/* * Real Time Clock driver for Marvell 88PM860x PMIC * * Copyright (c) 2010 Marvell International Ltd. * Author: Haojian Zhuang <haojian.zhuang@marvell.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/mutex.h> #include <linux/rtc.h> #include <linux/delay.h> #include <linux/mfd/core.h> #include <linux/mfd/88pm860x.h> #define VRTC_CALIBRATION struct pm860x_rtc_info { struct pm860x_chip *chip; struct i2c_client *i2c; struct rtc_device *rtc_dev; struct device *dev; struct delayed_work calib_work; int irq; int vrtc; int (*sync)(unsigned int ticks); }; #define REG_VRTC_MEAS1 0x7D #define REG0_ADDR 0xB0 #define REG1_ADDR 0xB2 #define REG2_ADDR 0xB4 #define REG3_ADDR 0xB6 #define REG0_DATA 0xB1 #define REG1_DATA 0xB3 #define REG2_DATA 0xB5 #define REG3_DATA 0xB7 /* bit definitions of Measurement Enable Register 2 (0x51) */ #define MEAS2_VRTC (1 << 0) /* bit definitions of RTC Register 1 (0xA0) */ #define ALARM_EN (1 << 3) #define ALARM_WAKEUP (1 << 4) #define ALARM (1 << 5) #define RTC1_USE_XO (1 << 7) #define VRTC_CALIB_INTERVAL (HZ * 60 * 10) /* 10 minutes */ static irqreturn_t rtc_update_handler(int irq, void *data) { struct pm860x_rtc_info *info = (struct pm860x_rtc_info *)data; int mask; mask = ALARM | ALARM_WAKEUP; pm860x_set_bits(info->i2c, PM8607_RTC1, mask | ALARM_EN, mask); rtc_update_irq(info->rtc_dev, 1, RTC_AF); return IRQ_HANDLED; } static int pm860x_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct pm860x_rtc_info *info = dev_get_drvdata(dev); if (enabled) pm860x_set_bits(info->i2c, PM8607_RTC1, ALARM, ALARM); else pm860x_set_bits(info->i2c, PM8607_RTC1, ALARM, 0); return 0; } /* * Calculate the next alarm time given the requested alarm time mask * and the current time. */ static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now, struct rtc_time *alrm) { unsigned long next_time; unsigned long now_time; next->tm_year = now->tm_year; next->tm_mon = now->tm_mon; next->tm_mday = now->tm_mday; next->tm_hour = alrm->tm_hour; next->tm_min = alrm->tm_min; next->tm_sec = alrm->tm_sec; rtc_tm_to_time(now, &now_time); rtc_tm_to_time(next, &next_time); if (next_time < now_time) { /* Advance one day */ next_time += 60 * 60 * 24; rtc_time_to_tm(next_time, next); } } static int pm860x_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct pm860x_rtc_info *info = dev_get_drvdata(dev); unsigned char buf[8]; unsigned long ticks, base, data; pm860x_page_bulk_read(info->i2c, REG0_ADDR, 8, buf); dev_dbg(info->dev, "%x-%x-%x-%x-%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]); base = (buf[1] << 24) | (buf[3] << 16) | (buf[5] << 8) | buf[7]; /* load 32-bit read-only counter */ pm860x_bulk_read(info->i2c, PM8607_RTC_COUNTER1, 4, buf); data = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; ticks = base + data; dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n", base, data, ticks); rtc_time_to_tm(ticks, tm); return 0; } static int pm860x_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct pm860x_rtc_info *info = dev_get_drvdata(dev); unsigned char buf[4]; unsigned long ticks, base, data; if ((tm->tm_year < 70) || (tm->tm_year > 138)) { dev_dbg(info->dev, "Set time %d out of range. " "Please set time between 1970 to 2038.