/** * drivers/net/ks8851_mll.c * Copyright (c) 2009 Micrel Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /** * Supports: * KS8851 16bit MLL chip from Micrel Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/cache.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/slab.h> #define DRV_NAME "ks8851_mll" static u8 KS_DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 }; #define MAX_RECV_FRAMES 255 #define MAX_BUF_SIZE 2048 #define TX_BUF_SIZE 2000 #define RX_BUF_SIZE 2000 #define KS_CCR 0x08 #define CCR_EEPROM (1 << 9) #define CCR_SPI (1 << 8) #define CCR_8BIT (1 << 7) #define CCR_16BIT (1 << 6) #define CCR_32BIT (1 << 5) #define CCR_SHARED (1 << 4) #define CCR_32PIN (1 << 0) /* MAC address registers */ #define KS_MARL 0x10 #define KS_MARM 0x12 #define KS_MARH 0x14 #define KS_OBCR 0x20 #define OBCR_ODS_16MA (1 << 6) #define KS_EEPCR 0x22 #define EEPCR_EESA (1 << 4) #define EEPCR_EESB (1 << 3) #define EEPCR_EEDO (1 << 2) #define EEPCR_EESCK (1 << 1) #define EEPCR_EECS (1 << 0) #define KS_MBIR 0x24 #define MBIR_TXMBF (1 << 12) #define MBIR_TXMBFA (1 << 11) #define MBIR_RXMBF (1 << 4) #define MBIR_RXMBFA (1 << 3) #define KS_GRR 0x26 #define GRR_QMU (1 << 1) #define GRR_GSR (1 << 0) #define KS_WFCR 0x2A #define WFCR_MPRXE (1 << 7) #define WFCR_WF3E (1 << 3) #define WFCR_WF2E (1 << 2) #define WFCR_WF1E (1 << 1) #define WFCR_WF0E (1 << 0) #define KS_WF0CRC0 0x30 #define KS_WF0CRC1 0x32 #define KS_WF0BM0 0x34 #define KS_WF0BM1 0x36 #define KS_WF0BM2 0x38 #define KS_WF0BM3 0x3A #define KS_WF1CRC0 0x40 #define KS_WF1CRC1 0x42 #define KS_WF1BM0 0x44 #define KS_WF1BM1 0x46 #define KS_WF1BM2 0x48 #define KS_WF1BM3 0x4A #define KS_WF2CRC0 0x50 #define KS_WF2CRC1 0x52 #define KS_WF2BM0 0x54 #define KS_WF2BM1 0x56 #define KS_WF2BM2 0x58 #define KS_WF2BM3 0x5A #define KS_WF3CRC0 0x60 #define KS_WF3CRC1 0x62 #define KS_WF3BM0 0x64 #define KS_WF3BM1 0x66 #define KS_WF3BM2 0x68 #define KS_WF3BM3 0x6A #define KS_TXCR 0x70 #define TXCR_TCGICMP (1 << 8) #define TXCR_TCGUDP (1 << 7) #define TXCR_TCGTCP (1 << 6) #define TXCR_TCGIP (1 << 5) #define TXCR_FTXQ (1 << 4) #define TXCR_TXFCE (1 << 3) #define TXCR_TXPE (1 << 2) #define TXCR_TXCRC (1 << 1) #define TXCR_TXE (1 << 0) #define KS_TXSR 0x72 #define TXSR_TXLC (1 << 13) #define TXSR_TXMC (1 << 12) #define TXSR_TXFID_MASK (0x3f << 0) #define TXSR_TXFID_SHIFT (0) #define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f) #define KS_RXCR1 0x74 #define RXCR1_FRXQ (1 << 15) #define RXCR1_RXUDPFCC (1 << 14) #define RXCR1_RXTCPFCC (1 << 13) #define RXCR1_RXIPFCC (1 << 12) #define RXCR1_RXPAFMA (1 << 11) #define RXCR1_RXFCE (1 << 10) #define RXCR1_RXEFE (1 << 9) #define RXCR1_RXMAFMA (1 << 8) #define RXCR1_RXBE (1 << 7) #define RXCR1_RXME (1 << 6) #define RXCR1_RXUE (1 << 5) #define RXCR1_RXAE (1 << 4) #define RXCR1_RXINVF (1 << 1) #define RXCR1_RXE (1 << 0) #define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \ RXCR1_RXMAFMA | RXCR1_RXPAFMA) #define KS_RXCR2 0x76 #define RXCR2_SRDBL_MASK (0x7 << 5) #define RXCR2_SRDBL_SHIFT (5) #define RXCR2_SRDBL_4B (0x0 << 5) #define RXCR2_SRDBL_8B (0x1 << 5) #define RXCR2_SRDBL_16B (0x2 << 5) #define RXCR2_SRDBL_32B (0x3 << 5) /* #define RXCR2_SRDBL_FRAME (0x4 << 5) */ #define RXCR2_IUFFP (1 << 4) #define RXCR2_RXIUFCEZ (1 << 3) #define RXCR2_UDPLFE (1 << 2) #define RXCR2_RXICMPFCC (1 << 1) #define RXCR2_RXSAF (1 << 0) #define KS_TXMIR 0x78 #define KS_RXFHSR 0x7C #define RXFSHR_RXFV (1 << 15) #define RXFSHR_RXICMPFCS (1 << 13) #define RXFSHR_RXIPFCS (1 << 12) #define RXFSHR_RXTCPFCS (1 << 11) #define RXFSHR_RXUDPFCS (1 << 10) #define RXFSHR_RXBF (1 << 7) #define RXFSHR_RXMF (1 << 6) #define RXFSHR_RXUF (1 << 5) #define RXFSHR_RXMR (1 << 4) #define RXFSHR_RXFT (1 << 3) #define RXFSHR_RXFTL (1 << 2) #define RXFSHR_RXRF (1 << 1) #define RXFSHR_RXCE (1 << 0) #define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\ RXFSHR_RXFTL | RXFSHR_RXMR |\ RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\ RXFSHR_RXTCPFCS) #define KS_RXFHBCR 0x7E #define RXFHBCR_CNT_MASK 0x0FFF #define KS_TXQCR 0x80 #define TXQCR_AETFE (1 << 2) #define TXQCR_TXQMAM (1 << 1) #define TXQCR_METFE (1 << 0) #define KS_RXQCR 0x82 #define RXQCR_RXDTTS (1 << 12) #define RXQCR_RXDBCTS (1 << 11) #define RXQCR_RXFCTS (1 << 10) #define RXQCR_RXIPHTOE (1 << 9) #define RXQCR_RXDTTE (1 << 7) #define RXQCR_RXDBCTE (1 << 6) #define RXQCR_RXFCTE (1 << 5) #define RXQCR_ADRFE (1 << 4) #define RXQCR_SDA (1 << 3) #define RXQCR_RRXEF (1 << 0) #define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE) #define KS_TXFDPR 0x84 #define TXFDPR_TXFPAI (1 << 14) #define TXFDPR_TXFP_MASK (0x7ff << 0) #define TXFDPR_TXFP_SHIFT (0) #define KS_RXFDPR 0x86 #define RXFDPR_RXFPAI (1 << 14) #define KS_RXDTTR 0x8C #define KS_RXDBCTR 0x8E #define KS_IER 0x90 #define KS_ISR 0x92 #define IRQ_LCI (1 << 15) #define IRQ_TXI (1 << 14) #define IRQ_RXI (1 << 13) #define IRQ_RXOI (1 << 11) #define IRQ_TXPSI (1 << 9) #define IRQ_RXPSI (1 << 8) #define IRQ_TXSAI (1 << 6) #define IRQ_RXWFDI (1 << 5) #define IRQ_RXMPDI (1 << 