/* * Core routines and tables shareable across OS platforms. * * Copyright (c) 1994-2002 Justin T. Gibbs. * Copyright (c) 2000-2003 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $ */ #ifdef __linux__ #include "aic79xx_osm.h" #include "aic79xx_inline.h" #include "aicasm/aicasm_insformat.h" #else #include <dev/aic7xxx/aic79xx_osm.h> #include <dev/aic7xxx/aic79xx_inline.h> #include <dev/aic7xxx/aicasm/aicasm_insformat.h> #endif /***************************** Lookup Tables **********************************/ static const char *const ahd_chip_names[] = { "NONE", "aic7901", "aic7902", "aic7901A" }; static const u_int num_chip_names = ARRAY_SIZE(ahd_chip_names); /* * Hardware error codes. */ struct ahd_hard_error_entry { uint8_t errno; const char *errmesg; }; static const struct ahd_hard_error_entry ahd_hard_errors[] = { { DSCTMOUT, "Discard Timer has timed out" }, { ILLOPCODE, "Illegal Opcode in sequencer program" }, { SQPARERR, "Sequencer Parity Error" }, { DPARERR, "Data-path Parity Error" }, { MPARERR, "Scratch or SCB Memory Parity Error" }, { CIOPARERR, "CIOBUS Parity Error" }, }; static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors); static const struct ahd_phase_table_entry ahd_phase_table[] = { { P_DATAOUT, MSG_NOOP, "in Data-out phase" }, { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" }, { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" }, { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" }, { P_COMMAND, MSG_NOOP, "in Command phase" }, { P_MESGOUT, MSG_NOOP, "in Message-out phase" }, { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" }, { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" }, { P_BUSFREE, MSG_NOOP, "while idle" }, { 0, MSG_NOOP, "in unknown phase" } }; /* * In most cases we only wish to itterate over real phases, so * exclude the last element from the count. */ static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1; /* Our Sequencer Program */ #include "aic79xx_seq.h" /**************************** Function Declarations ***************************/ static void ahd_handle_transmission_error(struct ahd_softc *ahd); static void ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1); static int ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime); static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd); static void ahd_handle_proto_violation(struct ahd_softc *ahd); static void ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static struct ahd_tmode_tstate* ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel); #ifdef AHD_TARGET_MODE static void ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force); #endif static void ahd_devlimited_syncrate(struct ahd_softc *ahd, struct ahd_initiator_tinfo *, u_int *period, u_int *ppr_options, role_t role); static void ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, struct ahd_transinfo *tinfo); static void ahd_update_pending_scbs(struct ahd_softc *ahd); static void ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static void ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, struct scb *scb); static void ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, struct scb *scb); static void ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static void ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, u_int period, u_int offset); static void ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, u_int bus_width); static void ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, u_int period, u_int offset, u_int bus_width, u_int ppr_options); static void ahd_clear_msg_state(struct ahd_softc *ahd); static void ahd_handle_message_phase(struct ahd_softc *ahd); typedef enum { AHDMSG_1B, AHDMSG_2B, AHDMSG_EXT } ahd_msgtype; static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full); static int ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static int ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo); static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd); static void ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, u_int lun, cam_status status, char *message, int verbose_level); #ifdef AHD_TARGET_MODE static void ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, struct scb *scb); #endif static u_int ahd_sglist_size(struct ahd_softc *ahd); static u_int ahd_sglist_allocsize(struct ahd_softc *ahd); static bus_dmamap_callback_t ahd_dmamap_cb; static void ahd_initialize_hscbs(struct ahd_softc *ahd); static int ahd_init_scbdata(struct ahd_softc *ahd); static void ahd_fini_scbdata(struct ahd_softc *ahd); static void ahd_setup_iocell_workaround(struct ahd_softc *ahd); static void ahd_iocell_first_selection(struct ahd_softc *ahd); static void ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx); static void ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb); static void ahd_chip_init(struct ahd_softc *ahd); static void ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb, struct scb *scb); static int ahd_qinfifo_count(struct ahd_softc *ahd); static int ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel, int lun, u_int tag, role_t role, uint32_t status, ahd_search_action action, u_int *list_head, u_int *list_tail, u_int tid); static void ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev, u_int tid_cur, u_int tid_next); static void ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid); static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid, u_int prev, u_int next, u_int tid); static void ahd_reset_current_bus(struct ahd_softc *ahd); static ahd_callback_t ahd_stat_timer; #ifdef AHD_DUMP_SEQ static void ahd_dumpseq(struct ahd_softc *ahd); #endif static void ahd_loadseq(struct ahd_softc *ahd); static int ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch, u_int start_instr, u_int *skip_addr); static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address); static void ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts); static int ahd_probe_stack_size(struct ahd_softc *ahd); static int ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb); static void ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb); #ifdef AHD_TARGET_MODE static void ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate, u_int initiator_id, u_int event_type, u_int event_arg); static void ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask); static int ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd); #endif static int ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel, int lun, u_int tag, role_t role, uint32_t status); static void ahd_alloc_scbs(struct ahd_softc *ahd); static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid); static void ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb); static void ahd_clear_critical_section(struct ahd_softc *ahd); static void ahd_clear_intstat(struct ahd_softc *ahd); static void ahd_enable_coalescing(struct ahd_softc *ahd, int enable); static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl); static void ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb); static void ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb); static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase); static void ahd_shutdown(void *arg); static void ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds, u_int mincmds); static int ahd_verify_vpd_cksum(struct vpd_config *vpd); static int ahd_wait_seeprom(struct ahd_softc *ahd); static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target, char channel, int lun, u_int tag, role_t role); static void ahd_reset_cmds_pending(struct ahd_softc *ahd); /*************************** Interrupt Services *******************************/ static void ahd_run_qoutfifo(struct ahd_softc *ahd); #ifdef AHD_TARGET_MODE static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused); #endif static void ahd_handle_hwerrint(struct ahd_softc *ahd); static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat); static void ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat); /************************ Sequencer Execution Control *************************/ void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst) { if (ahd->src_mode == src && ahd->dst_mode == dst) return; #ifdef AHD_DEBUG if (ahd->src_mode == AHD_MODE_UNKNOWN || ahd->dst_mode == AHD_MODE_UNKNOWN) panic("Setting mode prior to saving it.\n"); if ((ahd_debug & AHD_SHOW_MODEPTR) != 0) printk("%s: Setting mode 0x%x\n", ahd_name(ahd), ahd_build_mode_state(ahd, src, dst)); #endif ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst)); ahd->src_mode = src; ahd->dst_mode = dst; } static void ahd_update_modes(struct ahd_softc *ahd) { ahd_mode_state mode_ptr; ahd_mode src; ahd_mode dst; mode_ptr = ahd_inb(ahd, MODE_PTR); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MODEPTR) != 0) printk("Reading mode 0x%x\n", mode_ptr); #endif ahd_extract_mode_state(ahd, mode_ptr, &src, &dst); ahd_known_modes(ahd, src, dst); } static void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode, ahd_mode dstmode, const char *file, int line) { #ifdef AHD_DEBUG if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) { panic("%s:%s:%d: Mode assertion failed.\n", ahd_name(ahd), file, line); } #endif } #define AHD_ASSERT_MODES(ahd, source, dest) \ ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__); ahd_mode_state ahd_save_modes(struct ahd_softc *ahd) { if (ahd->src_mode == AHD_MODE_UNKNOWN || ahd->dst_mode == AHD_MODE_UNKNOWN) ahd_update_modes(ahd); return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode)); } void ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state) { ahd_mode src; ahd_mode dst; ahd_extract_mode_state(ahd, state, &src, &dst); ahd_set_modes(ahd, src, dst); } /* * Determine whether the sequencer has halted code execution. * Returns non-zero status if the sequencer is stopped. */ int ahd_is_paused(struct ahd_softc *ahd) { return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0); } /* * Request that the sequencer stop and wait, indefinitely, for it * to stop. The sequencer will only acknowledge that it is paused * once it has reached an instruction boundary and PAUSEDIS is * cleared in the SEQCTL register. The sequencer may use PAUSEDIS * for critical sections. */ void ahd_pause(struct ahd_softc *ahd) { ahd_outb(ahd, HCNTRL, ahd->pause); /* * Since the sequencer can disable pausing in a critical section, we * must loop until it actually stops. */ while (ahd_is_paused(ahd) == 0) ; } /* * Allow the sequencer to continue program execution. * We check here to ensure that no additional interrupt * sources that would cause the sequencer to halt have been * asserted. If, for example, a SCSI bus reset is detected * while we are fielding a different, pausing, interrupt type, * we don't want to release the sequencer before going back * into our interrupt handler and dealing with this new * condition. */ void ahd_unpause(struct ahd_softc *ahd) { /* * Automatically restore our modes to those saved * prior to the first change of the mode. */ if (ahd->saved_src_mode != AHD_MODE_UNKNOWN && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) { if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0) ahd_reset_cmds_pending(ahd); ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode); } if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0) ahd_outb(ahd, HCNTRL, ahd->unpause); ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN); } /*********************** Scatter Gather List Handling *************************/ void * ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb, void *sgptr, dma_addr_t addr, bus_size_t len, int last) { scb->sg_count++; if (sizeof(dma_addr_t) > 4 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) { struct ahd_dma64_seg *sg; sg = (struct ahd_dma64_seg *)sgptr; sg->addr = ahd_htole64(addr); sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0)); return (sg + 1); } else { struct ahd_dma_seg *sg; sg = (struct ahd_dma_seg *)sgptr; sg->addr = ahd_htole32(addr & 0xFFFFFFFF); sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000) | (last ? AHD_DMA_LAST_SEG : 0)); return (sg + 1); } } static void ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb) { /* XXX Handle target mode SCBs. */ scb->crc_retry_count = 0; if ((scb->flags & SCB_PACKETIZED) != 0) { /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */ scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE; } else { if (ahd_get_transfer_length(scb) & 0x01) scb->hscb->task_attribute = SCB_XFERLEN_ODD; else scb->hscb->task_attribute = 0; } if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0) scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr = ahd_htole32(scb->sense_busaddr); } static void ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb) { /* * Copy the first SG into the "current" data ponter area. */ if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { struct ahd_dma64_seg *sg; sg = (struct ahd_dma64_seg *)scb->sg_list; scb->hscb->dataptr = sg->addr; scb->hscb->datacnt = sg->len; } else { struct ahd_dma_seg *sg; uint32_t *dataptr_words; sg = (struct ahd_dma_seg *)scb->sg_list; dataptr_words = (uint32_t*)&scb->hscb->dataptr; dataptr_words[0] = sg->addr; dataptr_words[1] = 0; if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { uint64_t high_addr; high_addr = ahd_le32toh(sg->len) & 0x7F000000; scb->hscb->dataptr |= ahd_htole64(high_addr << 8); } scb->hscb->datacnt = sg->len; } /* * Note where to find the SG entries in bus space. * We also set the full residual flag which the * sequencer will clear as soon as a data transfer * occurs. */ scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID); } static void ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb) { scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL); scb->hscb->dataptr = 0; scb->hscb->datacnt = 0; } /************************** Memory mapping routines ***************************/ static void * ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr) { dma_addr_t sg_offset; /* sg_list_phys points to entry 1, not 0 */ sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd)); return ((uint8_t *)scb->sg_list + sg_offset); } static uint32_t ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg) { dma_addr_t sg_offset; /* sg_list_phys points to entry 1, not 0 */ sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list) - ahd_sg_size(ahd); return (scb->sg_list_busaddr + sg_offset); } static void ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op) { ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat, scb->hscb_map->dmamap, /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr, /*len*/sizeof(*scb->hscb), op); } void ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op) { if (scb->sg_count == 0) return; ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat, scb->sg_map->dmamap, /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd), /*len*/ahd_sg_size(ahd) * scb->sg_count, op); } static void ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op) { ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat, scb->sense_map->dmamap, /*offset*/scb->sense_busaddr, /*len*/AHD_SENSE_BUFSIZE, op); } #ifdef AHD_TARGET_MODE static uint32_t ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index) { return (((uint8_t *)&ahd->targetcmds[index]) - (uint8_t *)ahd->qoutfifo); } #endif /*********************** Miscellaneous Support Functions ***********************/ /* * Return pointers to the transfer negotiation information * for the specified our_id/remote_id pair. */ struct ahd_initiator_tinfo * ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id, u_int remote_id, struct ahd_tmode_tstate **tstate) { /* * Transfer data structures are stored from the perspective * of the target role. Since the parameters for a connection * in the initiator role to a given target are the same as * when the roles are reversed, we pretend we are the target. */ if (channel == 'B') our_id += 8; *tstate = ahd->enabled_targets[our_id]; return (&(*tstate)->transinfo[remote_id]); } uint16_t ahd_inw(struct ahd_softc *ahd, u_int port) { /* * Read high byte first as some registers increment * or have other side effects when the low byte is * read. */ uint16_t r = ahd_inb(ahd, port+1) << 8; return r | ahd_inb(ahd, port); } void ahd_outw(struct ahd_softc *ahd, u_int port, u_int value) { /* * Write low byte first to accommodate registers * such as PRGMCNT where the order maters. */ ahd_outb(ahd, port, value & 0xFF); ahd_outb(ahd, port+1, (value >> 8) & 0xFF); } uint32_t ahd_inl(struct ahd_softc *ahd, u_int port) { return ((ahd_inb(ahd, port)) | (ahd_inb(ahd, port+1) << 8) | (ahd_inb(ahd, port+2) << 16) | (ahd_inb(ahd, port+3) << 24)); } void ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value) { ahd_outb(ahd, port, (value) & 0xFF); ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF); ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF); ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF); } uint64_t ahd_inq(struct ahd_softc *ahd, u_int port) { return ((ahd_inb(ahd, port)) | (ahd_inb(ahd, port+1) << 8) | (ahd_inb(ahd, port+2) << 16) | (ahd_inb(ahd, port+3) << 24) | (((uint64_t)ahd_inb(ahd, port+4)) << 32) | (((uint64_t)ahd_inb(ahd, port+5)) << 40) | (((uint64_t)ahd_inb(ahd, port+6)) << 48) | (((uint64_t)ahd_inb(ahd, port+7)) << 56)); } void ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value) { ahd_outb(ahd, port, value & 0xFF); ahd_outb(ahd, port+1, (value >> 8) & 0xFF); ahd_outb(ahd, port+2, (value >> 16) & 0xFF); ahd_outb(ahd, port+3, (value >> 24) & 0xFF); ahd_outb(ahd, port+4, (value >> 32) & 0xFF); ahd_outb(ahd, port+5, (value >> 40) & 0xFF); ahd_outb(ahd, port+6, (value >> 48) & 0xFF); ahd_outb(ahd, port+7, (value >> 56) & 0xFF); } u_int ahd_get_scbptr(struct ahd_softc *ahd) { AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8)); } void ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr) { AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); ahd_outb(ahd, SCBPTR, scbptr & 0xFF); ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF); } #if 0 /* unused */ static u_int ahd_get_hnscb_qoff(struct ahd_softc *ahd) { return (ahd_inw_atomic(ahd, HNSCB_QOFF)); } #endif static void ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value) { ahd_outw_atomic(ahd, HNSCB_QOFF, value); } #if 0 /* unused */ static u_int ahd_get_hescb_qoff(struct ahd_softc *ahd) { return (ahd_inb(ahd, HESCB_QOFF)); } #endif static void ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value) { ahd_outb(ahd, HESCB_QOFF, value); } static u_int ahd_get_snscb_qoff(struct ahd_softc *ahd) { u_int oldvalue; AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); oldvalue = ahd_inw(ahd, SNSCB_QOFF); ahd_outw(ahd, SNSCB_QOFF, oldvalue); return (oldvalue); } static void ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value) { AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); ahd_outw(ahd, SNSCB_QOFF, value); } #if 0 /* unused */ static u_int ahd_get_sescb_qoff(struct ahd_softc *ahd) { AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); return (ahd_inb(ahd, SESCB_QOFF)); } #endif static void ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value) { AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); ahd_outb(ahd, SESCB_QOFF, value); } #if 0 /* unused */ static u_int ahd_get_sdscb_qoff(struct ahd_softc *ahd) { AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8)); } #endif static void ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value) { AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); ahd_outb(ahd, SDSCB_QOFF, value & 0xFF); ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF); } u_int ahd_inb_scbram(struct ahd_softc *ahd, u_int offset) { u_int value; /* * Workaround PCI-X Rev A. hardware bug. * After a host read of SCB memory, the chip * may become confused into thinking prefetch * was required. This starts the discard timer * running and can cause an unexpected discard * timer interrupt. The work around is to read * a normal register prior to the exhaustion of * the discard timer. The mode pointer register * has no side effects and so serves well for * this purpose. * * Razor #528 */ value = ahd_inb(ahd, offset); if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0) ahd_inb(ahd, MODE_PTR); return (value); } u_int ahd_inw_scbram(struct ahd_softc *ahd, u_int offset) { return (ahd_inb_scbram(ahd, offset) | (ahd_inb_scbram(ahd, offset+1) << 8)); } static uint32_t ahd_inl_scbram(struct ahd_softc *ahd, u_int offset) { return (ahd_inw_scbram(ahd, offset) | (ahd_inw_scbram(ahd, offset+2) << 16)); } static uint64_t ahd_inq_scbram(struct ahd_softc *ahd, u_int offset) { return (ahd_inl_scbram(ahd, offset) | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32); } struct scb * ahd_lookup_scb(struct ahd_softc *ahd, u_int tag) { struct scb* scb; if (tag >= AHD_SCB_MAX) return (NULL); scb = ahd->scb_data.scbindex[tag]; if (scb != NULL) ahd_sync_scb(ahd, scb, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); return (scb); } static void ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb) { struct hardware_scb *q_hscb; struct map_node *q_hscb_map; uint32_t saved_hscb_busaddr; /* * Our queuing method is a bit tricky. The card * knows in advance which HSCB (by address) to download, * and we can't disappoint it. To achieve this, the next * HSCB to download is saved off in ahd->next_queued_hscb. * When we are called to queue "an arbitrary scb", * we copy the contents of the incoming HSCB to the one * the sequencer knows about, swap HSCB pointers and * finally assign the SCB to the tag indexed location * in the scb_array. This makes sure that we can still * locate the correct SCB by SCB_TAG. */ q_hscb = ahd->next_queued_hscb; q_hscb_map = ahd->next_queued_hscb_map; saved_hscb_busaddr = q_hscb->hscb_busaddr; memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb)); q_hscb->hscb_busaddr = saved_hscb_busaddr; q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr; /* Now swap HSCB pointers. */ ahd->next_queued_hscb = scb->hscb; ahd->next_queued_hscb_map = scb->hscb_map; scb->hscb = q_hscb; scb->hscb_map = q_hscb_map; /* Now define the mapping from tag to SCB in the scbindex */ ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb; } /* * Tell the sequencer about a new transaction to execute. */ void ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb) { ahd_swap_with_next_hscb(ahd, scb); if (SCBID_IS_NULL(SCB_GET_TAG(scb))) panic("Attempt to queue invalid SCB tag %x\n", SCB_GET_TAG(scb)); /* * Keep a history of SCBs we've downloaded in the qinfifo. */ ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb); ahd->qinfifonext++; if (scb->sg_count != 0) ahd_setup_data_scb(ahd, scb); else ahd_setup_noxfer_scb(ahd, scb); ahd_setup_scb_common(ahd, scb); /* * Make sure our data is consistent from the * perspective of the adapter. */ ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_QUEUE) != 0) { uint64_t host_dataptr; host_dataptr = ahd_le64toh(scb->hscb->dataptr); printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n", ahd_name(ahd), SCB_GET_TAG(scb), scb->hscb->scsiid, ahd_le32toh(scb->hscb->hscb_busaddr), (u_int)((host_dataptr >> 32) & 0xFFFFFFFF), (u_int)(host_dataptr & 0xFFFFFFFF), ahd_le32toh(scb->hscb->datacnt)); } #endif /* Tell the adapter about the newly queued SCB */ ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); } /************************** Interrupt Processing ******************************/ static void ahd_sync_qoutfifo(struct ahd_softc *ahd, int op) { ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, /*offset*/0, /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op); } static void ahd_sync_tqinfifo(struct ahd_softc *ahd, int op) { #ifdef AHD_TARGET_MODE if ((ahd->flags & AHD_TARGETROLE) != 0) { ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, ahd_targetcmd_offset(ahd, 0), sizeof(struct target_cmd) * AHD_TMODE_CMDS, op); } #endif } /* * See if the firmware has posted any completed commands * into our in-core command complete fifos. */ #define AHD_RUN_QOUTFIFO 0x1 #define AHD_RUN_TQINFIFO 0x2 static u_int ahd_check_cmdcmpltqueues(struct ahd_softc *ahd) { u_int retval; retval = 0; ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo), /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD); if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag == ahd->qoutfifonext_valid_tag) retval |= AHD_RUN_QOUTFIFO; #ifdef AHD_TARGET_MODE if ((ahd->flags & AHD_TARGETROLE) != 0 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) { ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, ahd_targetcmd_offset(ahd, ahd->tqinfifofnext), /*len*/sizeof(struct target_cmd), BUS_DMASYNC_POSTREAD); if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0) retval |= AHD_RUN_TQINFIFO; } #endif return (retval); } /* * Catch an interrupt from the adapter */ int ahd_intr(struct ahd_softc *ahd) { u_int intstat; if ((ahd->pause & INTEN) == 0) { /* * Our interrupt is not enabled on the chip * and may be disabled for re-entrancy reasons, * so just return. This is likely just a shared * interrupt. */ return (0); } /* * Instead of directly reading the interrupt status register, * infer the cause of the interrupt by checking our in-core * completion queues. This avoids a costly PCI bus read in * most cases. */ if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0 && (ahd_check_cmdcmpltqueues(ahd) != 0)) intstat = CMDCMPLT; else intstat = ahd_inb(ahd, INTSTAT); if ((intstat & INT_PEND) == 0) return (0); if (intstat & CMDCMPLT) { ahd_outb(ahd, CLRINT, CLRCMDINT); /* * Ensure that the chip sees that we've cleared * this interrupt before we walk the output fifo. * Otherwise, we may, due to posted bus writes, * clear the interrupt after we finish the scan, * and after the sequencer has added new entries * and asserted the interrupt again. */ if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { if (ahd_is_paused(ahd)) { /* * Potentially lost SEQINT. * If SEQINTCODE is non-zero, * simulate the SEQINT. */ if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT) intstat |= SEQINT; } } else { ahd_flush_device_writes(ahd); } ahd_run_qoutfifo(ahd); ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++; ahd->cmdcmplt_total++; #ifdef AHD_TARGET_MODE if ((ahd->flags & AHD_TARGETROLE) != 0) ahd_run_tqinfifo(ahd, /*paused*/FALSE); #endif } /* * Handle statuses that may invalidate our cached * copy of INTSTAT separately. */ if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) { /* Hot eject. Do nothing */ } else if (intstat & HWERRINT) { ahd_handle_hwerrint(ahd); } else if ((intstat & (PCIINT|SPLTINT)) != 0) { ahd->bus_intr(ahd); } else { if ((intstat & SEQINT) != 0) ahd_handle_seqint(ahd, intstat); if ((intstat & SCSIINT) != 0) ahd_handle_scsiint(ahd, intstat); } return (1); } /******************************** Private Inlines *****************************/ static inline void ahd_assert_atn(struct ahd_softc *ahd) { ahd_outb(ahd, SCSISIGO, ATNO); } /* * Determine if the current connection has a packetized * agreement. This does not necessarily mean that we * are currently in a packetized transfer. We could * just as easily be sending or receiving a message. */ static int ahd_currently_packetized(struct ahd_softc *ahd) { ahd_mode_state saved_modes; int packetized; saved_modes = ahd_save_modes(ahd); if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) { /* * The packetized bit refers to the last * connection, not the current one. Check * for non-zero LQISTATE instead. */ ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); packetized = ahd_inb(ahd, LQISTATE) != 0; } else { ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED; } ahd_restore_modes(ahd, saved_modes); return (packetized); } static inline int ahd_set_active_fifo(struct ahd_softc *ahd) { u_int active_fifo; AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO; switch (active_fifo) { case 0: case 1: ahd_set_modes(ahd, active_fifo, active_fifo); return (1); default: return (0); } } static inline void ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl) { ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL); } /* * Determine whether the sequencer reported a residual * for this SCB/transaction. */ static inline void ahd_update_residual(struct ahd_softc *ahd, struct scb *scb) { uint32_t sgptr; sgptr = ahd_le32toh(scb->hscb->sgptr); if ((sgptr & SG_STATUS_VALID) != 0) ahd_calc_residual(ahd, scb); } static inline void ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb) { uint32_t sgptr; sgptr = ahd_le32toh(scb->hscb->sgptr); if ((sgptr & SG_STATUS_VALID) != 0) ahd_handle_scb_status(ahd, scb); else ahd_done(ahd, scb); } /************************* Sequencer Execution Control ************************/ /* * Restart the sequencer program from address zero */ static void ahd_restart(struct ahd_softc *ahd) { ahd_pause(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); /* No more pending messages */ ahd_clear_msg_state(ahd); ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */ ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */ ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET); ahd_outb(ahd, SEQINTCTL, 0); ahd_outb(ahd, LASTPHASE, P_BUSFREE); ahd_outb(ahd, SEQ_FLAGS, 0); ahd_outb(ahd, SAVED_SCSIID, 0xFF); ahd_outb(ahd, SAVED_LUN, 0xFF); /* * Ensure that the sequencer's idea of TQINPOS * matches our own. The sequencer increments TQINPOS * only after it sees a DMA complete and a reset could * occur before the increment leaving the kernel to believe * the command arrived but the sequencer to not. */ ahd_outb(ahd, TQINPOS, ahd->tqinfifonext); /* Always allow reselection */ ahd_outb(ahd, SCSISEQ1, ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP)); ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); /* * Clear any pending sequencer interrupt. It is no * longer relevant since we're resetting the Program * Counter. */ ahd_outb(ahd, CLRINT, CLRSEQINT); ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET); ahd_unpause(ahd); } static void ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo) { ahd_mode_state saved_modes; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_FIFOS) != 0) printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo); #endif saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, fifo, fifo); ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT); if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) ahd_outb(ahd, CCSGCTL, CCSGRESET); ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR); ahd_outb(ahd, SG_STATE, 0); ahd_restore_modes(ahd, saved_modes); } /************************* Input/Output Queues ********************************/ /* * Flush and completed commands that are sitting in the command * complete queues down on the chip but have yet to be dma'ed back up. */ static void ahd_flush_qoutfifo(struct ahd_softc *ahd) { struct scb *scb; ahd_mode_state saved_modes; u_int saved_scbptr; u_int ccscbctl; u_int scbid; u_int next_scbid; saved_modes = ahd_save_modes(ahd); /* * Flush the good status FIFO for completed packetized commands. */ ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); saved_scbptr = ahd_get_scbptr(ahd); while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) { u_int fifo_mode; u_int i; scbid = ahd_inw(ahd, GSFIFO); scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { printk("%s: Warning - GSFIFO SCB %d invalid\n", ahd_name(ahd), scbid); continue; } /* * Determine if this transaction is still active in * any FIFO. If it is, we must flush that FIFO to * the host before completing the command. */ fifo_mode = 0; rescan_fifos: for (i = 0; i < 2; i++) { /* Toggle to the other mode. */ fifo_mode ^= 1; ahd_set_modes(ahd, fifo_mode, fifo_mode); if (ahd_scb_active_in_fifo(ahd, scb) == 0) continue; ahd_run_data_fifo(ahd, scb); /* * Running this FIFO may cause a CFG4DATA for * this same transaction to assert in the other * FIFO or a new snapshot SAVEPTRS interrupt * in this FIFO. Even running a FIFO may not * clear the transaction if we are still waiting * for data to drain to the host. We must loop * until the transaction is not active in either * FIFO just to be sure. Reset our loop counter * so we will visit both FIFOs again before * declaring this transaction finished. We * also delay a bit so that status has a chance * to change before we look at this FIFO again. */ ahd_delay(200); goto rescan_fifos; } ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); ahd_set_scbptr(ahd, scbid); if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0 || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR) & SG_LIST_NULL) != 0)) { u_int comp_head; /* * The transfer completed with a residual. * Place this SCB on the complete DMA list * so that we update our in-core copy of the * SCB before completing the command. */ ahd_outb(ahd, SCB_SCSI_STATUS, 0); ahd_outb(ahd, SCB_SGPTR, ahd_inb_scbram(ahd, SCB_SGPTR) | SG_STATUS_VALID); ahd_outw(ahd, SCB_TAG, scbid); ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL); comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD); if (SCBID_IS_NULL(comp_head)) { ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid); ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid); } else { u_int tail; tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL); ahd_set_scbptr(ahd, tail); ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid); ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid); ahd_set_scbptr(ahd, scbid); } } else ahd_complete_scb(ahd, scb); } ahd_set_scbptr(ahd, saved_scbptr); /* * Setup for command channel portion of flush. */ ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); /* * Wait for any inprogress DMA to complete and clear DMA state * if this if for an SCB in the qinfifo. */ while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) { if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) { if ((ccscbctl & ARRDONE) != 0) break; } else if ((ccscbctl & CCSCBDONE) != 0) break; ahd_delay(200); } /* * We leave the sequencer to cleanup in the case of DMA's to * update the qoutfifo. In all other cases (DMA's to the * chip or a push of an SCB from the COMPLETE_DMA_SCB list), * we disable the DMA engine so that the sequencer will not * attempt to handle the DMA completion. */ if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0) ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN)); /* * Complete any SCBs that just finished * being DMA'ed into the qoutfifo. */ ahd_run_qoutfifo(ahd); saved_scbptr = ahd_get_scbptr(ahd); /* * Manually update/complete any completed SCBs that are waiting to be * DMA'ed back up to the host. */ scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD); while (!SCBID_IS_NULL(scbid)) { uint8_t *hscb_ptr; u_int i; ahd_set_scbptr(ahd, scbid); next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { printk("%s: Warning - DMA-up and complete " "SCB %d invalid\n", ahd_name(ahd), scbid); continue; } hscb_ptr = (uint8_t *)scb->hscb; for (i = 0; i < sizeof(struct hardware_scb); i++) *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i); ahd_complete_scb(ahd, scb); scbid = next_scbid; } ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL); ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL); scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD); while (!SCBID_IS_NULL(scbid)) { ahd_set_scbptr(ahd, scbid); next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { printk("%s: Warning - Complete Qfrz SCB %d invalid\n", ahd_name(ahd), scbid); continue; } ahd_complete_scb(ahd, scb); scbid = next_scbid; } ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL); scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD); while (!SCBID_IS_NULL(scbid)) { ahd_set_scbptr(ahd, scbid); next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { printk("%s: Warning - Complete SCB %d invalid\n", ahd_name(ahd), scbid); continue; } ahd_complete_scb(ahd, scb); scbid = next_scbid; } ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL); /* * Restore state. */ ahd_set_scbptr(ahd, saved_scbptr); ahd_restore_modes(ahd, saved_modes); ahd->flags |= AHD_UPDATE_PEND_CMDS; } /* * Determine if an SCB for a packetized transaction * is active in a FIFO. */ static int ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb) { /* * The