\n", 1900 + tm->tm_year); return -EINVAL; } rtc_tm_to_time(tm, &ticks); /* load 32-bit read-only counter */ pm860x_bulk_read(info->i2c, PM8607_RTC_COUNTER1, 4, buf); data = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; base = ticks - data; dev_dbg(info->dev, "set base:0x%lx, RO count:0x%lx, ticks:0x%lx\n", base, data, ticks); pm860x_page_reg_write(info->i2c, REG0_DATA, (base >> 24) & 0xFF); pm860x_page_reg_write(info->i2c, REG1_DATA, (base >> 16) & 0xFF); pm860x_page_reg_write(info->i2c, REG2_DATA, (base >> 8) & 0xFF); pm860x_page_reg_write(info->i2c, REG3_DATA, base & 0xFF); if (info->sync) info->sync(ticks); return 0; } static int pm860x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct pm860x_rtc_info *info = dev_get_drvdata(dev); unsigned char buf[8]; unsigned long ticks, base, data; int ret; pm860x_page_bulk_read(info->i2c, REG0_ADDR, 8, buf); dev_dbg(info->dev, "%x-%x-%x-%x-%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]); base = (buf[1] << 24) | (buf[3] << 16) | (buf[5] << 8) | buf[7]; pm860x_bulk_read(info->i2c, PM8607_RTC_EXPIRE1, 4, buf); data = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; ticks = base + data; dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n", base, data, ticks); rtc_time_to_tm(ticks, &alrm->time); ret = pm860x_reg_read(info->i2c, PM8607_RTC1); alrm->enabled = (ret & ALARM_EN) ? 1 : 0; alrm->pending = (ret & (ALARM | ALARM_WAKEUP)) ? 1 : 0; return 0; } static int pm860x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct pm860x_rtc_info *info = dev_get_drvdata(dev); struct rtc_time now_tm, alarm_tm; unsigned long ticks, base, data; unsigned char buf[8]; int mask; pm860x_set_bits(info->i2c, PM8607_RTC1, ALARM_EN, 0); pm860x_page_bulk_read(info->i2c, REG0_ADDR, 8, buf); dev_dbg(info->dev, "%x-%x-%x-%x-%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]); base = (buf[1] << 24) | (buf[3] << 16) | (buf[5] << 8) | buf[7]; /* load 32-bit read-only counter */ pm860x_bulk_read(info->i2c, PM8607_RTC_COUNTER1, 4, buf); data = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; ticks = base + data; dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n", base, data, ticks); rtc_time_to_tm(ticks, &now_tm); rtc_next_alarm_time(&alarm_tm, &now_tm, &alrm->time); /* get new ticks for alarm in 24 hours */ rtc_tm_to_time(&alarm_tm, &ticks); data = ticks - base; buf[0] = data & 0xff; buf[1] = (data >> 8) & 0xff; buf[2] = (data >> 16) & 0xff; buf[3] = (data >> 24) & 0xff; pm860x_bulk_write(info->i2c, PM8607_RTC_EXPIRE1, 4, buf); if (alrm->enabled) { mask = ALARM | ALARM_WAKEUP | ALARM_EN; pm860x_set_bits(info->i2c, PM8607_RTC1, mask, mask); } else { mask = ALARM | ALARM_WAKEUP | ALARM_EN; pm860x_set_bits(info->i2c, PM8607_RTC1, mask, ALARM | ALARM_WAKEUP); } return 0; } static const struct rtc_class_ops pm860x_rtc_ops = { .read_time = pm860x_rtc_read_time, .set_time = pm860x_rtc_set_time, .read_alarm = pm860x_rtc_read_alarm, .set_alarm = pm860x_rtc_set_alarm, .alarm_irq_enable = pm860x_rtc_alarm_irq_enable, }; #ifdef VRTC_CALIBRATION static void calibrate_vrtc_work(struct work_struct *work) { struct pm860x_rtc_info *info = container_of(work, struct pm860x_rtc_info, calib_work.work); unsigned char buf[2]; unsigned int sum, data, mean, vrtc_set; int i; for (i = 0, sum = 0; i < 16; i++) { msleep(100); pm860x_bulk_read(info->i2c, REG_VRTC_MEAS1, 2, buf); data = (buf[0] << 4) | buf[1]; data = (data * 5400) >> 12; /* convert to mv */ sum += data; } mean = sum >> 4; vrtc_set = 2700 + (info->vrtc & 0x3) * 200; dev_dbg(info->dev, "mean:%d, vrtc_set:%d\n", mean, vrtc_set); sum = pm860x_reg_read(info->i2c, PM8607_RTC_MISC1); data = sum & 0x3; if ((mean + 200) < vrtc_set) { /* try higher voltage */ if (++data == 4) goto out; data = (sum & 0xf8) | (data & 0x3); pm860x_reg_write(info->i2c, PM8607_RTC_MISC1, data); } else if ((mean - 200) > vrtc_set) { /* try lower voltage */ if (data-- == 0) goto out; data = (sum & 0xf8) | (data & 0x3); pm860x_reg_write(info->i2c, PM8607_RTC_MISC1, data); } else goto out; dev_dbg(info->dev, "set 0x%x to RTC_MISC1\n", data); /* trigger next calibration since VRTC is updated */ schedule_delayed_work(&info->calib_work, VRTC_CALIB_INTERVAL); return; out: /* disable measurement */ pm860x_set_bits(info->i2c, PM8607_MEAS_EN2, MEAS2_VRTC, 0); dev_dbg(info->dev, "finish VRTC calibration\n"); return; } #endif static int __devinit pm860x_rtc_probe(struct platform_device *pdev) { struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent); struct pm860x_rtc_pdata *pdata = NULL; struct pm860x_rtc_info *info; struct rtc_time tm; unsigned long ticks = 0; int ret; pdata = pdev->dev.platform_data; if (pdata == NULL) dev_warn(&pdev->dev, "No platform data!