4) #define IRQ_LDI (1 << 3) #define IRQ_EDI (1 << 2) #define IRQ_SPIBEI (1 << 1) #define IRQ_DEDI (1 << 0) #define KS_RXFCTR 0x9C #define RXFCTR_THRESHOLD_MASK 0x00FF #define KS_RXFC 0x9D #define RXFCTR_RXFC_MASK (0xff << 8) #define RXFCTR_RXFC_SHIFT (8) #define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff) #define RXFCTR_RXFCT_MASK (0xff << 0) #define RXFCTR_RXFCT_SHIFT (0) #define KS_TXNTFSR 0x9E #define KS_MAHTR0 0xA0 #define KS_MAHTR1 0xA2 #define KS_MAHTR2 0xA4 #define KS_MAHTR3 0xA6 #define KS_FCLWR 0xB0 #define KS_FCHWR 0xB2 #define KS_FCOWR 0xB4 #define KS_CIDER 0xC0 #define CIDER_ID 0x8870 #define CIDER_REV_MASK (0x7 << 1) #define CIDER_REV_SHIFT (1) #define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7) #define KS_CGCR 0xC6 #define KS_IACR 0xC8 #define IACR_RDEN (1 << 12) #define IACR_TSEL_MASK (0x3 << 10) #define IACR_TSEL_SHIFT (10) #define IACR_TSEL_MIB (0x3 << 10) #define IACR_ADDR_MASK (0x1f << 0) #define IACR_ADDR_SHIFT (0) #define KS_IADLR 0xD0 #define KS_IAHDR 0xD2 #define KS_PMECR 0xD4 #define PMECR_PME_DELAY (1 << 14) #define PMECR_PME_POL (1 << 12) #define PMECR_WOL_WAKEUP (1 << 11) #define PMECR_WOL_MAGICPKT (1 << 10) #define PMECR_WOL_LINKUP (1 << 9) #define PMECR_WOL_ENERGY (1 << 8) #define PMECR_AUTO_WAKE_EN (1 << 7) #define PMECR_WAKEUP_NORMAL (1 << 6) #define PMECR_WKEVT_MASK (0xf << 2) #define PMECR_WKEVT_SHIFT (2) #define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf) #define PMECR_WKEVT_ENERGY (0x1 << 2) #define PMECR_WKEVT_LINK (0x2 << 2) #define PMECR_WKEVT_MAGICPKT (0x4 << 2) #define PMECR_WKEVT_FRAME (0x8 << 2) #define PMECR_PM_MASK (0x3 << 0) #define PMECR_PM_SHIFT (0) #define PMECR_PM_NORMAL (0x0 << 0) #define PMECR_PM_ENERGY (0x1 << 0) #define PMECR_PM_SOFTDOWN (0x2 << 0) #define PMECR_PM_POWERSAVE (0x3 << 0) /* Standard MII PHY data */ #define KS_P1MBCR 0xE4 #define P1MBCR_FORCE_FDX (1 << 8) #define KS_P1MBSR 0xE6 #define P1MBSR_AN_COMPLETE (1 << 5) #define P1MBSR_AN_CAPABLE (1 << 3) #define P1MBSR_LINK_UP (1 << 2) #define KS_PHY1ILR 0xE8 #define KS_PHY1IHR 0xEA #define KS_P1ANAR 0xEC #define KS_P1ANLPR 0xEE #define KS_P1SCLMD 0xF4 #define P1SCLMD_LEDOFF (1 << 15) #define P1SCLMD_TXIDS (1 << 14) #define P1SCLMD_RESTARTAN (1 << 13) #define P1SCLMD_DISAUTOMDIX (1 << 10) #define P1SCLMD_FORCEMDIX (1 << 9) #define P1SCLMD_AUTONEGEN (1 << 7) #define P1SCLMD_FORCE100 (1 << 6) #define P1SCLMD_FORCEFDX (1 << 5) #define P1SCLMD_ADV_FLOW (1 << 4) #define P1SCLMD_ADV_100BT_FDX (1 << 3) #define P1SCLMD_ADV_100BT_HDX (1 << 2) #define P1SCLMD_ADV_10BT_FDX (1 << 1) #define P1SCLMD_ADV_10BT_HDX (1 << 0) #define KS_P1CR 0xF6 #define P1CR_HP_MDIX (1 << 15) #define P1CR_REV_POL (1 << 13) #define P1CR_OP_100M (1 << 10) #define P1CR_OP_FDX (1 << 9) #define P1CR_OP_MDI (1 << 7) #define P1CR_AN_DONE (1 << 6) #define P1CR_LINK_GOOD (1 << 5) #define P1CR_PNTR_FLOW (1 << 4) #define P1CR_PNTR_100BT_FDX (1 << 3) #define P1CR_PNTR_100BT_HDX (1 << 2) #define P1CR_PNTR_10BT_FDX (1 << 1) #define P1CR_PNTR_10BT_HDX (1 << 0) /* TX Frame control */ #define TXFR_TXIC (1 << 15) #define TXFR_TXFID_MASK (0x3f << 0) #define TXFR_TXFID_SHIFT (0) #define KS_P1SR 0xF8 #define P1SR_HP_MDIX (1 << 15) #define P1SR_REV_POL (1 << 13) #define P1SR_OP_100M (1 << 10) #define P1SR_OP_FDX (1 << 9) #define P1SR_OP_MDI (1 << 7) #define P1SR_AN_DONE (1 << 6) #define P1SR_LINK_GOOD (1 << 5) #define P1SR_PNTR_FLOW (1 << 4) #define P1SR_PNTR_100BT_FDX (1 << 3) #define P1SR_PNTR_100BT_HDX (1 << 2) #define P1SR_PNTR_10BT_FDX (1 << 1) #define P1SR_PNTR_10BT_HDX (1 << 0) #define ENUM_BUS_NONE 0 #define ENUM_BUS_8BIT 1 #define ENUM_BUS_16BIT 2 #define ENUM_BUS_32BIT 3 #define MAX_MCAST_LST 32 #define HW_MCAST_SIZE 8 /** * union ks_tx_hdr - tx header data * @txb: The header as bytes * @txw: The header as 16bit, little-endian words * * A dual representation of the tx header data to allow * access to individual bytes, and to allow 16bit accesses * with 16bit alignment. */ union ks_tx_hdr { u8 txb[4]; __le16 txw[2]; }; /** * struct ks_net - KS8851 driver private data * @net_device : The network device we're bound to * @hw_addr : start address of data register. * @hw_addr_cmd : start address of command register. * @txh : temporaly buffer to save status/length. * @lock : Lock to ensure that the device is not accessed when busy. * @pdev : Pointer to platform device. * @mii : The MII state information for the mii calls. * @frame_head_info : frame header information for multi-pkt rx. * @statelock : Lock on this structure for tx list. * @msg_enable : The message flags controlling driver output (see ethtool). * @frame_cnt : number of frames received. * @bus_width : i/o bus width. * @irq : irq number assigned to this device. * @rc_rxqcr : Cached copy of KS_RXQCR. * @rc_txcr : Cached copy of KS_TXCR. * @rc_ier : Cached copy of KS_IER. * @sharedbus : Multipex(addr and data bus) mode indicator. * @cmd_reg_cache : command register cached. * @cmd_reg_cache_int : command register cached. Used in the irq handler. * @promiscuous : promiscuous mode