FIFO is only active for our transaction if * the SCBPTR matches the SCB's ID and the firmware * has installed a handler for the FIFO or we have * a pending SAVEPTRS or CFG4DATA interrupt. */ if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb) || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0 && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0)) return (0); return (1); } /* * Run a data fifo to completion for a transaction we know * has completed across the SCSI bus (good status has been * received). We are already set to the correct FIFO mode * on entry to this routine. * * This function attempts to operate exactly as the firmware * would when running this FIFO. Care must be taken to update * this routine any time the firmware's FIFO algorithm is * changed. */ static void ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb) { u_int seqintsrc; seqintsrc = ahd_inb(ahd, SEQINTSRC); if ((seqintsrc & CFG4DATA) != 0) { uint32_t datacnt; uint32_t sgptr; /* * Clear full residual flag. */ sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID; ahd_outb(ahd, SCB_SGPTR, sgptr); /* * Load datacnt and address. */ datacnt = ahd_inl_scbram(ahd, SCB_DATACNT); if ((datacnt & AHD_DMA_LAST_SEG) != 0) { sgptr |= LAST_SEG; ahd_outb(ahd, SG_STATE, 0); } else ahd_outb(ahd, SG_STATE, LOADING_NEEDED); ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR)); ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK); ahd_outb(ahd, SG_CACHE_PRE, sgptr); ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN); /* * Initialize Residual Fields. */ ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24); ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK); /* * Mark the SCB as having a FIFO in use. */ ahd_outb(ahd, SCB_FIFO_USE_COUNT, ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1); /* * Install a "fake" handler for this FIFO. */ ahd_outw(ahd, LONGJMP_ADDR, 0); /* * Notify the hardware that we have satisfied * this sequencer interrupt. */ ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA); } else if ((seqintsrc & SAVEPTRS) != 0) { uint32_t sgptr; uint32_t resid; if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) { /* * Snapshot Save Pointers. All that * is necessary to clear the snapshot * is a CLRCHN. */ goto clrchn; } /* * Disable S/G fetch so the DMA engine * is available to future users. */ if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) ahd_outb(ahd, CCSGCTL, 0); ahd_outb(ahd, SG_STATE, 0); /* * Flush the data FIFO. Strickly only * necessary for Rev A parts. */ ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH); /* * Calculate residual. */ sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); resid = ahd_inl(ahd, SHCNT); resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24; ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid); if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) { /* * Must back up to the correct S/G element. * Typically this just means resetting our * low byte to the offset in the SG_CACHE, * but if we wrapped, we have to correct * the other bytes of the sgptr too. */ if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0 && (sgptr & 0x80) == 0) sgptr -= 0x100; sgptr &= ~0xFF; sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW) & SG_ADDR_MASK; ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr); ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0); } else if ((resid & AHD_SG_LEN_MASK) == 0) { ahd_outb(ahd, SCB_RESIDUAL_SGPTR, sgptr | SG_LIST_NULL); } /* * Save Pointers. */ ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR)); ahd_outl(ahd, SCB_DATACNT, resid); ahd_outl(ahd, SCB_SGPTR, sgptr); ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS); ahd_outb(ahd, SEQIMODE, ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS); /* * If the data is to the SCSI bus, we are * done, otherwise wait for FIFOEMP. */ if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0) goto clrchn; } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) { uint32_t sgptr; uint64_t data_addr; uint32_t data_len; u_int dfcntrl; /* * Disable S/G fetch so the DMA engine * is available to future users. We won't * be using the DMA engine to load segments. */ if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) { ahd_outb(ahd, CCSGCTL, 0); ahd_outb(ahd, SG_STATE, LOADING_NEEDED); } /* * Wait for the DMA engine to notice that the * host transfer is enabled and that there is * space in the S/G FIFO for new segments before * loading more segments. */ if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) { /* * Determine the offset of the next S/G * element to load. */ sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); sgptr &= SG_PTR_MASK; if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { struct ahd_dma64_seg *sg; sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); data_addr = sg->addr; data_len = sg->len; sgptr += sizeof(*sg); } else { struct ahd_dma_seg *sg; sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK; data_addr <<= 8; data_addr |= sg->addr; data_len = sg->len; sgptr += sizeof(*sg); } /* * Update residual information. */ ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24); ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr); /* * Load the S/G. */ if (data_len & AHD_DMA_LAST_SEG) { sgptr |= LAST_SEG; ahd_outb(ahd, SG_STATE, 0); } ahd_outq(ahd, HADDR, data_addr); ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK); ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF); /* * Advertise the segment to the hardware. */ dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN; if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { /* * Use SCSIENWRDIS so that SCSIEN * is never modified by this * operation. */ dfcntrl |= SCSIENWRDIS; } ahd_outb(ahd, DFCNTRL, dfcntrl); } } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) { /* * Transfer completed to the end of SG list * and has flushed to the host. */ ahd_outb(ahd, SCB_SGPTR, ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL); goto clrchn; } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) { clrchn: /* * Clear any handler for this FIFO, decrement * the FIFO use count for the SCB, and release * the FIFO. */ ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR); ahd_outb(ahd, SCB_FIFO_USE_COUNT, ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1); ahd_outb(ahd, DFFSXFRCTL, CLRCHN); } } /* * Look for entries in the QoutFIFO that have completed. * The valid_tag completion field indicates the validity * of the entry - the valid value toggles each time through * the queue. We use the sg_status field in the completion * entry to avoid referencing the hscb if the completion * occurred with no errors and no residual. sg_status is * a copy of the first byte (little endian) of the sgptr * hscb field. */ static void ahd_run_qoutfifo(struct ahd_softc *ahd) { struct ahd_completion *completion; struct scb *scb; u_int scb_index; if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0) panic("ahd_run_qoutfifo recursion"); ahd->flags |= AHD_RUNNING_QOUTFIFO; ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD); for (;;) { completion = &ahd->qoutfifo[ahd->qoutfifonext]; if (completion->valid_tag != ahd->qoutfifonext_valid_tag) break; scb_index = ahd_le16toh(completion->tag); scb = ahd_lookup_scb(ahd, scb_index); if (scb == NULL) { printk("%s: WARNING no command for scb %d " "(cmdcmplt)\nQOUTPOS = %d\n", ahd_name(ahd), scb_index, ahd->qoutfifonext); ahd_dump_card_state(ahd); } else if ((completion->sg_status & SG_STATUS_VALID) != 0) { ahd_handle_scb_status(ahd, scb); } else { ahd_done(ahd, scb); } ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1); if (ahd->qoutfifonext == 0) ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID; } ahd->flags &= ~AHD_RUNNING_QOUTFIFO; } /************************* Interrupt Handling *********************************/ static void ahd_handle_hwerrint(struct ahd_softc *ahd) { /* * Some catastrophic hardware error has occurred. * Print it for the user and disable the controller. */ int i; int error; error = ahd_inb(ahd, ERROR); for (i = 0; i < num_errors; i++) { if ((error & ahd_hard_errors[i].errno) != 0) printk("%s: hwerrint, %s\n", ahd_name(ahd), ahd_hard_errors[i].errmesg); } ahd_dump_card_state(ahd); panic("BRKADRINT"); /* Tell everyone that this HBA is no longer available */ ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS, CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN, CAM_NO_HBA); /* Tell the system that this controller has gone away. */ ahd_free(ahd); } #ifdef AHD_DEBUG static void ahd_dump_sglist(struct scb *scb) { int i; if (scb->sg_count > 0) { if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) { struct ahd_dma64_seg *sg_list; sg_list = (struct ahd_dma64_seg*)scb->sg_list; for (i = 0; i < scb->sg_count; i++) { uint64_t addr; uint32_t len; addr = ahd_le64toh(sg_list[i].addr); len = ahd_le32toh(sg_list[i].len); printk("sg[%d] - Addr 0x%x%x : Length %d%s\n", i, (uint32_t)((addr >> 32) & 0xFFFFFFFF), (uint32_t)(addr & 0xFFFFFFFF), sg_list[i].len & AHD_SG_LEN_MASK, (sg_list[i].len & AHD_DMA_LAST_SEG) ? " Last" : ""); } } else { struct ahd_dma_seg *sg_list; sg_list = (struct ahd_dma_seg*)scb->sg_list; for (i = 0; i < scb->sg_count; i++) { uint32_t len; len = ahd_le32toh(sg_list[i].len); printk("sg[%d] - Addr 0x%x%x : Length %d%s\n", i, (len & AHD_SG_HIGH_ADDR_MASK) >> 24, ahd_le32toh(sg_list[i].addr), len & AHD_SG_LEN_MASK, len & AHD_DMA_LAST_SEG ? " Last" : ""); } } } } #endif /* AHD_DEBUG */ static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat) { u_int seqintcode; /* * Save the sequencer interrupt code and clear the SEQINT * bit. We will unpause the sequencer, if appropriate, * after servicing the request. */ seqintcode = ahd_inb(ahd, SEQINTCODE); ahd_outb(ahd, CLRINT, CLRSEQINT); if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { /* * Unpause the sequencer and let it clear * SEQINT by writing NO_SEQINT to it. This * will cause the sequencer to be paused again, * which is the expected state of this routine. */ ahd_unpause(ahd); while (!ahd_is_paused(ahd)) ; ahd_outb(ahd, CLRINT, CLRSEQINT); } ahd_update_modes(ahd); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) printk("%s: Handle Seqint Called for code %d\n", ahd_name(ahd), seqintcode); #endif switch (seqintcode) { case ENTERING_NONPACK: { struct scb *scb; u_int scbid; AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { /* * Somehow need to know if this * is from a selection or reselection. * From that, we can determine target * ID so we at least have an I_T nexus. */ } else { ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid); ahd_outb(ahd, SAVED_LUN, scb->hscb->lun); ahd_outb(ahd, SEQ_FLAGS, 0x0); } if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) { /* * Phase change after read stream with * CRC error with P0 asserted on last * packet. */ #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) printk("%s: Assuming LQIPHASE_NLQ with " "P0 assertion\n", ahd_name(ahd)); #endif } #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) printk("%s: Entering NONPACK\n", ahd_name(ahd)); #endif break; } case INVALID_SEQINT: printk("%s: Invalid Sequencer interrupt occurred, " "resetting channel.\n", ahd_name(ahd)); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) ahd_dump_card_state(ahd); #endif ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); break; case STATUS_OVERRUN: { struct scb *scb; u_int scbid; scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb != NULL) ahd_print_path(ahd, scb); else printk("%s: ", ahd_name(ahd)); printk("SCB %d Packetized Status Overrun", scbid); ahd_dump_card_state(ahd); ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); break; } case CFG4ISTAT_INTR: { struct scb *scb; u_int scbid; scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { ahd_dump_card_state(ahd); printk("CFG4ISTAT: Free SCB %d referenced", scbid); panic("For safety"); } ahd_outq(ahd, HADDR, scb->sense_busaddr); ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE); ahd_outb(ahd, HCNT + 2, 0); ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG); ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN); break; } case ILLEGAL_PHASE: { u_int bus_phase; bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; printk("%s: ILLEGAL_PHASE 0x%x\n", ahd_name(ahd), bus_phase); switch (bus_phase) { case P_DATAOUT: case P_DATAIN: case P_DATAOUT_DT: case P_DATAIN_DT: case P_MESGOUT: case P_STATUS: case P_MESGIN: ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); printk("%s: Issued Bus Reset.\n", ahd_name(ahd)); break; case P_COMMAND: { struct ahd_devinfo devinfo; struct scb *scb; struct ahd_initiator_tinfo *targ_info; struct ahd_tmode_tstate *tstate; struct ahd_transinfo *tinfo; u_int scbid; /* * If a target takes us into the command phase * assume that it has been externally reset and * has thus lost our previous packetized negotiation * agreement. Since we have not sent an identify * message and may not have fully qualified the * connection, we change our command to TUR, assert * ATN and ABORT the task when we go to message in * phase. The OSM will see the REQUEUE_REQUEST * status and retry the command. */ scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { printk("Invalid phase with no valid SCB. " "Resetting bus.\n"); ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); break; } ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb), SCB_GET_TARGET(ahd, scb), SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), ROLE_INITIATOR); targ_info = ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); tinfo = &targ_info->curr; ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_ACTIVE, /*paused*/TRUE); ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, /*ppr_options*/0, AHD_TRANS_ACTIVE, /*paused*/TRUE); /* Hand-craft TUR command */ ahd_outb(ahd, SCB_CDB_STORE, 0); ahd_outb(ahd, SCB_CDB_STORE+1, 0); ahd_outb(ahd, SCB_CDB_STORE+2, 0); ahd_outb(ahd, SCB_CDB_STORE+3, 0); ahd_outb(ahd, SCB_CDB_STORE+4, 0); ahd_outb(ahd, SCB_CDB_STORE+5, 0); ahd_outb(ahd, SCB_CDB_LEN, 6); scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE); scb->hscb->control |= MK_MESSAGE; ahd_outb(ahd, SCB_CONTROL, scb->hscb->control); ahd_outb(ahd, MSG_OUT, HOST_MSG); ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid); /* * The lun is 0, regardless of the SCB's lun * as we have not sent an identify message. */ ahd_outb(ahd, SAVED_LUN, 0); ahd_outb(ahd, SEQ_FLAGS, 0); ahd_assert_atn(ahd); scb->flags &= ~SCB_PACKETIZED; scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET; ahd_freeze_devq(ahd, scb); ahd_set_transaction_status(scb, CAM_REQUEUE_REQ); ahd_freeze_scb(scb); /* Notify XPT */ ahd_send_async(ahd, devinfo.channel, devinfo.target, CAM_LUN_WILDCARD, AC_SENT_BDR); /* * Allow the sequencer to continue with * non-pack processing. */ ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT); if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) { ahd_outb(ahd, CLRLQOINT1, 0); } #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { ahd_print_path(ahd, scb); printk("Unexpected command phase from " "packetized target\n"); } #endif break; } } break; } case CFG4OVERRUN: { struct scb *scb; u_int scb_index; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd), ahd_inb(ahd, MODE_PTR)); } #endif scb_index = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scb_index); if (scb == NULL) { /* * Attempt to transfer to an SCB that is * not outstanding. */ ahd_assert_atn(ahd); ahd_outb(ahd, MSG_OUT, HOST_MSG); ahd->msgout_buf[0] = MSG_ABORT_TASK; ahd->msgout_len = 1; ahd->msgout_index = 0; ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; /* * Clear status received flag to prevent any * attempt to complete this bogus SCB. */ ahd_outb(ahd, SCB_CONTROL, ahd_inb_scbram(ahd, SCB_CONTROL) & ~STATUS_RCVD); } break; } case DUMP_CARD_STATE: { ahd_dump_card_state(ahd); break; } case PDATA_REINIT: { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { printk("%s: PDATA_REINIT - DFCNTRL = 0x%x " "SG_CACHE_SHADOW = 0x%x\n", ahd_name(ahd), ahd_inb(ahd, DFCNTRL), ahd_inb(ahd, SG_CACHE_SHADOW)); } #endif ahd_reinitialize_dataptrs(ahd); break; } case HOST_MSG_LOOP: { struct ahd_devinfo devinfo; /* * The sequencer has encountered a message phase * that requires host assistance for completion. * While handling the message phase(s), we will be * notified by the sequencer after each byte is * transferred so we can track bus phase changes. * * If this is the first time we've seen a HOST_MSG_LOOP * interrupt, initialize the state of the host message * loop. */ ahd_fetch_devinfo(ahd, &devinfo); if (ahd->msg_type == MSG_TYPE_NONE) { struct scb *scb; u_int scb_index; u_int bus_phase; bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; if (bus_phase != P_MESGIN && bus_phase != P_MESGOUT) { printk("ahd_intr: HOST_MSG_LOOP bad " "phase 0x%x\n", bus_phase); /* * Probably transitioned to bus free before * we got here. Just punt the message. */ ahd_dump_card_state(ahd); ahd_clear_intstat(ahd); ahd_restart(ahd); return; } scb_index = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scb_index); if (devinfo.role == ROLE_INITIATOR) { if (bus_phase == P_MESGOUT) ahd_setup_initiator_msgout(ahd, &devinfo, scb); else { ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN; ahd->msgin_index = 0; } } #ifdef AHD_TARGET_MODE else { if (bus_phase == P_MESGOUT) { ahd->msg_type = MSG_TYPE_TARGET_MSGOUT; ahd->msgin_index = 0; } else ahd_setup_target_msgin(ahd, &devinfo, scb); } #endif } ahd_handle_message_phase(ahd); break; } case NO_MATCH: { /* Ensure we don't leave the selection hardware on */ AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO); printk("%s:%c:%d: no active SCB for reconnecting " "target - issuing BUS DEVICE RESET\n", ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4); printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, " "REG0 == 0x%x ACCUM = 0x%x\n", ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN), ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM)); printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, " "SINDEX == 0x%x\n", ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd), ahd_find_busy_tcl(ahd, BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN))), ahd_inw(ahd, SINDEX)); printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, " "SCB_CONTROL == 0x%x\n", ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID), ahd_inb_scbram(ahd, SCB_LUN), ahd_inb_scbram(ahd, SCB_CONTROL)); printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n", ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI)); printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0)); printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0)); ahd_dump_card_state(ahd); ahd->msgout_buf[0] = MSG_BUS_DEV_RESET; ahd->msgout_len = 1; ahd->msgout_index = 0; ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; ahd_outb(ahd, MSG_OUT, HOST_MSG); ahd_assert_atn(ahd); break; } case PROTO_VIOLATION: { ahd_handle_proto_violation(ahd); break; } case IGN_WIDE_RES: { struct ahd_devinfo devinfo; ahd_fetch_devinfo(ahd, &devinfo); ahd_handle_ign_wide_residue(ahd, &devinfo); break; } case BAD_PHASE: { u_int lastphase; lastphase = ahd_inb(ahd, LASTPHASE); printk("%s:%c:%d: unknown scsi bus phase %x, " "lastphase = 0x%x. Attempting to continue\n", ahd_name(ahd), 'A', SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)), lastphase, ahd_inb(ahd, SCSISIGI)); break; } case MISSED_BUSFREE: { u_int lastphase; lastphase = ahd_inb(ahd, LASTPHASE); printk("%s:%c:%d: Missed busfree. " "Lastphase = 0x%x, Curphase = 0x%x\n", ahd_name(ahd), 'A', SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)), lastphase, ahd_inb(ahd, SCSISIGI)); ahd_restart(ahd); return; } case DATA_OVERRUN: { /* * When the sequencer detects an overrun, it * places the controller in "BITBUCKET" mode * and allows the target to complete its transfer. * Unfortunately, none of the counters get updated * when the controller is in this mode, so we have * no way of knowing how large the overrun was. */ struct scb *scb; u_int scbindex; #ifdef AHD_DEBUG u_int lastphase; #endif scbindex = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbindex); #ifdef AHD_DEBUG lastphase = ahd_inb(ahd, LASTPHASE); if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { ahd_print_path(ahd, scb); printk("data overrun detected %s. Tag == 0x%x.