priv, 1); /* Open common can device */ err = open_candev(ndev); if (err) { dev_err(ndev->dev.parent, "open_candev() failed %d\n", err); ti_hecc_transceiver_switch(priv, 0); free_irq(ndev->irq, ndev); return err; } ti_hecc_start(ndev); napi_enable(&priv->napi); netif_start_queue(ndev); return 0; } static int ti_hecc_close(struct net_device *ndev) { struct ti_hecc_priv *priv = netdev_priv(ndev); netif_stop_queue(ndev); napi_disable(&priv->napi); ti_hecc_stop(ndev); free_irq(ndev->irq, ndev); close_candev(ndev); ti_hecc_transceiver_switch(priv, 0); return 0; } static const struct net_device_ops ti_hecc_netdev_ops = { .ndo_open = ti_hecc_open, .ndo_stop = ti_hecc_close, .ndo_start_xmit = ti_hecc_xmit, }; static int ti_hecc_probe(struct platform_device *pdev) { struct net_device *ndev = (struct net_device *)0; struct ti_hecc_priv *priv; struct ti_hecc_platform_data *pdata; struct resource *mem, *irq; void __iomem *addr; int err = -ENODEV; pdata = pdev->dev.platform_data; if (!pdata) { dev_err(&pdev->dev, "No platform data\n"); goto probe_exit; } mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { dev_err(&pdev->dev, "No mem resources\n"); goto probe_exit; } irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!irq) { dev_err(&pdev->dev, "No irq resource\n"); goto probe_exit; } if (!request_mem_region(mem->start, resource_size(mem), pdev->name)) { dev_err(&pdev->dev, "HECC region already claimed\n"); err = -EBUSY; goto probe_exit; } addr = ioremap(mem->start, resource_size(mem)); if (!addr) { dev_err(&pdev->dev, "ioremap failed\n"); err = -ENOMEM; goto probe_exit_free_region; } ndev = alloc_candev(sizeof(struct ti_hecc_priv), HECC_MAX_TX_MBOX); if (!ndev) { dev_err(&pdev->dev, "alloc_candev failed\n"); err = -ENOMEM; goto probe_exit_iounmap; } priv = netdev_priv(ndev); priv->ndev = ndev; priv->base = addr; priv->scc_ram_offset = pdata->scc_ram_offset; priv->hecc_ram_offset = pdata->hecc_ram_offset; priv->mbx_offset = pdata->mbx_offset; priv->int_line = pdata->int_line; priv->transceiver_switch = pdata->transceiver_switch; priv->can.bittiming_const = &ti_hecc_bittiming_const; priv->can.do_set_mode = ti_hecc_do_set_mode; priv->can.do_get_state = ti_hecc_get_state; priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES; ndev->irq = irq->start; ndev->flags |= IFF_ECHO; platform_set_drvdata(pdev, ndev); SET_NETDEV_DEV(ndev, &pdev->dev); ndev->netdev_ops = &ti_hecc_netdev_ops; priv->clk = clk_get(&pdev->dev, "hecc_ck"); if (IS_ERR(priv->clk)) { dev_err(&pdev->dev, "No clock available\n"); err = PTR_ERR(priv->clk); priv->clk = NULL; goto probe_exit_candev; } priv->can.clock.freq = clk_get_rate(priv->clk); netif_napi_add(ndev, &priv->napi, ti_hecc_rx_poll, HECC_DEF_NAPI_WEIGHT); clk_enable(priv->clk); err = register_candev(ndev); if (err) { dev_err(&pdev->dev, "register_candev() failed\n"); goto probe_exit_clk; } dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%u)\n", priv->base, (u32) ndev->irq); return 0; probe_exit_clk: clk_put(priv->clk); probe_exit_candev: free_candev(ndev); probe_exit_iounmap: iounmap(addr); probe_exit_free_region: release_mem_region(mem->start, resource_size(mem)); probe_exit: return err; } static int __devexit ti_hecc_remove(struct platform_device *pdev) { struct resource *res; struct net_device *ndev = platform_get_drvdata(pdev); struct ti_hecc_priv *priv = netdev_priv(ndev); unregister_candev(ndev); clk_disable(priv->clk); clk_put(priv->clk); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); iounmap(priv->base); release_mem_region(res->start, resource_size(res)); free_candev(ndev); platform_set_drvdata(pdev, NULL); return 0; } #ifdef CONFIG_PM static int ti_hecc_suspend(struct platform_device *pdev, pm_message_t state) { struct net_device *dev = platform_get_drvdata(pdev); struct ti_hecc_priv *priv = netdev_priv(dev); if (netif_running(dev)) { netif_stop_queue(dev); netif_device_detach(dev); } hecc_set_bit(priv, HECC_CANMC, HECC_CANMC_PDR); priv->can.state = CAN_STATE_SLEEPING; clk_disable(priv->clk); return 0; } static int ti_hecc_resume(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct ti_hecc_priv *priv = netdev_priv(dev); clk_enable(priv->clk); hecc_clear_bit(priv, HECC_CANMC, HECC_CANMC_PDR); priv->can.state = CAN_STATE_ERROR_ACTIVE; if (netif_running(dev)) { netif_device_attach(dev); netif_start_queue(dev); } return 0; } #else #define ti_hecc_suspend NULL #define ti_hecc_resume NULL #endif /* TI HECC netdevice driver: platform driver structure */ static struct platform_driver ti_hecc_driver = { .driver = { .name = DRV_NAME, .owner = THIS_MODULE, }, .probe = ti_hecc_probe, .remove = __devexit_p(ti_hecc_remove), .suspend = ti_hecc_suspend, .resume = ti_hecc_resume, }; static int __init ti_hecc_init_driver(void) { printk(KERN_INFO DRV_DESC "\n"); return platform_driver_register(&ti_hecc_driver); } static void __exit ti_hecc_exit_driver(void) { printk(KERN_INFO DRV_DESC " unloaded\n"); platform_driver_unregister(&ti_hecc_driver); } module_exit(ti_hecc_exit_driver); module_init(ti_hecc_init_driver); MODULE_AUTHOR("Anant Gole <anantgole@ti.com>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION(DRV_DESC);