indicator. * @all_mcast : mutlicast indicator. * @mcast_lst_size : size of multicast list. * @mcast_lst : multicast list. * @mcast_bits : multicast enabed. * @mac_addr : MAC address assigned to this device. * @fid : frame id. * @extra_byte : number of extra byte prepended rx pkt. * @enabled : indicator this device works. * * The @lock ensures that the chip is protected when certain operations are * in progress. When the read or write packet transfer is in progress, most * of the chip registers are not accessible until the transfer is finished and * the DMA has been de-asserted. * * The @statelock is used to protect information in the structure which may * need to be accessed via several sources, such as the network driver layer * or one of the work queues. * */ /* Receive multiplex framer header info */ struct type_frame_head { u16 sts; /* Frame status */ u16 len; /* Byte count */ }; struct ks_net { struct net_device *netdev; void __iomem *hw_addr; void __iomem *hw_addr_cmd; union ks_tx_hdr txh ____cacheline_aligned; struct mutex lock; /* spinlock to be interrupt safe */ struct platform_device *pdev; struct mii_if_info mii; struct type_frame_head *frame_head_info; spinlock_t statelock; u32 msg_enable; u32 frame_cnt; int bus_width; int irq; u16 rc_rxqcr; u16 rc_txcr; u16 rc_ier; u16 sharedbus; u16 cmd_reg_cache; u16 cmd_reg_cache_int; u16 promiscuous; u16 all_mcast; u16 mcast_lst_size; u8 mcast_lst[MAX_MCAST_LST][ETH_ALEN]; u8 mcast_bits[HW_MCAST_SIZE]; u8 mac_addr[6]; u8 fid; u8 extra_byte; u8 enabled; }; static int msg_enable; #define BE3 0x8000 /* Byte Enable 3 */ #define BE2 0x4000 /* Byte Enable 2 */ #define BE1 0x2000 /* Byte Enable 1 */ #define BE0 0x1000 /* Byte Enable 0 */ /** * register read/write calls. * * All these calls issue transactions to access the chip's registers. They * all require that the necessary lock is held to prevent accesses when the * chip is busy transferring packet data (RX/TX FIFO accesses). */ /** * ks_rdreg8 - read 8 bit register from device * @ks : The chip information * @offset: The register address * * Read a 8bit register from the chip, returning the result */ static u8 ks_rdreg8(struct ks_net *ks, int offset) { u16 data; u8 shift_bit = offset & 0x03; u8 shift_data = (offset & 1) << 3; ks->cmd_reg_cache = (u16) offset | (u16)(BE0 << shift_bit); iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd); data = ioread16(ks->hw_addr); return (u8)(data >> shift_data); } /** * ks_rdreg16 - read 16 bit register from device * @ks : The chip information * @offset: The register address * * Read a 16bit register from the chip, returning the result */ static u16 ks_rdreg16(struct ks_net *ks, int offset) { ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02)); iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd); return ioread16(ks->hw_addr); } /** * ks_wrreg8 - write 8bit register value to chip * @ks: The chip information * @offset: The register address * @value: The value to write * */ static void ks_wrreg8(struct ks_net *ks, int offset, u8 value) { u8 shift_bit = (offset & 0x03); u16 value_write = (u16)(value << ((offset & 1) << 3)); ks->cmd_reg_cache = (u16)offset | (BE0 << shift_bit); iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd); iowrite16(value_write, ks->hw_addr); } /** * ks_wrreg16 - write 16bit register value to chip * @ks: The chip information * @offset: The register address * @value: The value to write * */ static void ks_wrreg16(struct ks_net *ks, int offset, u16 value) { ks->cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02)); iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd); iowrite16(value, ks->hw_addr); } /** * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled. * @ks: The chip state * @wptr: buffer address to save data * @len: length in byte to read * */ static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len) { len >>= 1; while (len--) *wptr++ = (u16)ioread16(ks->hw_addr); } /** * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled. * @ks: The chip information * @wptr: buffer address * @len: length in byte to write * */ static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len) { len >>= 1; while (len--) iowrite16(*wptr++, ks->hw_addr); } static void ks_disable_int(struct ks_net *ks) { ks_wrreg16(ks, KS_IER, 0x0000); } /* ks_disable_int */ static void ks_enable_int(struct ks_net *ks) { ks_wrreg16(ks, KS_IER, ks->rc_ier); } /* ks_enable_int */ /** * ks_tx_fifo_space - return the available hardware buffer size. * @ks: The chip information * */ static inline u16 ks_tx_fifo_space(struct ks_net *ks) { return ks_rdreg16(ks, KS_TXMIR) & 0x1fff; } /** * ks_save_cmd_reg - save the command register from the cache. * @ks: The chip information * */ static inline void ks_save_cmd_reg(struct ks_net *ks) { /*ks8851 MLL has a bug to read back the command register. * So rely on software to save the content of command register. */ ks->cmd_reg_cache_int = ks->cmd_reg_cache; } /** * ks_restore_cmd_reg - restore the command register from the cache and * write to