\n"); info = kzalloc(sizeof(struct pm860x_rtc_info), GFP_KERNEL); if (!info) return -ENOMEM; info->irq = platform_get_irq(pdev, 0); if (info->irq < 0) { dev_err(&pdev->dev, "No IRQ resource!\n"); ret = -EINVAL; goto out; } info->chip = chip; info->i2c = (chip->id == CHIP_PM8607) ? chip->client : chip->companion; info->dev = &pdev->dev; dev_set_drvdata(&pdev->dev, info); ret = request_threaded_irq(info->irq, NULL, rtc_update_handler, IRQF_ONESHOT, "rtc", info); if (ret < 0) { dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n", info->irq, ret); goto out; } /* set addresses of 32-bit base value for RTC time */ pm860x_page_reg_write(info->i2c, REG0_ADDR, REG0_DATA); pm860x_page_reg_write(info->i2c, REG1_ADDR, REG1_DATA); pm860x_page_reg_write(info->i2c, REG2_ADDR, REG2_DATA); pm860x_page_reg_write(info->i2c, REG3_ADDR, REG3_DATA); ret = pm860x_rtc_read_time(&pdev->dev, &tm); if (ret < 0) { dev_err(&pdev->dev, "Failed to read initial time.\n"); goto out_rtc; } if ((tm.tm_year < 70) || (tm.tm_year > 138)) { tm.tm_year = 70; tm.tm_mon = 0; tm.tm_mday = 1; tm.tm_hour = 0; tm.tm_min = 0; tm.tm_sec = 0; ret = pm860x_rtc_set_time(&pdev->dev, &tm); if (ret < 0) { dev_err(&pdev->dev, "Failed to set initial time.\n"); goto out_rtc; } } rtc_tm_to_time(&tm, &ticks); if (pdata && pdata->sync) { pdata->sync(ticks); info->sync = pdata->sync; } info->rtc_dev = rtc_device_register("88pm860x-rtc", &pdev->dev, &pm860x_rtc_ops, THIS_MODULE); ret = PTR_ERR(info->rtc_dev); if (IS_ERR(info->rtc_dev)) { dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret); goto out_rtc; } /* * enable internal XO instead of internal 3.25MHz clock since it can * free running in PMIC power-down state. */ pm860x_set_bits(info->i2c, PM8607_RTC1, RTC1_USE_XO, RTC1_USE_XO); #ifdef VRTC_CALIBRATION /* <00> -- 2.7V, <01> -- 2.9V, <10> -- 3.1V, <11> -- 3.3V */ if (pdata && pdata->vrtc) info->vrtc = pdata->vrtc & 0x3; else info->vrtc = 1; pm860x_set_bits(info->i2c, PM8607_MEAS_EN2, MEAS2_VRTC, MEAS2_VRTC); /* calibrate VRTC */ INIT_DELAYED_WORK(&info->calib_work, calibrate_vrtc_work); schedule_delayed_work(&info->calib_work, VRTC_CALIB_INTERVAL); #endif /* VRTC_CALIBRATION */ return 0; out_rtc: free_irq(info->irq, info); out: kfree(info); return ret; } static int __devexit pm860x_rtc_remove(struct platform_device *pdev) { struct pm860x_rtc_info *info = platform_get_drvdata(pdev); #ifdef VRTC_CALIBRATION flush_scheduled_work(); /* disable measurement */ pm860x_set_bits(info->i2c, PM8607_MEAS_EN2, MEAS2_VRTC, 0); #endif /* VRTC_CALIBRATION */ platform_set_drvdata(pdev, NULL); rtc_device_unregister(info->rtc_dev); free_irq(info->irq, info); kfree(info); return 0; } static struct platform_driver pm860x_rtc_driver = { .driver = { .name = "88pm860x-rtc", .owner = THIS_MODULE, }, .probe = pm860x_rtc_probe, .remove = __devexit_p(pm860x_rtc_remove), }; static int __init pm860x_rtc_init(void) { return platform_driver_register(&pm860x_rtc_driver); } module_init(pm860x_rtc_init); static void __exit pm860x_rtc_exit(void) { platform_driver_unregister(&pm860x_rtc_driver); } module_exit(pm860x_rtc_exit); MODULE_DESCRIPTION("Marvell 88PM860x RTC driver"); MODULE_AUTHOR("Haojian Zhuang <haojian.zhuang@marvell.com>"); MODULE_LICENSE("GPL");