\n", ahd_lookup_phase_entry(lastphase)->phasemsg, SCB_GET_TAG(scb)); ahd_print_path(ahd, scb); printk("%s seen Data Phase. Length = %ld. " "NumSGs = %d.\n", ahd_inb(ahd, SEQ_FLAGS) & DPHASE ? "Have" : "Haven't", ahd_get_transfer_length(scb), scb->sg_count); ahd_dump_sglist(scb); } #endif /* * Set this and it will take effect when the * target does a command complete. */ ahd_freeze_devq(ahd, scb); ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR); ahd_freeze_scb(scb); break; } case MKMSG_FAILED: { struct ahd_devinfo devinfo; struct scb *scb; u_int scbid; ahd_fetch_devinfo(ahd, &devinfo); printk("%s:%c:%d:%d: Attempt to issue message failed\n", ahd_name(ahd), devinfo.channel, devinfo.target, devinfo.lun); scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb != NULL && (scb->flags & SCB_RECOVERY_SCB) != 0) /* * Ensure that we didn't put a second instance of this * SCB into the QINFIFO. */ ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb), SCB_GET_CHANNEL(ahd, scb), SCB_GET_LUN(scb), SCB_GET_TAG(scb), ROLE_INITIATOR, /*status*/0, SEARCH_REMOVE); ahd_outb(ahd, SCB_CONTROL, ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE); break; } case TASKMGMT_FUNC_COMPLETE: { u_int scbid; struct scb *scb; scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb != NULL) { u_int lun; u_int tag; cam_status error; ahd_print_path(ahd, scb); printk("Task Management Func 0x%x Complete\n", scb->hscb->task_management); lun = CAM_LUN_WILDCARD; tag = SCB_LIST_NULL; switch (scb->hscb->task_management) { case SIU_TASKMGMT_ABORT_TASK: tag = SCB_GET_TAG(scb); case SIU_TASKMGMT_ABORT_TASK_SET: case SIU_TASKMGMT_CLEAR_TASK_SET: lun = scb->hscb->lun; error = CAM_REQ_ABORTED; ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A', lun, tag, ROLE_INITIATOR, error); break; case SIU_TASKMGMT_LUN_RESET: lun = scb->hscb->lun; case SIU_TASKMGMT_TARGET_RESET: { struct ahd_devinfo devinfo; ahd_scb_devinfo(ahd, &devinfo, scb); error = CAM_BDR_SENT; ahd_handle_devreset(ahd, &devinfo, lun, CAM_BDR_SENT, lun != CAM_LUN_WILDCARD ? "Lun Reset" : "Target Reset", /*verbose_level*/0); break; } default: panic("Unexpected TaskMgmt Func\n"); break; } } break; } case TASKMGMT_CMD_CMPLT_OKAY: { u_int scbid; struct scb *scb; /* * An ABORT TASK TMF failed to be delivered before * the targeted command completed normally. */ scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb != NULL) { /* * Remove the second instance of this SCB from * the QINFIFO if it is still there. */ ahd_print_path(ahd, scb); printk("SCB completes before TMF\n"); /* * Handle losing the race. Wait until any * current selection completes. We will then * set the TMF back to zero in this SCB so that * the sequencer doesn't bother to issue another * sequencer interrupt for its completion. */ while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0 && (ahd_inb(ahd, SSTAT0) & SELDO) == 0 && (ahd_inb(ahd, SSTAT1) & SELTO) == 0) ; ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0); ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb), SCB_GET_CHANNEL(ahd, scb), SCB_GET_LUN(scb), SCB_GET_TAG(scb), ROLE_INITIATOR, /*status*/0, SEARCH_REMOVE); } break; } case TRACEPOINT0: case TRACEPOINT1: case TRACEPOINT2: case TRACEPOINT3: printk("%s: Tracepoint %d\n", ahd_name(ahd), seqintcode - TRACEPOINT0); break; case NO_SEQINT: break; case SAW_HWERR: ahd_handle_hwerrint(ahd); break; default: printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd), seqintcode); break; } /* * The sequencer is paused immediately on * a SEQINT, so we should restart it when * we're done. */ ahd_unpause(ahd); } static void ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat) { struct scb *scb; u_int status0; u_int status3; u_int status; u_int lqistat1; u_int lqostat0; u_int scbid; u_int busfreetime; ahd_update_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR); status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO); status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR); lqistat1 = ahd_inb(ahd, LQISTAT1); lqostat0 = ahd_inb(ahd, LQOSTAT0); busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME; /* * Ignore external resets after a bus reset. */ if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) { ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI); return; } /* * Clear bus reset flag */ ahd->flags &= ~AHD_BUS_RESET_ACTIVE; if ((status0 & (SELDI|SELDO)) != 0) { u_int simode0; ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); simode0 = ahd_inb(ahd, SIMODE0); status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); } scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb != NULL && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0) scb = NULL; if ((status0 & IOERR) != 0) { u_int now_lvd; now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40; printk("%s: Transceiver State Has Changed to %s mode\n", ahd_name(ahd), now_lvd ? "LVD" : "SE"); ahd_outb(ahd, CLRSINT0, CLRIOERR); /* * A change in I/O mode is equivalent to a bus reset. */ ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); ahd_pause(ahd); ahd_setup_iocell_workaround(ahd); ahd_unpause(ahd); } else if ((status0 & OVERRUN) != 0) { printk("%s: SCSI offset overrun detected. Resetting bus.\n", ahd_name(ahd)); ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); } else if ((status & SCSIRSTI) != 0) { printk("%s: Someone reset channel A\n", ahd_name(ahd)); ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE); } else if ((status & SCSIPERR) != 0) { /* Make sure the sequencer is in a safe location. */ ahd_clear_critical_section(ahd); ahd_handle_transmission_error(ahd); } else if (lqostat0 != 0) { printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0); ahd_outb(ahd, CLRLQOINT0, lqostat0); if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) ahd_outb(ahd, CLRLQOINT1, 0); } else if ((status & SELTO) != 0) { /* Stop the selection */ ahd_outb(ahd, SCSISEQ0, 0); /* Make sure the sequencer is in a safe location. */ ahd_clear_critical_section(ahd); /* No more pending messages */ ahd_clear_msg_state(ahd); /* Clear interrupt state */ ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR); /* * Although the driver does not care about the * 'Selection in Progress' status bit, the busy * LED does. SELINGO is only cleared by a successful * selection, so we must manually clear it to insure * the LED turns off just incase no future successful * selections occur (e.g. no devices on the bus). */ ahd_outb(ahd, CLRSINT0, CLRSELINGO); scbid = ahd_inw(ahd, WAITING_TID_HEAD); scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { printk("%s: ahd_intr - referenced scb not " "valid during SELTO scb(0x%x)\n", ahd_name(ahd), scbid); ahd_dump_card_state(ahd); } else { struct ahd_devinfo devinfo; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_SELTO) != 0) { ahd_print_path(ahd, scb); printk("Saw Selection Timeout for SCB 0x%x\n", scbid); } #endif ahd_scb_devinfo(ahd, &devinfo, scb); ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT); ahd_freeze_devq(ahd, scb); /* * Cancel any pending transactions on the device * now that it seems to be missing. This will * also revert us to async/narrow transfers until * we can renegotiate with the device. */ ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD, CAM_SEL_TIMEOUT, "Selection Timeout", /*verbose_level*/1); } ahd_outb(ahd, CLRINT, CLRSCSIINT); ahd_iocell_first_selection(ahd); ahd_unpause(ahd); } else if ((status0 & (SELDI|SELDO)) != 0) { ahd_iocell_first_selection(ahd); ahd_unpause(ahd); } else if (status3 != 0) { printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n", ahd_name(ahd), status3); ahd_outb(ahd, CLRSINT3, status3); } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) { /* Make sure the sequencer is in a safe location. */ ahd_clear_critical_section(ahd); ahd_handle_lqiphase_error(ahd, lqistat1); } else if ((lqistat1 & LQICRCI_NLQ) != 0) { /* * This status can be delayed during some * streaming operations. The SCSIPHASE * handler has already dealt with this case * so just clear the error. */ ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ); } else if ((status & BUSFREE) != 0 || (lqistat1 & LQOBUSFREE) != 0) { u_int lqostat1; int restart; int clear_fifo; int packetized; u_int mode; /* * Clear our selection hardware as soon as possible. * We may have an entry in the waiting Q for this target, * that is affected by this busfree and we don't want to * go about selecting the target while we handle the event. */ ahd_outb(ahd, SCSISEQ0, 0); /* Make sure the sequencer is in a safe location. */ ahd_clear_critical_section(ahd); /* * Determine what we were up to at the time of * the busfree. */ mode = AHD_MODE_SCSI; busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME; lqostat1 = ahd_inb(ahd, LQOSTAT1); switch (busfreetime) { case BUSFREE_DFF0: case BUSFREE_DFF1: { mode = busfreetime == BUSFREE_DFF0 ? AHD_MODE_DFF0 : AHD_MODE_DFF1; ahd_set_modes(ahd, mode, mode); scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { printk("%s: Invalid SCB %d in DFF%d " "during unexpected busfree\n", ahd_name(ahd), scbid, mode); packetized = 0; } else packetized = (scb->flags & SCB_PACKETIZED) != 0; clear_fifo = 1; break; } case BUSFREE_LQO: clear_fifo = 0; packetized = 1; break; default: clear_fifo = 0; packetized = (lqostat1 & LQOBUSFREE) != 0; if (!packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE && (ahd_inb(ahd, SSTAT0) & SELDI) == 0 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0)) /* * Assume packetized if we are not * on the bus in a non-packetized * capacity and any pending selection * was a packetized selection. */ packetized = 1; break; } #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) printk("Saw Busfree. Busfreetime = 0x%x.\n", busfreetime); #endif /* * Busfrees that occur in non-packetized phases are * handled by the nonpkt_busfree handler. */ if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) { restart = ahd_handle_pkt_busfree(ahd, busfreetime); } else { packetized = 0; restart = ahd_handle_nonpkt_busfree(ahd); } /* * Clear the busfree interrupt status. The setting of * the interrupt is a pulse, so in a perfect world, we * would not need to muck with the ENBUSFREE logic. This * would ensure that if the bus moves on to another * connection, busfree protection is still in force. If * BUSFREEREV is broken, however, we must manually clear * the ENBUSFREE if the busfree occurred during a non-pack * connection so that we don't get false positives during * future, packetized, connections. */ ahd_outb(ahd, CLRSINT1, CLRBUSFREE); if (packetized == 0 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0) ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENBUSFREE); if (clear_fifo) ahd_clear_fifo(ahd, mode); ahd_clear_msg_state(ahd); ahd_outb(ahd, CLRINT, CLRSCSIINT); if (restart) { ahd_restart(ahd); } else { ahd_unpause(ahd); } } else { printk("%s: Missing case in ahd_handle_scsiint. status = %x\n", ahd_name(ahd), status); ahd_dump_card_state(ahd); ahd_clear_intstat(ahd); ahd_unpause(ahd); } } static void ahd_handle_transmission_error(struct ahd_softc *ahd) { struct scb *scb; u_int scbid; u_int lqistat1; u_int lqistat2; u_int msg_out; u_int curphase; u_int lastphase; u_int perrdiag; u_int cur_col; int silent; scb = NULL; ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ); lqistat2 = ahd_inb(ahd, LQISTAT2); if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) { u_int lqistate; ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); lqistate = ahd_inb(ahd, LQISTATE); if ((lqistate >= 0x1E && lqistate <= 0x24) || (lqistate == 0x29)) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { printk("%s: NLQCRC found via LQISTATE\n", ahd_name(ahd)); } #endif lqistat1 |= LQICRCI_NLQ; } ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); } ahd_outb(ahd, CLRLQIINT1, lqistat1); lastphase = ahd_inb(ahd, LASTPHASE); curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; perrdiag = ahd_inb(ahd, PERRDIAG); msg_out = MSG_INITIATOR_DET_ERR; ahd_outb(ahd, CLRSINT1, CLRSCSIPERR); /* * Try to find the SCB associated with this error. */ silent = FALSE; if (lqistat1 == 0 || (lqistat1 & LQICRCI_NLQ) != 0) { if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0) ahd_set_active_fifo(ahd); scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb != NULL && SCB_IS_SILENT(scb)) silent = TRUE; } cur_col = 0; if (silent == FALSE) { printk("%s: Transmission error detected\n", ahd_name(ahd)); ahd_lqistat1_print(lqistat1, &cur_col, 50); ahd_lastphase_print(lastphase, &cur_col, 50); ahd_scsisigi_print(curphase, &cur_col, 50); ahd_perrdiag_print(perrdiag, &cur_col, 50); printk("\n"); ahd_dump_card_state(ahd); } if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) { if (silent == FALSE) { printk("%s: Gross protocol error during incoming " "packet. lqistat1 == 0x%x. Resetting bus.\n", ahd_name(ahd), lqistat1); } ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); return; } else if ((lqistat1 & LQICRCI_LQ) != 0) { /* * A CRC error has been detected on an incoming LQ. * The bus is currently hung on the last ACK. * Hit LQIRETRY to release the last ack, and * wait for the sequencer to determine that ATNO * is asserted while in message out to take us * to our host message loop. No NONPACKREQ or * LQIPHASE type errors will occur in this * scenario. After this first LQIRETRY, the LQI * manager will be in ISELO where it will * happily sit until another packet phase begins. * Unexpected bus free detection is enabled * through any phases that occur after we release * this last ack until the LQI manager sees a * packet phase. This implies we may have to * ignore a perfectly valid "unexected busfree" * after our "initiator detected error" message is * sent. A busfree is the expected response after * we tell the target that it's L_Q was corrupted. * (SPI4R09 10.7.3.3.3) */ ahd_outb(ahd, LQCTL2, LQIRETRY); printk("LQIRetry for LQICRCI_LQ to release ACK\n"); } else if ((lqistat1 & LQICRCI_NLQ) != 0) { /* * We detected a CRC error in a NON-LQ packet. * The hardware has varying behavior in this situation * depending on whether this packet was part of a * stream or not. * * PKT by PKT mode: * The hardware has already acked the complete packet. * If the target honors our outstanding ATN condition, * we should be (or soon will be) in MSGOUT phase. * This will trigger the LQIPHASE_LQ status bit as the * hardware was expecting another LQ. Unexpected * busfree detection is enabled. Once LQIPHASE_LQ is * true (first entry into host message loop is much * the same), we must clear LQIPHASE_LQ and hit * LQIRETRY so the hardware is ready to handle * a future LQ. NONPACKREQ will not be asserted again * once we hit LQIRETRY until another packet is * processed. The target may either go busfree * or start another packet in response to our message. * * Read Streaming P0 asserted: * If we raise ATN and the target completes the entire * stream (P0 asserted during the last packet), the * hardware will ack all data and return to the ISTART * state. When the target reponds to our ATN condition, * LQIPHASE_LQ will be asserted. We should respond to * this with an LQIRETRY to prepare for any future * packets. NONPACKREQ will not be asserted again * once we hit LQIRETRY until another packet is * processed. The target may either go busfree or * start another packet in response to our message. * Busfree detection is enabled. * * Read Streaming P0 not asserted: * If we raise ATN and the target transitions to * MSGOUT in or after a packet where P0 is not * asserted, the hardware will assert LQIPHASE_NLQ. * We should respond to the LQIPHASE_NLQ with an * LQIRETRY. Should the target stay in a non-pkt * phase after we send our message, the hardware * will assert LQIPHASE_LQ. Recovery is then just as * listed above for the read streaming with P0 asserted. * Busfree detection is enabled. */ if (silent == FALSE) printk("LQICRC_NLQ\n"); if (scb == NULL) { printk("%s: No SCB valid for LQICRC_NLQ. " "Resetting bus\n", ahd_name(ahd)); ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); return; } } else if ((lqistat1 & LQIBADLQI) != 0) { printk("Need to handle BADLQI!