hardware register. * @ks: The chip information * */ static inline void ks_restore_cmd_reg(struct ks_net *ks) { ks->cmd_reg_cache = ks->cmd_reg_cache_int; iowrite16(ks->cmd_reg_cache, ks->hw_addr_cmd); } /** * ks_set_powermode - set power mode of the device * @ks: The chip information * @pwrmode: The power mode value to write to KS_PMECR. * * Change the power mode of the chip. */ static void ks_set_powermode(struct ks_net *ks, unsigned pwrmode) { unsigned pmecr; netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode); ks_rdreg16(ks, KS_GRR); pmecr = ks_rdreg16(ks, KS_PMECR); pmecr &= ~PMECR_PM_MASK; pmecr |= pwrmode; ks_wrreg16(ks, KS_PMECR, pmecr); } /** * ks_read_config - read chip configuration of bus width. * @ks: The chip information * */ static void ks_read_config(struct ks_net *ks) { u16 reg_data = 0; /* Regardless of bus width, 8 bit read should always work.*/ reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF; reg_data |= ks_rdreg8(ks, KS_CCR+1) << 8; /* addr/data bus are multiplexed */ ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED; /* There are garbage data when reading data from QMU, depending on bus-width. */ if (reg_data & CCR_8BIT) { ks->bus_width = ENUM_BUS_8BIT; ks->extra_byte = 1; } else if (reg_data & CCR_16BIT) { ks->bus_width = ENUM_BUS_16BIT; ks->extra_byte = 2; } else { ks->bus_width = ENUM_BUS_32BIT; ks->extra_byte = 4; } } /** * ks_soft_reset - issue one of the soft reset to the device * @ks: The device state. * @op: The bit(s) to set in the GRR * * Issue the relevant soft-reset command to the device's GRR register * specified by @op. * * Note, the delays are in there as a caution to ensure that the reset * has time to take effect and then complete. Since the datasheet does * not currently specify the exact sequence, we have chosen something * that seems to work with our device. */ static void ks_soft_reset(struct ks_net *ks, unsigned op) { /* Disable interrupt first */ ks_wrreg16(ks, KS_IER, 0x0000); ks_wrreg16(ks, KS_GRR, op); mdelay(10); /* wait a short time to effect reset */ ks_wrreg16(ks, KS_GRR, 0); mdelay(1); /* wait for condition to clear */ } void ks_enable_qmu(struct ks_net *ks) { u16 w; w = ks_rdreg16(ks, KS_TXCR); /* Enables QMU Transmit (TXCR). */ ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE); /* * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame * Enable */ w = ks_rdreg16(ks, KS_RXQCR); ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE); /* Enables QMU Receive (RXCR1). */ w = ks_rdreg16(ks, KS_RXCR1); ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE); ks->enabled = true; } /* ks_enable_qmu */ static void ks_disable_qmu(struct ks_net *ks) { u16 w; w = ks_rdreg16(ks, KS_TXCR); /* Disables QMU Transmit (TXCR). */ w &= ~TXCR_TXE; ks_wrreg16(ks, KS_TXCR, w); /* Disables QMU Receive (RXCR1). */ w = ks_rdreg16(ks, KS_RXCR1); w &= ~RXCR1_RXE ; ks_wrreg16(ks, KS_RXCR1, w); ks->enabled = false; } /* ks_disable_qmu */ /** * ks_read_qmu - read 1 pkt data from the QMU. * @ks: The chip information * @buf: buffer address to save 1 pkt * @len: Pkt length * Here is the sequence to read 1 pkt: * 1. set sudo DMA mode * 2. read prepend data * 3. read pkt data * 4. reset sudo DMA Mode */ static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len) { u32 r = ks->extra_byte & 0x1 ; u32 w = ks->extra_byte - r; /* 1. set sudo DMA mode */ ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI); ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff); /* 2. read prepend data */ /** * read 4 + extra bytes and discard them. * extra bytes for dummy, 2 for status, 2 for len */ /* use likely(r) for 8 bit access for performance */ if (unlikely(r)) ioread8(ks->hw_addr); ks_inblk(ks, buf, w + 2 + 2); /* 3. read pkt data */ ks_inblk(ks, buf, ALIGN(len, 4)); /* 4. reset sudo DMA Mode */ ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr); } /** * ks_rcv - read multiple pkts data from the QMU. * @ks: The chip information * @netdev: The network device being opened. * * Read all of header information before reading pkt content. * It is not allowed only port of pkts in QMU after issuing * interrupt ack. */ static void ks_rcv(struct ks_net *ks, struct net_device *netdev) { u32 i; struct type_frame_head *frame_hdr = ks->frame_head_info; struct sk_buff *skb; ks->frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8; /* read all header information */ for (i = 0; i < ks->frame_cnt; i++) { /* Checking Received packet status */ frame_hdr->sts = ks_rdreg16(ks, KS_RXFHSR); /* Get packet len from hardware */ frame_hdr->len = ks_rdreg16(ks, KS_RXFHBCR); frame_hdr++; } frame_hdr = ks->frame_head_info; while (ks->frame_cnt--) { skb = dev_alloc_skb(frame_hdr->len + 16); if (likely(skb && (frame_hdr->sts & RXFSHR_RXFV) && (frame_hdr->len < RX_BUF_SIZE) && frame_hdr->len)) { skb_reserve(skb, 2); /* read data block including CRC 4 bytes */ ks_read_qmu(ks, (u16 *)skb->data, frame_hdr->len); skb_put(skb, frame_hdr->len); skb->protocol = eth_type_trans(skb, netdev); netif_rx(skb); } else { pr_err("%s: err:skb alloc\n", __func__); ks_wrreg16(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF)); if (skb) dev_kfree_skb_irq(skb); } frame_hdr++; } } /** * ks_update_link_status - link status update. * @netdev: The network device being opened. * @ks: The chip information * */ static void ks_update_link_status(struct net_device *netdev, struct ks_net *ks) { /* check the status of the link */ u32 link_up_status; if (ks_rdreg16(ks, KS_P1SR) & P1SR_LINK_GOOD) { netif_carrier_on(netdev); link_up_status = true; } else { netif_carrier_off(netdev); link_up_status = false; } netif_dbg(ks, link, ks->netdev, "%s: %s\n", __func__, link_up_status ? "UP" : "DOWN"); } /** * ks_irq - device interrupt handler * @irq: Interrupt number passed from the IRQ hnalder. * @pw: The private word passed to register_irq(), our struct ks_net. * * This is the handler invoked to find out what happened * * Read the interrupt status, work out what needs to be done and then clear * any of the interrupts that are not needed. */ static irqreturn_t ks_irq(int irq, void *pw) { struct net_device *netdev = pw; struct ks_net *ks = netdev_priv(netdev); u16 status; /*this should be the first in IRQ handler */ ks_save_cmd_reg(ks); status = ks_rdreg16(ks, KS_ISR); if (unlikely(!status)) { ks_restore_cmd_reg(ks); return IRQ_NONE; } ks_wrreg16(ks, KS_ISR, status); if (likely(status & IRQ_RXI)) ks_rcv(ks, netdev); if (unlikely(status & IRQ_LCI)) ks_update_link_status(netdev, ks); if (unlikely(status & IRQ_TXI)) netif_wake_queue(netdev); if (unlikely(status & IRQ_LDI)) { u16 pmecr = ks_rdreg16(ks, KS_PMECR); pmecr &= ~PMECR_WKEVT_MASK; ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK); } /* this should be the last in IRQ handler*/ ks_restore_cmd_reg(ks); return IRQ_HANDLED; } /** * ks_net_open - open network device * @netdev: The network device being opened. * * Called when the network device is marked active, such as a user executing * 'ifconfig up' on the device. */ static int ks_net_open(struct net_device *netdev) { struct ks_net *ks = netdev_priv(netdev); int err; #define KS_INT_FLAGS (IRQF_DISABLED|IRQF_TRIGGER_LOW) /* lock the card, even if we may not actually do anything * else at the moment. */ netif_dbg(ks, ifup, ks->netdev, "%s - entry\n", __func__); /* reset the HW */ err = request_irq(ks->irq, ks_irq, KS_INT_FLAGS, DRV_NAME, netdev); if (err) { pr_err("Failed to request IRQ: %d: %d\n", ks->irq, err); return err; } /* wake up powermode to normal mode */ ks_set_powermode(ks, PMECR_PM_NORMAL); mdelay(1); /* wait for normal mode to take effect */ ks_wrreg16(ks, KS_ISR, 0xffff); ks_enable_int(ks); ks_enable_qmu(ks); netif_start_queue(ks->netdev); netif_dbg(ks, ifup, ks->netdev, "network device up\n"); return 0; } /** * ks_net_stop - close network device * @netdev: The device being closed. * * Called to close down a network device which has been active. Cancell any * work, shutdown the RX and TX process and then place the chip into a low * power state whilst it is not being used. */ static int ks_net_stop(struct net_device *netdev) { struct ks_net *ks = netdev_priv(netdev); netif_info(ks, ifdown, netdev, "shutting down\n"); netif_stop_queue(netdev); mutex_lock(&ks->lock); /* turn off the IRQs and ack any outstanding */ ks_wrreg16(ks, KS_IER, 0x0000); ks_wrreg16(ks, KS_ISR, 0xffff); /* shutdown RX/TX QMU */ ks_disable_qmu(ks); /* set powermode to soft power down to save power */ ks_set_powermode(ks, PMECR_PM_SOFTDOWN); free_irq(ks->irq, netdev); mutex_unlock(&ks->lock); return 0; } /** * ks_write_qmu - write 1 pkt data to the QMU. * @ks: The chip information * @pdata: buffer address to save 1 pkt * @len: Pkt length in byte * Here is the sequence to write 1 pkt: * 1. set sudo DMA mode * 2. write status/length * 3. write pkt data * 4. reset sudo DMA Mode * 5. reset sudo DMA mode * 6. Wait until pkt is out */ static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len) { /* start header at txb[0] to align txw entries */ ks->txh.txw[0] = 0; ks->txh.txw[1] = cpu_to_le16(len); /* 1. set sudo-DMA mode */ ks_wrreg8(ks, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff); /* 2. write status/lenth info */ ks_outblk(ks, ks->txh.txw, 4); /* 3. write pkt data */ ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4)); /* 4. reset sudo-DMA mode */ ks_wrreg8(ks, KS_RXQCR, ks->rc_rxqcr); /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */ ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE); /* 6. wait until TXQCR_METFE is auto-cleared */ while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE) ; } /** * ks_start_xmit - transmit packet * @skb : The buffer to transmit * @netdev : The device used to transmit the packet. * * Called by the network layer to transmit the @skb. * spin_lock_irqsave is required because tx and rx should be mutual exclusive. * So while tx is in-progress, prevent IRQ interrupt from happenning. */ static int ks_start_xmit(struct sk_buff *skb, struct net_device *netdev) { int retv = NETDEV_TX_OK; struct ks_net *ks = netdev_priv(netdev); disable_irq(netdev->irq); ks_disable_int(ks); spin_lock(&ks->statelock); /* Extra space are required: * 4 byte for alignment, 4 for status/length, 4 for CRC */ if (likely(ks_tx_fifo_space(ks) >= skb->len + 12)) { ks_write_qmu(ks, skb->data, skb->len); dev_kfree_skb(skb); } else retv = NETDEV_TX_BUSY; spin_unlock(&ks->statelock); ks_enable_int(ks); enable_irq(netdev->irq); return retv; } /** * ks_start_rx - ready to serve pkts * @ks : The chip information * */ static void ks_start_rx(struct ks_net *ks) { u16 cntl; /* Enables QMU Receive (RXCR1). */ cntl = ks_rdreg16(ks, KS_RXCR1); cntl |= RXCR1_RXE ; ks_wrreg16(ks, KS_RXCR1, cntl); } /* ks_start_rx */ /** * ks_stop_rx - stop to serve pkts * @ks : The chip information * */ static void ks_stop_rx(struct ks_net *ks) { u16 cntl; /* Disables QMU Receive (RXCR1). */ cntl = ks_rdreg16(ks, KS_RXCR1); cntl &= ~RXCR1_RXE ; ks_wrreg16(ks, KS_RXCR1, cntl); } /* ks_stop_rx */ static unsigned long const ethernet_polynomial = 0x04c11db7U; static unsigned long ether_gen_crc(int length, u8 *data) { long crc = -1; while (--length >= 0) { u8 current_octet = *data++; int bit; for (bit = 0; bit < 8; bit++, current_octet >>= 1) { crc = (crc << 1) ^ ((crc < 0) ^ (current_octet & 1) ? ethernet_polynomial : 0); } } return (unsigned long)crc; } /* ether_gen_crc */ /** * ks_set_grpaddr - set multicast information * @ks : The chip information */ static void ks_set_grpaddr(struct ks_net *ks) { u8 i; u32 index, position, value; memset(ks->mcast_bits, 0, sizeof(u8) * HW_MCAST_SIZE); for (i = 0; i < ks->mcast_lst_size; i++) { position = (ether_gen_crc(6, ks->mcast_lst[i]) >> 26) & 0x3f; index = position >> 3; value = 1 << (position & 7); ks->mcast_bits[index] |= (u8)value; } for (i = 0; i < HW_MCAST_SIZE; i++) { if (i & 1) { ks_wrreg16(ks, (u16)((KS_MAHTR0 + i) & ~1), (ks->mcast_bits[i] << 8) | ks->mcast_bits[i - 1]); } } } /* ks_set_grpaddr */ /* * ks_clear_mcast - clear multicast information * * @ks : The chip information * This routine removes all mcast addresses set in the hardware. */ static void ks_clear_mcast(struct ks_net *ks) { u16 i, mcast_size; for (i = 0; i < HW_MCAST_SIZE; i++) ks->mcast_bits[i] = 0; mcast_size = HW_MCAST_SIZE >> 2; for (i = 0; i < mcast_size; i++) ks_wrreg16(ks, KS_MAHTR0 + (2*i), 0); } static void ks_set_promis(struct ks_net *ks, u16 promiscuous_mode) { u16 cntl; ks->promiscuous = promiscuous_mode; ks_stop_rx(ks); /* Stop receiving for reconfiguration */ cntl = ks_rdreg16(ks, KS_RXCR1); cntl &= ~RXCR1_FILTER_MASK; if (promiscuous_mode) /* Enable Promiscuous mode */ cntl |= RXCR1_RXAE | RXCR1_RXINVF; else /* Disable Promiscuous mode (default normal mode) */ cntl |= RXCR1_RXPAFMA; ks_wrreg16(ks, KS_RXCR1, cntl); if (ks->enabled) ks_start_rx(ks); } /* ks_set_promis */ static void ks_set_mcast(struct ks_net *ks, u16 mcast) { u16 cntl; ks->all_mcast = mcast; ks_stop_rx(ks); /* Stop receiving for reconfiguration */ cntl = ks_rdreg16(ks, KS_RXCR1); cntl &= ~RXCR1_FILTER_MASK; if (mcast) /* Enable "Perfect with Multicast address passed mode" */ cntl |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA); else /** * Disable "Perfect with Multicast address passed * mode" (normal mode). */ cntl |= RXCR1_RXPAFMA; ks_wrreg16(ks, KS_RXCR1, cntl); if (ks->enabled) ks_start_rx(ks); } /* ks_set_mcast */ static void ks_set_rx_mode(struct net_device *netdev) { struct ks_net *ks = netdev_priv(netdev); struct netdev_hw_addr *ha; /* Turn on/off promiscuous mode. */ if ((netdev->flags & IFF_PROMISC) == IFF_PROMISC) ks_set_promis(ks, (u16)((netdev->flags & IFF_PROMISC) == IFF_PROMISC)); /* Turn on/off all mcast mode. */ else if ((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI) ks_set_mcast(ks, (u16)((netdev->flags & IFF_ALLMULTI) == IFF_ALLMULTI)); else ks_set_promis(ks, false); if ((netdev->flags & IFF_MULTICAST) && netdev_mc_count(netdev)) { if (netdev_mc_count(netdev) <= MAX_MCAST_LST) { int i = 0; netdev_for_each_mc_addr(ha, netdev) { if (!(*ha->addr & 1)) continue; if (i >= MAX_MCAST_LST) break; memcpy(ks->mcast_lst[i++], ha->addr, ETH_ALEN); } ks->mcast_lst_size = (u8)i; ks_set_grpaddr(ks); } else { /** * List too big to support so * turn on all mcast mode. */ ks->mcast_lst_size = MAX_MCAST_LST; ks_set_mcast(ks, true); } } else { ks->mcast_lst_size = 0; ks_clear_mcast(ks); } } /* ks_set_rx_mode */ static void ks_set_mac(struct ks_net *ks, u8 *data) { u16 *pw = (u16 *)data; u16 w, u; ks_stop_rx(ks); /* Stop receiving for reconfiguration */ u = *pw++; w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF); ks_wrreg16(ks, KS_MARH, w); u = *pw++; w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF); ks_wrreg16(ks, KS_MARM, w); u = *pw; w = ((u & 0xFF) << 8) | ((u >> 8) & 0xFF); ks_wrreg16(ks, KS_MARL, w); memcpy(ks->mac_addr, data, 6); if (ks->enabled) ks_start_rx(ks); } static int ks_set_mac_address(struct net_device *netdev, void *paddr) { struct ks_net *ks = netdev_priv(netdev); struct sockaddr *addr = paddr; u8 *da; memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); da = (u8 *)netdev->dev_addr; ks_set_mac(ks, da); return 0; } static int ks_net_ioctl(struct net_device *netdev, struct ifreq *req, int cmd) { struct ks_net *ks = netdev_priv(netdev); if (!netif_running(netdev)) return -EINVAL; return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL); } static const struct net_device_ops ks_netdev_ops = { .ndo_open = ks_net_open, .ndo_stop = ks_net_stop, .ndo_do_ioctl = ks_net_ioctl, .ndo_start_xmit = ks_start_xmit, .ndo_set_mac_address = ks_set_mac_address, .ndo_set_rx_mode = ks_set_rx_mode, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, }; /* ethtool support */ static void ks_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *di) { strlcpy(di->driver, DRV_NAME, sizeof(di->driver)); strlcpy(di->version, "1.00", sizeof(di->version)); strlcpy(di->bus_info, dev_name(netdev->dev.parent), sizeof(di->bus_info)); } static u32 ks_get_msglevel(struct net_device *netdev) { struct ks_net *ks = netdev_priv(netdev); return ks->msg_enable; } static void ks_set_msglevel(struct net_device *netdev, u32 to) { struct ks_net *ks = netdev_priv(netdev); ks->msg_enable = to; } static int ks_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) { struct ks_net *ks = netdev_priv(netdev); return mii_ethtool_gset(&ks->mii, cmd); } static int ks_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) { struct ks_net *ks = netdev_priv(netdev); return mii_ethtool_sset(&ks->mii, cmd); } static u32 ks_get_link(struct net_device *netdev) { struct ks_net *ks = netdev_priv(netdev); return mii_link_ok(&ks->mii); } static int ks_nway_reset(struct net_device *netdev) { struct ks_net *ks = netdev_priv(netdev); return mii_nway_restart(&ks->mii); } static const struct ethtool_ops ks_ethtool_ops = { .get_drvinfo = ks_get_drvinfo, .get_msglevel = ks_get_msglevel, .set_msglevel = ks_set_msglevel, .get_settings = ks_get_settings, .set_settings = ks_set_settings, .get_link = ks_get_link, .nway_reset = ks_nway_reset, }; /* MII interface controls */ /** * ks_phy_reg - convert MII register into a KS8851 register * @reg: MII register number. * * Return the KS8851 register number for the corresponding MII PHY register * if possible. Return zero if the MII register has no direct mapping to the * KS8851 register set. */ static int ks_phy_reg(int reg) { switch (reg) { case MII_BMCR: return KS_P1MBCR; case MII_BMSR: return KS_P1MBSR; case MII_PHYSID1: return KS_PHY1ILR; case MII_PHYSID2: return KS_PHY1IHR; case MII_ADVERTISE: return KS_P1ANAR; case MII_LPA: return KS_P1ANLPR; } return 0x0; } /** * ks_phy_read - MII interface PHY register read. * @netdev: The network device the PHY is on. * @phy_addr: Address of PHY (ignored as we only have one) * @reg: The register to read. * * This call reads data from the PHY register specified in @reg. Since the * device does not support all the MII registers, the non-existent values * are always returned as zero. * * We return zero for unsupported registers as the MII code does not check * the value returned for any error status, and simply returns it to the * caller. The mii-tool that the driver was tested with takes any -ve error * as real PHY capabilities, thus displaying incorrect data to the user. */ static int ks_phy_read(struct net_device *netdev, int phy_addr, int reg) { struct ks_net *ks = netdev_priv(netdev); int ksreg; int result; ksreg = ks_phy_reg(reg); if (!ksreg) return 0x0; /* no error return allowed, so use zero */ mutex_lock(&ks->lock); result = ks_rdreg16(ks, ksreg); mutex_unlock(&ks->lock); return result; } static void ks_phy_write(struct net_device *netdev, int phy, int reg, int value) { struct ks_net *ks = netdev_priv(netdev); int ksreg; ksreg = ks_phy_reg(reg); if (ksreg) { mutex_lock(&ks->lock); ks_wrreg16(ks, ksreg, value); mutex_unlock(&ks->lock); } } /** * ks_read_selftest - read the selftest memory info. * @ks: The device state * * Read and check the TX/RX memory selftest information. */ static int ks_read_selftest(struct ks_net *ks) { unsigned both_done = MBIR_TXMBF | MBIR_RXMBF; int ret = 0; unsigned rd; rd = ks_rdreg16(ks, KS_MBIR); if ((rd & both_done) != both_done) { netdev_warn(ks->netdev, "Memory selftest not finished\n"); return 0; } if (rd & MBIR_TXMBFA) { netdev_err(ks->netdev, "TX memory selftest fails\n"); ret |= 1; } if (rd & MBIR_RXMBFA) { netdev_err(ks->netdev, "RX memory selftest fails\n"); ret |= 2; } netdev_info(ks->netdev, "the selftest passes\n"); return ret; } static void ks_setup(struct ks_net *ks) { u16 w; /** * Configure QMU Transmit */ /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */ ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); /* Setup Receive Frame Data Pointer Auto-Increment */ ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI); /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */ ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK); /* Setup RxQ Command Control (RXQCR) */ ks->rc_rxqcr = RXQCR_CMD_CNTL; ks_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); /** * set the force mode to half duplex, default is full duplex * because