\n"); ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); return; } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) { if ((curphase & ~P_DATAIN_DT) != 0) { /* Ack the byte. So we can continue. */ if (silent == FALSE) printk("Acking %s to clear perror\n", ahd_lookup_phase_entry(curphase)->phasemsg); ahd_inb(ahd, SCSIDAT); } if (curphase == P_MESGIN) msg_out = MSG_PARITY_ERROR; } /* * We've set the hardware to assert ATN if we * get a parity error on "in" phases, so all we * need to do is stuff the message buffer with * the appropriate message. "In" phases have set * mesg_out to something other than MSG_NOP. */ ahd->send_msg_perror = msg_out; if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR) scb->flags |= SCB_TRANSMISSION_ERROR; ahd_outb(ahd, MSG_OUT, HOST_MSG); ahd_outb(ahd, CLRINT, CLRSCSIINT); ahd_unpause(ahd); } static void ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1) { /* * Clear the sources of the interrupts. */ ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); ahd_outb(ahd, CLRLQIINT1, lqistat1); /* * If the "illegal" phase changes were in response * to our ATN to flag a CRC error, AND we ended up * on packet boundaries, clear the error, restart the * LQI manager as appropriate, and go on our merry * way toward sending the message. Otherwise, reset * the bus to clear the error. */ ahd_set_active_fifo(ahd); if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) { if ((lqistat1 & LQIPHASE_LQ) != 0) { printk("LQIRETRY for LQIPHASE_LQ\n"); ahd_outb(ahd, LQCTL2, LQIRETRY); } else if ((lqistat1 & LQIPHASE_NLQ) != 0) { printk("LQIRETRY for LQIPHASE_NLQ\n"); ahd_outb(ahd, LQCTL2, LQIRETRY); } else panic("ahd_handle_lqiphase_error: No phase errors\n"); ahd_dump_card_state(ahd); ahd_outb(ahd, CLRINT, CLRSCSIINT); ahd_unpause(ahd); } else { printk("Reseting Channel for LQI Phase error\n"); ahd_dump_card_state(ahd); ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); } } /* * Packetized unexpected or expected busfree. * Entered in mode based on busfreetime. */ static int ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime) { u_int lqostat1; AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); lqostat1 = ahd_inb(ahd, LQOSTAT1); if ((lqostat1 & LQOBUSFREE) != 0) { struct scb *scb; u_int scbid; u_int saved_scbptr; u_int waiting_h; u_int waiting_t; u_int next; /* * The LQO manager detected an unexpected busfree * either: * * 1) During an outgoing LQ. * 2) After an outgoing LQ but before the first * REQ of the command packet. * 3) During an outgoing command packet. * * In all cases, CURRSCB is pointing to the * SCB that encountered the failure. Clean * up the queue, clear SELDO and LQOBUSFREE, * and allow the sequencer to restart the select * out at its lesure. */ ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); scbid = ahd_inw(ahd, CURRSCB); scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) panic("SCB not valid during LQOBUSFREE"); /* * Clear the status. */ ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE); if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) ahd_outb(ahd, CLRLQOINT1, 0); ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO); ahd_flush_device_writes(ahd); ahd_outb(ahd, CLRSINT0, CLRSELDO); /* * Return the LQO manager to its idle loop. It will * not do this automatically if the busfree occurs * after the first REQ of either the LQ or command * packet or between the LQ and command packet. */ ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE); /* * Update the waiting for selection queue so * we restart on the correct SCB. */ waiting_h = ahd_inw(ahd, WAITING_TID_HEAD); saved_scbptr = ahd_get_scbptr(ahd); if (waiting_h != scbid) { ahd_outw(ahd, WAITING_TID_HEAD, scbid); waiting_t = ahd_inw(ahd, WAITING_TID_TAIL); if (waiting_t == waiting_h) { ahd_outw(ahd, WAITING_TID_TAIL, scbid); next = SCB_LIST_NULL; } else { ahd_set_scbptr(ahd, waiting_h); next = ahd_inw_scbram(ahd, SCB_NEXT2); } ahd_set_scbptr(ahd, scbid); ahd_outw(ahd, SCB_NEXT2, next); } ahd_set_scbptr(ahd, saved_scbptr); if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) { if (SCB_IS_SILENT(scb) == FALSE) { ahd_print_path(ahd, scb); printk("Probable outgoing LQ CRC error. " "Retrying command\n"); } scb->crc_retry_count++; } else { ahd_set_transaction_status(scb, CAM_UNCOR_PARITY); ahd_freeze_scb(scb); ahd_freeze_devq(ahd, scb); } /* Return unpausing the sequencer. */ return (0); } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) { /* * Ignore what are really parity errors that * occur on the last REQ of a free running * clock prior to going busfree. Some drives * do not properly active negate just before * going busfree resulting in a parity glitch. */ ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0) printk("%s: Parity on last REQ detected " "during busfree phase.\n", ahd_name(ahd)); #endif /* Return unpausing the sequencer. */ return (0); } if (ahd->src_mode != AHD_MODE_SCSI) { u_int scbid; struct scb *scb; scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); ahd_print_path(ahd, scb); printk("Unexpected PKT busfree condition\n"); ahd_dump_card_state(ahd); ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A', SCB_GET_LUN(scb), SCB_GET_TAG(scb), ROLE_INITIATOR, CAM_UNEXP_BUSFREE); /* Return restarting the sequencer. */ return (1); } printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd)); ahd_dump_card_state(ahd); /* Restart the sequencer. */ return (1); } /* * Non-packetized unexpected or expected busfree. */ static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd) { struct ahd_devinfo devinfo; struct scb *scb; u_int lastphase; u_int saved_scsiid; u_int saved_lun; u_int target; u_int initiator_role_id; u_int scbid; u_int ppr_busfree; int printerror; /* * Look at what phase we were last in. If its message out, * chances are pretty good that the busfree was in response * to one of our abort requests. */ lastphase = ahd_inb(ahd, LASTPHASE); saved_scsiid = ahd_inb(ahd, SAVED_SCSIID); saved_lun = ahd_inb(ahd, SAVED_LUN); target = SCSIID_TARGET(ahd, saved_scsiid); initiator_role_id = SCSIID_OUR_ID(saved_scsiid); ahd_compile_devinfo(&devinfo, initiator_role_id, target, saved_lun, 'A', ROLE_INITIATOR); printerror = 1; scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); if (scb != NULL && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0) scb = NULL; ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0; if (lastphase == P_MESGOUT) { u_int tag; tag = SCB_LIST_NULL; if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE) || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) { int found; int sent_msg; if (scb == NULL) { ahd_print_devinfo(ahd, &devinfo); printk("Abort for unidentified " "connection completed.\n"); /* restart the sequencer. */ return (1); } sent_msg = ahd->msgout_buf[ahd->msgout_index - 1]; ahd_print_path(ahd, scb); printk("SCB %d - Abort%s Completed.\n", SCB_GET_TAG(scb), sent_msg == MSG_ABORT_TAG ? "" : " Tag"); if (sent_msg == MSG_ABORT_TAG) tag = SCB_GET_TAG(scb); if ((scb->flags & SCB_EXTERNAL_RESET) != 0) { /* * This abort is in response to an * unexpected switch to command phase * for a packetized connection. Since * the identify message was never sent, * "saved lun" is 0. We really want to * abort only the SCB that encountered * this error, which could have a different * lun. The SCB will be retried so the OS * will see the UA after renegotiating to * packetized. */ tag = SCB_GET_TAG(scb); saved_lun = scb->hscb->lun; } found = ahd_abort_scbs(ahd, target, 'A', saved_lun, tag, ROLE_INITIATOR, CAM_REQ_ABORTED); printk("found == 0x%x\n", found); printerror = 0; } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_BUS_DEV_RESET, TRUE)) { #ifdef __FreeBSD__ /* * Don't mark the user's request for this BDR * as completing with CAM_BDR_SENT. CAM3 * specifies CAM_REQ_CMP. */ if (scb != NULL && scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV && ahd_match_scb(ahd, scb, target, 'A', CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_INITIATOR)) ahd_set_transaction_status(scb, CAM_REQ_CMP); #endif ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD, CAM_BDR_SENT, "Bus Device Reset", /*verbose_level*/0); printerror = 0; } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE) && ppr_busfree == 0) { struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; /* * PPR Rejected. * * If the previous negotiation was packetized, * this could be because the device has been * reset without our knowledge. Force our * current negotiation to async and retry the * negotiation. Otherwise retry the command * with non-ppr negotiation. */ #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk("PPR negotiation rejected busfree.\n"); #endif tinfo = ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) { ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_CUR, /*paused*/TRUE); ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, /*ppr_options*/0, AHD_TRANS_CUR, /*paused*/TRUE); /* * The expect PPR busfree handler below * will effect the retry and necessary * abort. */ } else { tinfo->curr.transport_version = 2; tinfo->goal.transport_version = 2; tinfo->goal.ppr_options = 0; if (scb != NULL) { /* * Remove any SCBs in the waiting * for selection queue that may * also be for this target so that * command ordering is preserved. */ ahd_freeze_devq(ahd, scb); ahd_qinfifo_requeue_tail(ahd, scb); } printerror = 0; } } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE) && ppr_busfree == 0) { /* * Negotiation Rejected. Go-narrow and * retry command. */ #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk("WDTR negotiation rejected busfree.\n"); #endif ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE); if (scb != NULL) { /* * Remove any SCBs in the waiting for * selection queue that may also be for * this target so that command ordering * is preserved. */ ahd_freeze_devq(ahd, scb); ahd_qinfifo_requeue_tail(ahd, scb); } printerror = 0; } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE) && ppr_busfree == 0) { /* * Negotiation Rejected. Go-async and * retry command. */ #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk("SDTR negotiation rejected busfree.\n"); #endif ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE); if (scb != NULL) { /* * Remove any SCBs in the waiting for * selection queue that may also be for * this target so that command ordering * is preserved. */ ahd_freeze_devq(ahd, scb); ahd_qinfifo_requeue_tail(ahd, scb); } printerror = 0; } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0 && ahd_sent_msg(ahd, AHDMSG_1B, MSG_INITIATOR_DET_ERR, TRUE)) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk("Expected IDE Busfree\n"); #endif printerror = 0; } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE) && ahd_sent_msg(ahd, AHDMSG_1B, MSG_MESSAGE_REJECT, TRUE)) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk("Expected QAS Reject Busfree\n"); #endif printerror = 0; } } /* * The busfree required flag is honored at the end of * the message phases. We check it last in case we * had to send some other message that caused a busfree. */ if (scb != NULL && printerror != 0 && (lastphase == P_MESGIN || lastphase == P_MESGOUT) && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) { ahd_freeze_devq(ahd, scb); ahd_set_transaction_status(scb, CAM_REQUEUE_REQ); ahd_freeze_scb(scb); if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) { ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), SCB_GET_CHANNEL(ahd, scb), SCB_GET_LUN(scb), SCB_LIST_NULL, ROLE_INITIATOR, CAM_REQ_ABORTED); } else { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk("PPR Negotiation Busfree.\n"); #endif ahd_done(ahd, scb); } printerror = 0; } if (printerror != 0) { int aborted; aborted = 0; if (scb != NULL) { u_int tag; if ((scb->hscb->control & TAG_ENB) != 0) tag = SCB_GET_TAG(scb); else tag = SCB_LIST_NULL; ahd_print_path(ahd, scb); aborted = ahd_abort_scbs(ahd, target, 'A', SCB_GET_LUN(scb), tag, ROLE_INITIATOR, CAM_UNEXP_BUSFREE); } else { /* * We had not fully identified this connection, * so we cannot abort anything. */ printk("%s: ", ahd_name(ahd)); } printk("Unexpected busfree %s, %d SCBs aborted, " "PRGMCNT == 0x%x\n", ahd_lookup_phase_entry(lastphase)->phasemsg, aborted, ahd_inw(ahd, PRGMCNT)); ahd_dump_card_state(ahd); if (lastphase != P_BUSFREE) ahd_force_renegotiation(ahd, &devinfo); } /* Always restart the sequencer. */ return (1); } static void ahd_handle_proto_violation(struct ahd_softc *ahd) { struct ahd_devinfo devinfo; struct scb *scb; u_int scbid; u_int seq_flags; u_int curphase; u_int lastphase; int found; ahd_fetch_devinfo(ahd, &devinfo); scbid = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scbid); seq_flags = ahd_inb(ahd, SEQ_FLAGS); curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; lastphase = ahd_inb(ahd, LASTPHASE); if ((seq_flags & NOT_IDENTIFIED) != 0) { /* * The reconnecting target either did not send an * identify message, or did, but we didn't find an SCB * to match. */ ahd_print_devinfo(ahd, &devinfo); printk("Target did not send an IDENTIFY message. " "LASTPHASE = 0x%x.\n", lastphase); scb = NULL; } else if (scb == NULL) { /* * We don't seem to have an SCB active for this * transaction. Print an error and reset the bus. */ ahd_print_devinfo(ahd, &devinfo); printk("No SCB found during protocol violation\n"); goto proto_violation_reset; } else { ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL); if ((seq_flags & NO_CDB_SENT) != 0) { ahd_print_path(ahd, scb); printk("No or incomplete CDB sent to device.\n"); } else if ((ahd_inb_scbram(ahd, SCB_CONTROL) & STATUS_RCVD) == 0) { /* * The target never bothered to provide status to * us prior to completing the command. Since we don't * know the disposition of this command, we must attempt * to abort it. Assert ATN and prepare to send an abort * message. */ ahd_print_path(ahd, scb); printk("Completed command without status.\n"); } else { ahd_print_path(ahd, scb); printk("Unknown protocol violation.\n"); ahd_dump_card_state(ahd); } } if ((lastphase & ~P_DATAIN_DT) == 0 || lastphase == P_COMMAND) { proto_violation_reset: /* * Target either went directly to data * phase or didn't respond to our ATN. * The only safe thing to do is to blow * it away with a bus reset. */ found = ahd_reset_channel(ahd, 'A', TRUE); printk("%s: Issued Channel %c Bus Reset. " "%d SCBs aborted\n", ahd_name(ahd), 'A', found); } else { /* * Leave the selection hardware off in case * this abort attempt will affect yet to * be sent commands. */ ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO); ahd_assert_atn(ahd); ahd_outb(ahd, MSG_OUT, HOST_MSG); if (scb == NULL) { ahd_print_devinfo(ahd, &devinfo); ahd->msgout_buf[0] = MSG_ABORT_TASK; ahd->msgout_len = 1; ahd->msgout_index = 0; ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; } else { ahd_print_path(ahd, scb); scb->flags |= SCB_ABORT; } printk("Protocol violation %s. Attempting to abort.\n", ahd_lookup_phase_entry(curphase)->phasemsg); } } /* * Force renegotiation to occur the next time we initiate * a command to the current device. */ static void ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { struct ahd_initiator_tinfo *targ_info; struct ahd_tmode_tstate *tstate; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { ahd_print_devinfo(ahd, devinfo); printk("Forcing renegotiation\n"); } #endif targ_info = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); ahd_update_neg_request(ahd, devinfo, tstate, targ_info, AHD_NEG_IF_NON_ASYNC); } #define AHD_MAX_STEPS 2000 static void ahd_clear_critical_section(struct ahd_softc *ahd) { ahd_mode_state saved_modes; int stepping; int steps; int first_instr; u_int simode0; u_int simode1; u_int simode3; u_int lqimode0; u_int lqimode1; u_int lqomode0; u_int lqomode1; if (ahd->num_critical_sections == 0) return; stepping = FALSE; steps = 0; first_instr = 0; simode0 = 0; simode1 = 0; simode3 = 0; lqimode0 = 0; lqimode1 = 0; lqomode0 = 0; lqomode1 = 0; saved_modes = ahd_save_modes(ahd); for (;;) { struct cs *cs; u_int seqaddr; u_int i; ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); seqaddr = ahd_inw(ahd, CURADDR); cs = ahd->critical_sections; for (i = 0; i < ahd->num_critical_sections; i++, cs++) { if (cs->begin < seqaddr && cs->end >= seqaddr) break; } if (i == ahd->num_critical_sections) break; if (steps > AHD_MAX_STEPS) { printk("%s: Infinite loop in critical section\n" "%s: First Instruction 0x%x now 0x%x\n", ahd_name(ahd), ahd_name(ahd), first_instr, seqaddr); ahd_dump_card_state(ahd); panic("critical section loop"); } steps++; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) printk("%s: Single stepping at 0x%x\n", ahd_name(ahd), seqaddr); #endif if (stepping == FALSE) { first_instr = seqaddr; ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); simode0 = ahd_inb(ahd, SIMODE0); simode3 = ahd_inb(ahd, SIMODE3); lqimode0 = ahd_inb(ahd, LQIMODE0); lqimode1 = ahd_inb(ahd, LQIMODE1); lqomode0 = ahd_inb(ahd, LQOMODE0); lqomode1 = ahd_inb(ahd, LQOMODE1); ahd_outb(ahd, SIMODE0, 0); ahd_outb(ahd, SIMODE3, 0); ahd_outb(ahd, LQIMODE0, 0); ahd_outb(ahd, LQIMODE1, 0); ahd_outb(ahd, LQOMODE0, 0); ahd_outb(ahd, LQOMODE1, 0); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); simode1 = ahd_inb(ahd, SIMODE1); /* * We don't clear ENBUSFREE. Unfortunately * we cannot re-enable busfree detection within * the current connection, so we must leave it * on while single stepping. */ ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE); ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP); stepping = TRUE; } ahd_outb(ahd, CLRSINT1, CLRBUSFREE); ahd_outb(ahd, CLRINT, CLRSCSIINT); ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode); ahd_outb(ahd, HCNTRL, ahd->unpause); while (!ahd_is_paused(ahd)) ahd_delay(200); ahd_update_modes(ahd); } if (stepping) { ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); ahd_outb(ahd, SIMODE0, simode0); ahd_outb(ahd, SIMODE3, simode3); ahd_outb(ahd, LQIMODE0, lqimode0); ahd_outb(ahd, LQIMODE1, lqimode1); ahd_outb(ahd, LQOMODE0, lqomode0); ahd_outb(ahd, LQOMODE1, lqomode1); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP); ahd_outb(ahd, SIMODE1, simode1); /* * SCSIINT seems to glitch occasionally when * the interrupt masks are restored. Clear SCSIINT * one more time so that only persistent errors * are seen as a real interrupt. */ ahd_outb(ahd, CLRINT, CLRSCSIINT); } ahd_restore_modes(ahd, saved_modes); } /* * Clear any pending interrupt status. */ static void ahd_clear_intstat(struct ahd_softc *ahd) { AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); /* Clear any interrupt conditions this may have caused */ ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD); ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ); ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ |CLRLQOATNPKT|CLRLQOTCRC); ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS |CLRLQOBUSFREE|CLRLQOPHACHGINPKT); if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) { ahd_outb(ahd, CLRLQOINT0, 0); ahd_outb(ahd, CLRLQOINT1, 0); } ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR); ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI |CLRBUSFREE|CLRSCSIPERR|CLRREQINIT); ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO |CLRIOERR|CLROVERRUN); ahd_outb(ahd, CLRINT, CLRSCSIINT); } /**************************** Debugging Routines ******************************/ #ifdef AHD_DEBUG uint32_t ahd_debug = AHD_DEBUG_OPTS; #endif #if 0 void ahd_print_scb(struct scb *scb) { struct hardware_scb *hscb; int i; hscb = scb->hscb; printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n", (void *)scb, hscb->control, hscb->scsiid, hscb->lun, hscb->cdb_len); printk("Shared Data: "); for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++) printk("%#02x", hscb->shared_data.idata.cdb[i]); printk(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n", (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF), (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF), ahd_le32toh(hscb->datacnt), ahd_le32toh(hscb->sgptr), SCB_GET_TAG(scb)); ahd_dump_sglist(scb); } #endif /* 0 */ /************************* Transfer Negotiation *******************************/ /* * Allocate per target mode instance (ID we respond to as a target) * transfer negotiation data structures. */ static struct ahd_tmode_tstate * ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel) { struct ahd_tmode_tstate *master_tstate; struct ahd_tmode_tstate *tstate; int i; master_tstate = ahd->enabled_targets[ahd->our_id]; if (ahd->enabled_targets[scsi_id] != NULL && ahd->enabled_targets[scsi_id] != master_tstate) panic("%s: ahd_alloc_tstate - Target already allocated", ahd_name(ahd)); tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC); if (tstate == NULL) return (NULL); /* * If we have allocated a master tstate, copy user settings from * the master tstate (taken from SRAM or the EEPROM) for this * channel, but reset our current and goal settings to async/narrow * until an initiator talks to us. */ if (master_tstate != NULL) { memcpy(tstate, master_tstate, sizeof(*tstate)); memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns)); for (i = 0; i < 16; i++) { memset(&tstate->transinfo[i].curr, 0, sizeof(tstate->transinfo[i].curr)); memset(&tstate->transinfo[i].goal, 0, sizeof(tstate->transinfo[i].goal)); } } else memset(tstate, 0, sizeof(*tstate)); ahd->enabled_targets[scsi_id] = tstate; return (tstate); } #ifdef AHD_TARGET_MODE /* * Free per target mode instance (ID we respond to as a target) * transfer negotiation data structures. */ static void ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force) { struct ahd_tmode_tstate *tstate; /* * Don't clean up our "master" tstate. * It has our default user settings. */ if (scsi_id == ahd->our_id && force == FALSE) return; tstate = ahd->enabled_targets[scsi_id]; if (tstate != NULL) kfree(tstate); ahd->enabled_targets[scsi_id] = NULL; } #endif /* * Called when we have an active connection to a target on the bus, * this function finds the nearest period to the input period limited * by the capabilities of the bus connectivity of and sync settings for * the target. */ static void ahd_devlimited_syncrate(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo, u_int *period, u_int *ppr_options, role_t role) { struct ahd_transinfo *transinfo; u_int maxsync; if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) { maxsync = AHD_SYNCRATE_PACED; } else { maxsync = AHD_SYNCRATE_ULTRA; /* Can't do DT related options on an SE bus */ *ppr_options &= MSG_EXT_PPR_QAS_REQ; } /* * Never allow a value higher than our current goal * period otherwise we may allow a target initiated * negotiation to go above the limit as set by the * user. In the case of an initiator initiated * sync negotiation, we limit based on the user * setting. This allows the system to still accept * incoming negotiations even if target initiated * negotiation is not performed. */ if (role == ROLE_TARGET) transinfo = &tinfo->user; else transinfo = &tinfo->goal; *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN); if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) { maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2); *ppr_options &= ~MSG_EXT_PPR_DT_REQ; } if (transinfo->period == 0) { *period = 0; *ppr_options = 0; } else { *period = max(*period, (u_int)transinfo->period); ahd_find_syncrate(ahd, period, ppr_options, maxsync); } } /* * Look up the valid period to SCSIRATE conversion in our table. * Return the period and offset that should be sent to the target * if this was the beginning of an SDTR. */ void ahd_find_syncrate(struct ahd_softc *ahd, u_int *period, u_int *ppr_options, u_int maxsync) { if (*period < maxsync) *period = maxsync; if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0 && *period > AHD_SYNCRATE_MIN_DT) *ppr_options &= ~MSG_EXT_PPR_DT_REQ; if (*period > AHD_SYNCRATE_MIN) *period = 0; /* Honor PPR option conformance rules. */ if (*period > AHD_SYNCRATE_PACED) *ppr_options &= ~MSG_EXT_PPR_RTI; if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0) *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ); if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0) *ppr_options &= MSG_EXT_PPR_QAS_REQ; /* Skip all PACED only entries if IU is not available */ if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0 && *period < AHD_SYNCRATE_DT) *period = AHD_SYNCRATE_DT; /* Skip all DT only entries if DT is not available */ if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0 && *period < AHD_SYNCRATE_ULTRA2) *period = AHD_SYNCRATE_ULTRA2; } /* * Truncate the given synchronous offset to a value the * current adapter type and syncrate are capable of. */ static void ahd_validate_offset(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo, u_int period, u_int *offset, int wide, role_t role) { u_int maxoffset; /* Limit offset to what we can do */ if (period == 0) maxoffset = 0; else if (period <= AHD_SYNCRATE_PACED) { if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) maxoffset = MAX_OFFSET_PACED_BUG; else maxoffset = MAX_OFFSET_PACED; } else maxoffset = MAX_OFFSET_NON_PACED; *offset = min(*offset, maxoffset); if (tinfo != NULL) { if (role == ROLE_TARGET) *offset = min(*offset, (u_int)tinfo->user.offset); else *offset = min(*offset, (u_int)tinfo->goal.offset); } } /* * Truncate the given transfer width parameter to a value the * current adapter type is capable of. */ static void ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo, u_int *bus_width, role_t role) { switch (*bus_width) { default: if (ahd->features & AHD_WIDE) { /* Respond Wide */ *bus_width = MSG_EXT_WDTR_BUS_16_BIT; break; } /* FALLTHROUGH */ case MSG_EXT_WDTR_BUS_8_BIT: *bus_width = MSG_EXT_WDTR_BUS_8_BIT; break; } if (tinfo != NULL) { if (role == ROLE_TARGET) *bus_width = min((u_int)tinfo->user.width, *bus_width); else *bus_width = min((u_int)tinfo->goal.width, *bus_width); } } /* * Update the bitmask of targets for which the controller should * negotiate with at the next convenient opportunity. This currently * means the next time we send the initial identify messages for * a new transaction. */ int ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, struct ahd_tmode_tstate *tstate, struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type) { u_int auto_negotiate_orig; auto_negotiate_orig = tstate->auto_negotiate; if (neg_type == AHD_NEG_ALWAYS) { /* * Force our "current" settings to be * unknown so that unless a bus reset * occurs the need to renegotiate is * recorded persistently. */ if ((ahd->features & AHD_WIDE) != 0) tinfo->curr.width = AHD_WIDTH_UNKNOWN; tinfo->curr.period = AHD_PERIOD_UNKNOWN; tinfo->curr.offset = AHD_OFFSET_UNKNOWN; } if (tinfo->curr.period != tinfo->goal.period || tinfo->curr.width != tinfo->goal.width || tinfo->curr.offset != tinfo->goal.offset || tinfo->curr.ppr_options != tinfo->goal.ppr_options || (neg_type == AHD_NEG_IF_NON_ASYNC && (tinfo->goal.offset != 0 || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT || tinfo->goal.ppr_options != 0))) tstate->auto_negotiate |= devinfo->target_mask; else tstate->auto_negotiate &= ~devinfo->target_mask; return (auto_negotiate_orig != tstate->auto_negotiate); } /* * Update the user/goal/curr tables of synchronous negotiation * parameters as well as, in the case of a current or active update, * any data structures on the host controller. In the case of an * active update, the specified target is currently talking to us on * the bus, so the transfer parameter update must take effect * immediately. */ void ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, u_int period, u_int offset, u_int ppr_options, u_int type, int paused) { struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; u_int old_period; u_int old_offset; u_int old_ppr; int active; int update_needed; active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE; update_needed = 0; if (period == 0 || offset == 0) { period = 0; offset = 0; } tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); if ((type & AHD_TRANS_USER) != 0) { tinfo->user.period = period; tinfo->user.offset = offset; tinfo->user.ppr_options = ppr_options; } if ((type & AHD_TRANS_GOAL) != 0) { tinfo->goal.period = period; tinfo->goal.offset = offset; tinfo->goal.ppr_options = ppr_options; } old_period = tinfo->curr.period; old_offset = tinfo->curr.offset; old_ppr = tinfo->curr.ppr_options; if ((type & AHD_TRANS_CUR) != 0 && (old_period != period || old_offset != offset || old_ppr != ppr_options)) { update_needed++; tinfo->curr.period = period; tinfo->curr.offset = offset; tinfo->curr.ppr_options = ppr_options; ahd_send_async(ahd, devinfo->channel, devinfo->target, CAM_LUN_WILDCARD, AC_TRANSFER_NEG); if (bootverbose) { if (offset != 0) { int options; printk("%s: target %d synchronous with " "period = 0x%x, offset = 0x%x", ahd_name(ahd), devinfo->target, period, offset); options = 0; if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) { printk("(RDSTRM"); options++; } if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) { printk("%s", options ? "|DT" : "(DT"); options++; } if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { printk("%s", options ? "|IU" : "(IU"); options++; } if ((ppr_options & MSG_EXT_PPR_RTI) != 0) { printk("%s", options ? "|RTI" : "(RTI"); options++; } if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) { printk("%s", options ? "|QAS" : "(QAS"); options++; } if (options != 0) printk(")\n"); else printk("\n"); } else { printk("%s: target %d using " "asynchronous transfers%s\n", ahd_name(ahd), devinfo->target, (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0 ? "(QAS)" : ""); } } } /* * Always refresh the neg-table to handle the case of the * sequencer setting the ENATNO bit for a MK_MESSAGE request. * We will always renegotiate in that case if this is a * packetized request. Also manage the busfree expected flag * from this common routine so that we catch changes due to * WDTR or SDTR messages. */ if ((type & AHD_TRANS_CUR) != 0) { if (!paused) ahd_pause(ahd); ahd_update_neg_table(ahd, devinfo, &tinfo->curr); if (!paused) ahd_unpause(ahd); if (ahd->msg_type != MSG_TYPE_NONE) { if ((old_ppr & MSG_EXT_PPR_IU_REQ) != (ppr_options & MSG_EXT_PPR_IU_REQ)) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { ahd_print_devinfo(ahd, devinfo); printk("Expecting IU Change busfree\n"); } #endif ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE | MSG_FLAG_IU_REQ_CHANGED; } if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk("PPR with IU_REQ outstanding\n"); #endif ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE; } } } update_needed += ahd_update_neg_request(ahd, devinfo, tstate, tinfo, AHD_NEG_TO_GOAL); if (update_needed && active) ahd_update_pending_scbs(ahd); } /* * Update the user/goal/curr tables of wide negotiation * parameters as well as, in the case of a current or active update, * any data structures on the host controller. In the case of an * active update, the specified target is currently talking to us on * the bus, so the transfer parameter update must take effect * immediately. */ void ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, u_int width, u_int type, int paused) { struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; u_int oldwidth; int active; int update_needed; active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE; update_needed = 0; tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); if ((type & AHD_TRANS_USER) != 0) tinfo->user.width = width; if ((type & AHD_TRANS_GOAL) != 0) tinfo->goal.width = width; oldwidth = tinfo->curr.width; if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) { update_needed++; tinfo->curr.width = width; ahd_send_async(ahd, devinfo->channel, devinfo->target, CAM_LUN_WILDCARD, AC_TRANSFER_NEG); if (bootverbose) { printk("%s: target %d using %dbit transfers\n", ahd_name(ahd), devinfo->target, 8 * (0x01 << width)); } } if ((type & AHD_TRANS_CUR) != 0) { if (!paused) ahd_pause(ahd); ahd_update_neg_table(ahd, devinfo, &tinfo->curr); if (!paused) ahd_unpause(ahd); } update_needed += ahd_update_neg_request(ahd, devinfo, tstate, tinfo, AHD_NEG_TO_GOAL); if (update_needed && active) ahd_update_pending_scbs(ahd); } /* * Update the current state of tagged queuing for a given target. */ static void ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd, struct ahd_devinfo *devinfo, ahd_queue_alg alg) { struct scsi_device *sdev = cmd->device; ahd_platform_set_tags(ahd, sdev, devinfo, alg); ahd_send_async(ahd, devinfo->channel, devinfo->target, devinfo->lun, AC_TRANSFER_NEG); } static void ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, struct ahd_transinfo *tinfo) { ahd_mode_state saved_modes; u_int period; u_int ppr_opts; u_int con_opts; u_int offset; u_int saved_negoaddr; uint8_t iocell_opts[sizeof(ahd->iocell_opts)]; saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); saved_negoaddr = ahd_inb(ahd, NEGOADDR); ahd_outb(ahd, NEGOADDR, devinfo->target); period = tinfo->period; offset = tinfo->offset; memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts)); ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ |MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI); con_opts = 0; if (period == 0) period = AHD_SYNCRATE_ASYNC; if (period == AHD_SYNCRATE_160) { if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) { /* * When the SPI4 spec was finalized, PACE transfers * was not made a configurable option in the PPR * message. Instead it is assumed to be enabled for * any syncrate faster than 80MHz. Nevertheless, * Harpoon2A4 allows this to be configurable. * * Harpoon2A4 also assumes at most 2 data bytes per * negotiated REQ/ACK offset. Paced transfers take * 4, so we must adjust our offset. */ ppr_opts |= PPROPT_PACE; offset *= 2; /* * Harpoon2A assumed that there would be a * fallback rate between 160MHz and 80MHz, * so 7 is used as the period factor rather * than 8 for 160MHz. */ period = AHD_SYNCRATE_REVA_160; } if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0) iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK; } else { /* * Precomp should be disabled for non-paced transfers. */ iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK; if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) { /* * Slow down our CRC interval to be * compatible with non-packetized * U160 devices that can't handle a * CRC at full speed. */ con_opts |= ENSLOWCRC; } if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) { /* * On H2A4, revert to a slower slewrate * on non-paced transfers. */ iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_SLEWRATE_MASK; } } ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW); ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]); ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE); ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]); ahd_outb(ahd, NEGPERIOD, period); ahd_outb(ahd, NEGPPROPTS, ppr_opts); ahd_outb(ahd, NEGOFFSET, offset); if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT) con_opts |= WIDEXFER; /* * Slow down our CRC interval to be * compatible with packetized U320 devices * that can't handle a CRC at full speed */ if (ahd->features & AHD_AIC79XXB_SLOWCRC) { con_opts |= ENSLOWCRC; } /* * During packetized transfers, the target will * give us the opportunity to send command packets * without us asserting attention. */ if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0) con_opts |= ENAUTOATNO; ahd_outb(ahd, NEGCONOPTS, con_opts); ahd_outb(ahd, NEGOADDR, saved_negoaddr); ahd_restore_modes(ahd, saved_modes); } /* * When the transfer settings for a connection change, setup for * negotiation in pending SCBs to effect the change as quickly as * possible. We also cancel any negotiations that are scheduled * for inflight SCBs that have not been started yet. */ static void ahd_update_pending_scbs(struct ahd_softc *ahd) { struct scb *pending_scb; int pending_scb_count; int paused; u_int