if the auto-negotiation fails, most switch uses * half-duplex. */ w = ks_rdreg16(ks, KS_P1MBCR); w &= ~P1MBCR_FORCE_FDX; ks_wrreg16(ks, KS_P1MBCR, w); w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP; ks_wrreg16(ks, KS_TXCR, w); w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC; if (ks->promiscuous) /* bPromiscuous */ w |= (RXCR1_RXAE | RXCR1_RXINVF); else if (ks->all_mcast) /* Multicast address passed mode */ w |= (RXCR1_RXAE | RXCR1_RXMAFMA | RXCR1_RXPAFMA); else /* Normal mode */ w |= RXCR1_RXPAFMA; ks_wrreg16(ks, KS_RXCR1, w); } /*ks_setup */ static void ks_setup_int(struct ks_net *ks) { ks->rc_ier = 0x00; /* Clear the interrupts status of the hardware. */ ks_wrreg16(ks, KS_ISR, 0xffff); /* Enables the interrupts of the hardware. */ ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI); } /* ks_setup_int */ static int ks_hw_init(struct ks_net *ks) { #define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES) ks->promiscuous = 0; ks->all_mcast = 0; ks->mcast_lst_size = 0; ks->frame_head_info = (struct type_frame_head *) \ kmalloc(MHEADER_SIZE, GFP_KERNEL); if (!ks->frame_head_info) { pr_err("Error: Fail to allocate frame memory\n"); return false; } ks_set_mac(ks, KS_DEFAULT_MAC_ADDRESS); return true; } static int __devinit ks8851_probe(struct platform_device *pdev) { int err = -ENOMEM; struct resource *io_d, *io_c; struct net_device *netdev; struct ks_net *ks; u16 id, data; io_d = platform_get_resource(pdev, IORESOURCE_MEM, 0); io_c = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!request_mem_region(io_d->start, resource_size(io_d), DRV_NAME)) goto err_mem_region; if (!request_mem_region(io_c->start, resource_size(io_c), DRV_NAME)) goto err_mem_region1; netdev = alloc_etherdev(sizeof(struct ks_net)); if (!netdev) goto err_alloc_etherdev; SET_NETDEV_DEV(netdev, &pdev->dev); ks = netdev_priv(netdev); ks->netdev = netdev; ks->hw_addr = ioremap(io_d->start, resource_size(io_d)); if (!ks->hw_addr) goto err_ioremap; ks->hw_addr_cmd = ioremap(io_c->start, resource_size(io_c)); if (!ks->hw_addr_cmd) goto err_ioremap1; ks->irq = platform_get_irq(pdev, 0); if (ks->irq < 0) { err = ks->irq; goto err_get_irq; } ks->pdev = pdev; mutex_init(&ks->lock); spin_lock_init(&ks->statelock); netdev->netdev_ops = &ks_netdev_ops; netdev->ethtool_ops = &ks_ethtool_ops; /* setup mii state */ ks->mii.dev = netdev; ks->mii.phy_id = 1, ks->mii.phy_id_mask = 1; ks->mii.reg_num_mask = 0xf; ks->mii.mdio_read = ks_phy_read; ks->mii.mdio_write = ks_phy_write; netdev_info(netdev, "message enable is %d\n", msg_enable); /* set the default message enable */ ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)); ks_read_config(ks); /* simple check for a valid chip being connected to the bus */ if ((ks_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) { netdev_err(netdev, "failed to read device ID\n"); err = -ENODEV; goto err_register; } if (ks_read_selftest(ks)) { netdev_err(netdev, "failed to read device ID\n"); err = -ENODEV; goto err_register; } err = register_netdev(netdev); if (err) goto err_register; platform_set_drvdata(pdev, netdev); ks_soft_reset(ks, GRR_GSR); ks_hw_init(ks); ks_disable_qmu(ks); ks_setup(ks); ks_setup_int(ks); memcpy(netdev->dev_addr, ks->mac_addr, 6); data = ks_rdreg16(ks, KS_OBCR); ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA); /** * If you want to use the default MAC addr, * comment out the 2 functions below. */ random_ether_addr(netdev->dev_addr); ks_set_mac(ks, netdev->dev_addr); id = ks_rdreg16(ks, KS_CIDER); netdev_info(netdev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n", (id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7); return 0; err_register: err_get_irq: iounmap(ks->hw_addr_cmd); err_ioremap1: iounmap(ks->hw_addr); err_ioremap: free_netdev(netdev); err_alloc_etherdev: release_mem_region(io_c->start, resource_size(io_c)); err_mem_region1: release_mem_region(io_d->start, resource_size(io_d)); err_mem_region: return err; } static int __devexit ks8851_remove(struct platform_device *pdev) { struct net_device *netdev = platform_get_drvdata(pdev); struct ks_net *ks = netdev_priv(netdev); struct resource *iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0); kfree(ks->frame_head_info); unregister_netdev(netdev); iounmap(ks->hw_addr); free_netdev(netdev); release_mem_region(iomem->start, resource_size(iomem)); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver ks8851_platform_driver = { .driver = { .name = DRV_NAME, .owner = THIS_MODULE, }, .probe = ks8851_probe, .remove = __devexit_p(ks8851_remove), }; static int __init ks8851_init(void) { return platform_driver_register(&ks8851_platform_driver); } static void __exit ks8851_exit(void) { platform_driver_unregister(&ks8851_platform_driver); } module_init(ks8851_init); module_exit(ks8851_exit); MODULE_DESCRIPTION("KS8851 MLL Network driver"); MODULE_AUTHOR("David Choi <david.choi@micrel.com>"); MODULE_LICENSE("GPL"); module_param_named(message, msg_enable, int, 0); MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");