saved_scbptr; ahd_mode_state saved_modes; /* * Traverse the pending SCB list and ensure that all of the * SCBs there have the proper settings. We can only safely * clear the negotiation required flag (setting requires the * execution queue to be modified) and this is only possible * if we are not already attempting to select out for this * SCB. For this reason, all callers only call this routine * if we are changing the negotiation settings for the currently * active transaction on the bus. */ pending_scb_count = 0; LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) { struct ahd_devinfo devinfo; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; ahd_scb_devinfo(ahd, &devinfo, pending_scb); tinfo = ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); if ((tstate->auto_negotiate & devinfo.target_mask) == 0 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) { pending_scb->flags &= ~SCB_AUTO_NEGOTIATE; pending_scb->hscb->control &= ~MK_MESSAGE; } ahd_sync_scb(ahd, pending_scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); pending_scb_count++; } if (pending_scb_count == 0) return; if (ahd_is_paused(ahd)) { paused = 1; } else { paused = 0; ahd_pause(ahd); } /* * Force the sequencer to reinitialize the selection for * the command at the head of the execution queue if it * has already been setup. The negotiation changes may * effect whether we select-out with ATN. It is only * safe to clear ENSELO when the bus is not free and no * selection is in progres or completed. */ saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0) ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO); saved_scbptr = ahd_get_scbptr(ahd); /* Ensure that the hscbs down on the card match the new information */ LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) { u_int scb_tag; u_int control; scb_tag = SCB_GET_TAG(pending_scb); ahd_set_scbptr(ahd, scb_tag); control = ahd_inb_scbram(ahd, SCB_CONTROL); control &= ~MK_MESSAGE; control |= pending_scb->hscb->control & MK_MESSAGE; ahd_outb(ahd, SCB_CONTROL, control); } ahd_set_scbptr(ahd, saved_scbptr); ahd_restore_modes(ahd, saved_modes); if (paused == 0) ahd_unpause(ahd); } /**************************** Pathing Information *****************************/ static void ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { ahd_mode_state saved_modes; u_int saved_scsiid; role_t role; int our_id; saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); if (ahd_inb(ahd, SSTAT0) & TARGET) role = ROLE_TARGET; else role = ROLE_INITIATOR; if (role == ROLE_TARGET && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) { /* We were selected, so pull our id from TARGIDIN */ our_id = ahd_inb(ahd, TARGIDIN) & OID; } else if (role == ROLE_TARGET) our_id = ahd_inb(ahd, TOWNID); else our_id = ahd_inb(ahd, IOWNID); saved_scsiid = ahd_inb(ahd, SAVED_SCSIID); ahd_compile_devinfo(devinfo, our_id, SCSIID_TARGET(ahd, saved_scsiid), ahd_inb(ahd, SAVED_LUN), SCSIID_CHANNEL(ahd, saved_scsiid), role); ahd_restore_modes(ahd, saved_modes); } void ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A', devinfo->target, devinfo->lun); } static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase) { const struct ahd_phase_table_entry *entry; const struct ahd_phase_table_entry *last_entry; /* * num_phases doesn't include the default entry which * will be returned if the phase doesn't match. */ last_entry = &ahd_phase_table[num_phases]; for (entry = ahd_phase_table; entry < last_entry; entry++) { if (phase == entry->phase) break; } return (entry); } void ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target, u_int lun, char channel, role_t role) { devinfo->our_scsiid = our_id; devinfo->target = target; devinfo->lun = lun; devinfo->target_offset = target; devinfo->channel = channel; devinfo->role = role; if (channel == 'B') devinfo->target_offset += 8; devinfo->target_mask = (0x01 << devinfo->target_offset); } static void ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, struct scb *scb) { role_t role; int our_id; our_id = SCSIID_OUR_ID(scb->hscb->scsiid); role = ROLE_INITIATOR; if ((scb->hscb->control & TARGET_SCB) != 0) role = ROLE_TARGET; ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb), SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role); } /************************ Message Phase Processing ****************************/ /* * When an initiator transaction with the MK_MESSAGE flag either reconnects * or enters the initial message out phase, we are interrupted. Fill our * outgoing message buffer with the appropriate message and beging handing * the message phase(s) manually. */ static void ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, struct scb *scb) { /* * To facilitate adding multiple messages together, * each routine should increment the index and len * variables instead of setting them explicitly. */ ahd->msgout_index = 0; ahd->msgout_len = 0; if (ahd_currently_packetized(ahd)) ahd->msg_flags |= MSG_FLAG_PACKETIZED; if (ahd->send_msg_perror && ahd_inb(ahd, MSG_OUT) == HOST_MSG) { ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror; ahd->msgout_len++; ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk("Setting up for Parity Error delivery\n"); #endif return; } else if (scb == NULL) { printk("%s: WARNING. No pending message for " "I_T msgin. Issuing NO-OP\n", ahd_name(ahd)); ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP; ahd->msgout_len++; ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; return; } if ((scb->flags & SCB_DEVICE_RESET) == 0 && (scb->flags & SCB_PACKETIZED) == 0 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) { u_int identify_msg; identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb); if ((scb->hscb->control & DISCENB) != 0) identify_msg |= MSG_IDENTIFY_DISCFLAG; ahd->msgout_buf[ahd->msgout_index++] = identify_msg; ahd->msgout_len++; if ((scb->hscb->control & TAG_ENB) != 0) { ahd->msgout_buf[ahd->msgout_index++] = scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE); ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb); ahd->msgout_len += 2; } } if (scb->flags & SCB_DEVICE_RESET) { ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET; ahd->msgout_len++; ahd_print_path(ahd, scb); printk("Bus Device Reset Message Sent\n"); /* * Clear our selection hardware in advance of * the busfree. We may have an entry in the waiting * Q for this target, and we don't want to go about * selecting while we handle the busfree and blow it * away. */ ahd_outb(ahd, SCSISEQ0, 0); } else if ((scb->flags & SCB_ABORT) != 0) { if ((scb->hscb->control & TAG_ENB) != 0) { ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG; } else { ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT; } ahd->msgout_len++; ahd_print_path(ahd, scb); printk("Abort%s Message Sent\n", (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : ""); /* * Clear our selection hardware in advance of * the busfree. We may have an entry in the waiting * Q for this target, and we don't want to go about * selecting while we handle the busfree and blow it * away. */ ahd_outb(ahd, SCSISEQ0, 0); } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) { ahd_build_transfer_msg(ahd, devinfo); /* * Clear our selection hardware in advance of potential * PPR IU status change busfree. We may have an entry in * the waiting Q for this target, and we don't want to go * about selecting while we handle the busfree and blow * it away. */ ahd_outb(ahd, SCSISEQ0, 0); } else { printk("ahd_intr: AWAITING_MSG for an SCB that " "does not have a waiting message\n"); printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid, devinfo->target_mask); panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x " "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control, ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT), scb->flags); } /* * Clear the MK_MESSAGE flag from the SCB so we aren't * asked to send this message again. */ ahd_outb(ahd, SCB_CONTROL, ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE); scb->hscb->control &= ~MK_MESSAGE; ahd->msgout_index = 0; ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; } /* * Build an appropriate transfer negotiation message for the * currently active target. */ static void ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { /* * We need to initiate transfer negotiations. * If our current and goal settings are identical, * we want to renegotiate due to a check condition. */ struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; int dowide; int dosync; int doppr; u_int period; u_int ppr_options; u_int offset; tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); /* * Filter our period based on the current connection. * If we can't perform DT transfers on this segment (not in LVD * mode for instance), then our decision to issue a PPR message * may change. */ period = tinfo->goal.period; offset = tinfo->goal.offset; ppr_options = tinfo->goal.ppr_options; /* Target initiated PPR is not allowed in the SCSI spec */ if (devinfo->role == ROLE_TARGET) ppr_options = 0; ahd_devlimited_syncrate(ahd, tinfo, &period, &ppr_options, devinfo->role); dowide = tinfo->curr.width != tinfo->goal.width; dosync = tinfo->curr.offset != offset || tinfo->curr.period != period; /* * Only use PPR if we have options that need it, even if the device * claims to support it. There might be an expander in the way * that doesn't. */ doppr = ppr_options != 0; if (!dowide && !dosync && !doppr) { dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT; dosync = tinfo->goal.offset != 0; } if (!dowide && !dosync && !doppr) { /* * Force async with a WDTR message if we have a wide bus, * or just issue an SDTR with a 0 offset. */ if ((ahd->features & AHD_WIDE) != 0) dowide = 1; else dosync = 1; if (bootverbose) { ahd_print_devinfo(ahd, devinfo); printk("Ensuring async\n"); } } /* Target initiated PPR is not allowed in the SCSI spec */ if (devinfo->role == ROLE_TARGET) doppr = 0; /* * Both the PPR message and SDTR message require the * goal syncrate to be limited to what the target device * is capable of handling (based on whether an LVD->SE * expander is on the bus), so combine these two cases. * Regardless, guarantee that if we are using WDTR and SDTR * messages that WDTR comes first. */ if (doppr || (dosync && !dowide)) { offset = tinfo->goal.offset; ahd_validate_offset(ahd, tinfo, period, &offset, doppr ? tinfo->goal.width : tinfo->curr.width, devinfo->role); if (doppr) { ahd_construct_ppr(ahd, devinfo, period, offset, tinfo->goal.width, ppr_options); } else { ahd_construct_sdtr(ahd, devinfo, period, offset); } } else { ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width); } } /* * Build a synchronous negotiation message in our message * buffer based on the input parameters. */ static void ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, u_int period, u_int offset) { if (offset == 0) period = AHD_ASYNC_XFER_PERIOD; ahd->msgout_index += spi_populate_sync_msg( ahd->msgout_buf + ahd->msgout_index, period, offset); ahd->msgout_len += 5; if (bootverbose) { printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun, period, offset); } } /* * Build a wide negotiateion message in our message * buffer based on the input parameters. */ static void ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, u_int bus_width) { ahd->msgout_index += spi_populate_width_msg( ahd->msgout_buf + ahd->msgout_index, bus_width); ahd->msgout_len += 4; if (bootverbose) { printk("(%s:%c:%d:%d): Sending WDTR %x\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun, bus_width); } } /* * Build a parallel protocol request message in our message * buffer based on the input parameters. */ static void ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, u_int period, u_int offset, u_int bus_width, u_int ppr_options) { /* * Always request precompensation from * the other target if we are running * at paced syncrates. */ if (period <= AHD_SYNCRATE_PACED) ppr_options |= MSG_EXT_PPR_PCOMP_EN; if (offset == 0) period = AHD_ASYNC_XFER_PERIOD; ahd->msgout_index += spi_populate_ppr_msg( ahd->msgout_buf + ahd->msgout_index, period, offset, bus_width, ppr_options); ahd->msgout_len += 8; if (bootverbose) { printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, " "offset %x, ppr_options %x\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun, bus_width, period, offset, ppr_options); } } /* * Clear any active message state. */ static void ahd_clear_msg_state(struct ahd_softc *ahd) { ahd_mode_state saved_modes; saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); ahd->send_msg_perror = 0; ahd->msg_flags = MSG_FLAG_NONE; ahd->msgout_len = 0; ahd->msgin_index = 0; ahd->msg_type = MSG_TYPE_NONE; if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) { /* * The target didn't care to respond to our * message request, so clear ATN. */ ahd_outb(ahd, CLRSINT1, CLRATNO); } ahd_outb(ahd, MSG_OUT, MSG_NOOP); ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING); ahd_restore_modes(ahd, saved_modes); } /* * Manual message loop handler. */ static void ahd_handle_message_phase(struct ahd_softc *ahd) { struct ahd_devinfo devinfo; u_int bus_phase; int end_session; ahd_fetch_devinfo(ahd, &devinfo); end_session = FALSE; bus_phase = ahd_inb(ahd, LASTPHASE); if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) { printk("LQIRETRY for LQIPHASE_OUTPKT\n"); ahd_outb(ahd, LQCTL2, LQIRETRY); } reswitch: switch (ahd->msg_type) { case MSG_TYPE_INITIATOR_MSGOUT: { int lastbyte; int phasemis; int msgdone; if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0) panic("HOST_MSG_LOOP interrupt with no active message"); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { ahd_print_devinfo(ahd, &devinfo); printk("INITIATOR_MSG_OUT"); } #endif phasemis = bus_phase != P_MESGOUT; if (phasemis) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { printk(" PHASEMIS %s\n", ahd_lookup_phase_entry(bus_phase) ->phasemsg); } #endif if (bus_phase == P_MESGIN) { /* * Change gears and see if * this messages is of interest to * us or should be passed back to * the sequencer. */ ahd_outb(ahd, CLRSINT1, CLRATNO); ahd->send_msg_perror = 0; ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN; ahd->msgin_index = 0; goto reswitch; } end_session = TRUE; break; } if (ahd->send_msg_perror) { ahd_outb(ahd, CLRSINT1, CLRATNO); ahd_outb(ahd, CLRSINT1, CLRREQINIT); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk(" byte 0x%x\n", ahd->send_msg_perror); #endif /* * If we are notifying the target of a CRC error * during packetized operations, the target is * within its rights to acknowledge our message * with a busfree. */ if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR) ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE; ahd_outb(ahd, RETURN_2, ahd->send_msg_perror); ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE); break; } msgdone = ahd->msgout_index == ahd->msgout_len; if (msgdone) { /* * The target has requested a retry. * Re-assert ATN, reset our message index to * 0, and try again. */ ahd->msgout_index = 0; ahd_assert_atn(ahd); } lastbyte = ahd->msgout_index == (ahd->msgout_len - 1); if (lastbyte) { /* Last byte is signified by dropping ATN */ ahd_outb(ahd, CLRSINT1, CLRATNO); } /* * Clear our interrupt status and present * the next byte on the bus. */ ahd_outb(ahd, CLRSINT1, CLRREQINIT); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk(" byte 0x%x\n", ahd->msgout_buf[ahd->msgout_index]); #endif ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]); ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE); break; } case MSG_TYPE_INITIATOR_MSGIN: { int phasemis; int message_done; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { ahd_print_devinfo(ahd, &devinfo); printk("INITIATOR_MSG_IN"); } #endif phasemis = bus_phase != P_MESGIN; if (phasemis) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { printk(" PHASEMIS %s\n", ahd_lookup_phase_entry(bus_phase) ->phasemsg); } #endif ahd->msgin_index = 0; if (bus_phase == P_MESGOUT && (ahd->send_msg_perror != 0 || (ahd->msgout_len != 0 && ahd->msgout_index == 0))) { ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; goto reswitch; } end_session = TRUE; break; } /* Pull the byte in without acking it */ ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk(" byte 0x%x\n", ahd->msgin_buf[ahd->msgin_index]); #endif message_done = ahd_parse_msg(ahd, &devinfo); if (message_done) { /* * Clear our incoming message buffer in case there * is another message following this one. */ ahd->msgin_index = 0; /* * If this message illicited a response, * assert ATN so the target takes us to the * message out phase. */ if (ahd->msgout_len != 0) { #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { ahd_print_devinfo(ahd, &devinfo); printk("Asserting ATN for response\n"); } #endif ahd_assert_atn(ahd); } } else ahd->msgin_index++; if (message_done == MSGLOOP_TERMINATED) { end_session = TRUE; } else { /* Ack the byte */ ahd_outb(ahd, CLRSINT1, CLRREQINIT); ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ); } break; } case MSG_TYPE_TARGET_MSGIN: { int msgdone; int msgout_request; /* * By default, the message loop will continue. */ ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG); if (ahd->msgout_len == 0) panic("Target MSGIN with no active message"); /* * If we interrupted a mesgout session, the initiator * will not know this until our first REQ. So, we * only honor mesgout requests after we've sent our * first byte. */ if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0 && ahd->msgout_index > 0) msgout_request = TRUE; else msgout_request = FALSE; if (msgout_request) { /* * Change gears and see if * this messages is of interest to * us or should be passed back to * the sequencer. */ ahd->msg_type = MSG_TYPE_TARGET_MSGOUT; ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO); ahd->msgin_index = 0; /* Dummy read to REQ for first byte */ ahd_inb(ahd, SCSIDAT); ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN); break; } msgdone = ahd->msgout_index == ahd->msgout_len; if (msgdone) { ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN); end_session = TRUE; break; } /* * Present the next byte on the bus. */ ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN); ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]); break; } case MSG_TYPE_TARGET_MSGOUT: { int lastbyte; int msgdone; /* * By default, the message loop will continue. */ ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG); /* * The initiator signals that this is * the last byte by dropping ATN. */ lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0; /* * Read the latched byte, but turn off SPIOEN first * so that we don't inadvertently cause a REQ for the * next byte. */ ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN); ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT); msgdone = ahd_parse_msg(ahd, &devinfo); if (msgdone == MSGLOOP_TERMINATED) { /* * The message is *really* done in that it caused * us to go to bus free. The sequencer has already * been reset at this point, so pull the ejection * handle. */ return; } ahd->msgin_index++; /* * XXX Read spec about initiator dropping ATN too soon * and use msgdone to detect it. */ if (msgdone == MSGLOOP_MSGCOMPLETE) { ahd->msgin_index = 0; /* * If this message illicited a response, transition * to the Message in phase and send it. */ if (ahd->msgout_len != 0) { ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO); ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN); ahd->msg_type = MSG_TYPE_TARGET_MSGIN; ahd->msgin_index = 0; break; } } if (lastbyte) end_session = TRUE; else { /* Ask for the next byte. */ ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN); } break; } default: panic("Unknown REQINIT message type"); } if (end_session) { if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) { printk("%s: Returning to Idle Loop\n", ahd_name(ahd)); ahd_clear_msg_state(ahd); /* * Perform the equivalent of a clear_target_state. */ ahd_outb(ahd, LASTPHASE, P_BUSFREE); ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT); ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET); } else { ahd_clear_msg_state(ahd); ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP); } } } /* * See if we sent a particular extended message to the target. * If "full" is true, return true only if the target saw the full * message. If "full" is false, return true if the target saw at * least the first byte of the message. */ static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full) { int found; u_int index; found = FALSE; index = 0; while (index < ahd->msgout_len) { if (ahd->msgout_buf[index] == MSG_EXTENDED) { u_int end_index; end_index = index + 1 + ahd->msgout_buf[index + 1]; if (ahd->msgout_buf[index+2] == msgval && type == AHDMSG_EXT) { if (full) { if (ahd->msgout_index > end_index) found = TRUE; } else if (ahd->msgout_index > index) found = TRUE; } index = end_index; } else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK && ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) { /* Skip tag type and tag id or residue param*/ index += 2; } else { /* Single byte message */ if (type == AHDMSG_1B && ahd->msgout_index > index && (ahd->msgout_buf[index] == msgval || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0 && msgval == MSG_IDENTIFYFLAG))) found = TRUE; index++; } if (found) break; } return (found); } /* * Wait for a complete incoming message, parse it, and respond accordingly. */ static int ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; int reject; int done; int response; done = MSGLOOP_IN_PROG; response = FALSE; reject = FALSE; tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); /* * Parse as much of the message as is available, * rejecting it if we don't support it. When * the entire message is available and has been * handled, return MSGLOOP_MSGCOMPLETE, indicating * that we have parsed an entire message. * * In the case of extended messages, we accept the length * byte outright and perform more checking once we know the * extended message type. */ switch (ahd->msgin_buf[0]) { case MSG_DISCONNECT: case MSG_SAVEDATAPOINTER: case MSG_CMDCOMPLETE: case MSG_RESTOREPOINTERS: case MSG_IGN_WIDE_RESIDUE: /* * End our message loop as these are messages * the sequencer handles on its own. */ done = MSGLOOP_TERMINATED; break; case MSG_MESSAGE_REJECT: response = ahd_handle_msg_reject(ahd, devinfo); /* FALLTHROUGH */ case MSG_NOOP: done = MSGLOOP_MSGCOMPLETE; break; case MSG_EXTENDED: { /* Wait for enough of the message to begin validation */ if (ahd->msgin_index < 2) break; switch (ahd->msgin_buf[2]) { case MSG_EXT_SDTR: { u_int period; u_int ppr_options; u_int offset; u_int saved_offset; if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) { reject = TRUE; break; } /* * Wait until we have both args before validating * and acting on this message. * * Add one to MSG_EXT_SDTR_LEN to account for * the extended message preamble. */ if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1)) break; period = ahd->msgin_buf[3]; ppr_options = 0; saved_offset = offset = ahd->msgin_buf[4]; ahd_devlimited_syncrate(ahd, tinfo, &period, &ppr_options, devinfo->role); ahd_validate_offset(ahd, tinfo, period, &offset, tinfo->curr.width, devinfo->role); if (bootverbose) { printk("(%s:%c:%d:%d): Received " "SDTR period %x, offset %x\n\t" "Filtered to period %x, offset %x\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun, ahd->msgin_buf[3], saved_offset, period, offset); } ahd_set_syncrate(ahd, devinfo, period, offset, ppr_options, AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, /*paused*/TRUE); /* * See if we initiated Sync Negotiation * and didn't have to fall down to async * transfers. */ if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) { /* We started it */ if (saved_offset != offset) { /* Went too low - force async */ reject = TRUE; } } else { /* * Send our own SDTR in reply */ if (bootverbose && devinfo->role == ROLE_INITIATOR) { printk("(%s:%c:%d:%d): Target " "Initiated SDTR\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun); } ahd->msgout_index = 0; ahd->msgout_len = 0; ahd_construct_sdtr(ahd, devinfo, period, offset); ahd->msgout_index = 0; response = TRUE; } done = MSGLOOP_MSGCOMPLETE; break; } case MSG_EXT_WDTR: { u_int bus_width; u_int saved_width; u_int sending_reply; sending_reply = FALSE; if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) { reject = TRUE; break; } /* * Wait until we have our arg before validating * and acting on this message. * * Add one to MSG_EXT_WDTR_LEN to account for * the extended message preamble. */ if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1)) break; bus_width = ahd->msgin_buf[3]; saved_width = bus_width; ahd_validate_width(ahd, tinfo, &bus_width, devinfo->role); if (bootverbose) { printk("(%s:%c:%d:%d): Received WDTR " "%x filtered to %x\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun, saved_width, bus_width); } if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) { /* * Don't send a WDTR back to the * target, since we asked first. * If the width went higher than our * request, reject it. */ if (saved_width > bus_width) { reject = TRUE; printk("(%s:%c:%d:%d): requested %dBit " "transfers. Rejecting...\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun, 8 * (0x01 << bus_width)); bus_width = 0; } } else { /* * Send our own WDTR in reply */ if (bootverbose && devinfo->role == ROLE_INITIATOR) { printk("(%s:%c:%d:%d): Target " "Initiated WDTR\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun); } ahd->msgout_index = 0; ahd->msgout_len = 0; ahd_construct_wdtr(ahd, devinfo, bus_width); ahd->msgout_index = 0; response = TRUE; sending_reply = TRUE; } /* * After a wide message, we are async, but * some devices don't seem to honor this portion * of the spec. Force a renegotiation of the * sync component of our transfer agreement even * if our goal is async. By updating our width * after forcing the negotiation, we avoid * renegotiating for width. */ ahd_update_neg_request(ahd, devinfo, tstate, tinfo, AHD_NEG_ALWAYS); ahd_set_width(ahd, devinfo, bus_width, AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, /*paused*/TRUE); if (sending_reply == FALSE && reject == FALSE) { /* * We will always have an SDTR to send. */ ahd->msgout_index = 0; ahd->msgout_len = 0; ahd_build_transfer_msg(ahd, devinfo); ahd->msgout_index = 0; response = TRUE; } done = MSGLOOP_MSGCOMPLETE; break; } case MSG_EXT_PPR: { u_int period; u_int offset; u_int bus_width; u_int ppr_options; u_int saved_width; u_int saved_offset; u_int saved_ppr_options; if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) { reject = TRUE; break; } /* * Wait until we have all args before validating * and acting on this message. * * Add one to MSG_EXT_PPR_LEN to account for * the extended message preamble. */ if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1)) break; period = ahd->msgin_buf[3]; offset = ahd->msgin_buf[5]; bus_width = ahd->msgin_buf[6]; saved_width = bus_width; ppr_options = ahd->msgin_buf[7]; /* * According to the spec, a DT only * period factor with no DT option * set implies async. */ if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0 && period <= 9) offset = 0; saved_ppr_options = ppr_options; saved_offset = offset; /* * Transfer options are only available if we * are negotiating wide. */ if (bus_width == 0) ppr_options &= MSG_EXT_PPR_QAS_REQ; ahd_validate_width(ahd, tinfo, &bus_width, devinfo->role); ahd_devlimited_syncrate(ahd, tinfo, &period, &ppr_options, devinfo->role); ahd_validate_offset(ahd, tinfo, period, &offset, bus_width, devinfo->role); if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) { /* * If we are unable to do any of the * requested options (we went too low), * then we'll have to reject the message. */ if (saved_width > bus_width || saved_offset != offset || saved_ppr_options != ppr_options) { reject = TRUE; period = 0; offset = 0; bus_width = 0; ppr_options = 0; } } else { if (devinfo->role != ROLE_TARGET) printk("(%s:%c:%d:%d): Target " "Initiated PPR\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun); else printk("(%s:%c:%d:%d): Initiator " "Initiated PPR\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun); ahd->msgout_index = 0; ahd->msgout_len = 0; ahd_construct_ppr(ahd, devinfo, period, offset, bus_width, ppr_options); ahd->msgout_index = 0; response = TRUE; } if (bootverbose) { printk("(%s:%c:%d:%d): Received PPR width %x, " "period %x, offset %x,options %x\n" "\tFiltered to width %x, period %x, " "offset %x, options %x\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun, saved_width, ahd->msgin_buf[3], saved_offset, saved_ppr_options, bus_width, period, offset, ppr_options); } ahd_set_width(ahd, devinfo, bus_width, AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, /*paused*/TRUE); ahd_set_syncrate(ahd, devinfo, period, offset, ppr_options, AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, /*paused*/TRUE); done = MSGLOOP_MSGCOMPLETE; break; } default: /* Unknown extended message. Reject it. */ reject = TRUE; break; } break; } #ifdef AHD_TARGET_MODE case MSG_BUS_DEV_RESET: ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD, CAM_BDR_SENT, "Bus Device Reset Received", /*verbose_level*/0); ahd_restart(ahd); done = MSGLOOP_TERMINATED; break; case MSG_ABORT_TAG: case MSG_ABORT: case MSG_CLEAR_QUEUE: { int tag; /* Target mode messages */ if (devinfo->role != ROLE_TARGET) { reject = TRUE; break; } tag = SCB_LIST_NULL; if (ahd->msgin_buf[0] == MSG_ABORT_TAG) tag = ahd_inb(ahd, INITIATOR_TAG); ahd_abort_scbs(ahd, devinfo->target, devinfo->channel, devinfo->lun, tag, ROLE_TARGET, CAM_REQ_ABORTED); tstate = ahd->enabled_targets[devinfo->our_scsiid]; if (tstate != NULL) { struct ahd_tmode_lstate* lstate; lstate = tstate->enabled_luns[devinfo->lun]; if (lstate != NULL) { ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid, ahd->msgin_buf[0], /*arg*/tag); ahd_send_lstate_events(ahd, lstate); } } ahd_restart(ahd); done = MSGLOOP_TERMINATED; break; } #endif case MSG_QAS_REQUEST: #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) printk("%s: QAS request. SCSISIGI == 0x%x\n", ahd_name(ahd), ahd_inb(ahd, SCSISIGI)); #endif ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE; /* FALLTHROUGH */ case MSG_TERM_IO_PROC: default: reject = TRUE; break; } if (reject) { /* * Setup to reject the message. */ ahd->msgout_index = 0; ahd->msgout_len = 1; ahd->msgout_buf[0] = MSG_MESSAGE_REJECT; done = MSGLOOP_MSGCOMPLETE; response = TRUE; } if (done != MSGLOOP_IN_PROG && !response) /* Clear the outgoing message buffer */ ahd->msgout_len = 0; return (done); } /* * Process a message reject message. */ static int ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { /* * What we care about here is if we had an * outstanding SDTR or WDTR message for this * target. If we did, this is a signal that * the target is refusing negotiation. */ struct scb *scb; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; u_int scb_index; u_int last_msg; int response = 0; scb_index = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scb_index); tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, devinfo->target, &tstate); /* Might be necessary */ last_msg = ahd_inb(ahd, LAST_MSG); if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) { if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE) && tinfo->goal.period <= AHD_SYNCRATE_PACED) { /* * Target may not like our SPI-4 PPR Options. * Attempt to negotiate 80MHz which will turn * off these options. */ if (bootverbose) { printk("(%s:%c:%d:%d): PPR Rejected. " "Trying simple U160 PPR\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun); } tinfo->goal.period = AHD_SYNCRATE_DT; tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ | MSG_EXT_PPR_QAS_REQ | MSG_EXT_PPR_DT_REQ; } else { /* * Target does not support the PPR message. * Attempt to negotiate SPI-2 style. */ if (bootverbose) { printk("(%s:%c:%d:%d): PPR Rejected. " "Trying WDTR/SDTR\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun); } tinfo->goal.ppr_options = 0; tinfo->curr.transport_version = 2; tinfo->goal.transport_version = 2; } ahd->msgout_index = 0; ahd->msgout_len = 0; ahd_build_transfer_msg(ahd, devinfo); ahd->msgout_index = 0; response = 1; } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) { /* note 8bit xfers */ printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using " "8bit transfers\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun); ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, /*paused*/TRUE); /* * No need to clear the sync rate. If the target * did not accept the command, our syncrate is * unaffected. If the target started the negotiation, * but rejected our response, we already cleared the * sync rate before sending our WDTR. */ if (tinfo->goal.offset != tinfo->curr.offset) { /* Start the sync negotiation */ ahd->msgout_index = 0; ahd->msgout_len = 0; ahd_build_transfer_msg(ahd, devinfo); ahd->msgout_index = 0; response = 1; } } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) { /* note asynch xfers and clear flag */ ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0, /*ppr_options*/0, AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, /*paused*/TRUE); printk("(%s:%c:%d:%d): refuses synchronous negotiation. " "Using asynchronous transfers\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun); } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) { int tag_type; int mask; tag_type = (scb->hscb->control & MSG_SIMPLE_TASK); if (tag_type == MSG_SIMPLE_TASK) { printk("(%s:%c:%d:%d): refuses tagged commands. " "Performing non-tagged I/O\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun); ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE); mask = ~0x23; } else { printk("(%s:%c:%d:%d): refuses %s tagged commands. " "Performing simple queue tagged I/O only\n", ahd_name(ahd), devinfo->channel, devinfo->target, devinfo->lun, tag_type == MSG_ORDERED_TASK ? "ordered" : "head of queue"); ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC); mask = ~0x03; } /* * Resend the identify for this CCB as the target * may believe that the selection is invalid otherwise. */ ahd_outb(ahd, SCB_CONTROL, ahd_inb_scbram(ahd, SCB_CONTROL) & mask); scb->hscb->control &= mask; ahd_set_transaction_tag(scb, /*enabled*/FALSE, /*type*/MSG_SIMPLE_TASK); ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG); ahd_assert_atn(ahd); ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun), SCB_GET_TAG(scb)); /* * Requeue all tagged commands for this target * currently in our possession so they can be * converted to untagged commands. */ ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb), SCB_GET_CHANNEL(ahd, scb), SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL, ROLE_INITIATOR, CAM_REQUEUE_REQ, SEARCH_COMPLETE); } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) { /* * Most likely the device believes that we had * previously negotiated packetized. */ ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE | MSG_FLAG_IU_REQ_CHANGED; ahd_force_renegotiation(ahd, devinfo); ahd->msgout_index = 0; ahd->msgout_len = 0; ahd_build_transfer_msg(ahd, devinfo); ahd->msgout_index = 0; response = 1; } else { /* * Otherwise, we ignore it. */ printk("%s:%c:%d: Message reject for %x -- ignored\n", ahd_name(ahd), devinfo->channel, devinfo->target, last_msg); } return (response); } /* * Process an ingnore wide residue message. */ static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) { u_int scb_index; struct scb *scb; scb_index = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scb_index); /* * XXX Actually check data direction in the sequencer? * Perhaps add datadir to some spare bits in the hscb? */ if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) { /* * Ignore the message if we haven't * seen an appropriate data phase yet. */ } else { /* * If the residual occurred on the last * transfer and the transfer request was * expected to end on an odd count, do * nothing. Otherwise, subtract a byte * and update the residual count accordingly. */ uint32_t sgptr; sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR); if ((sgptr & SG_LIST_NULL) != 0 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE) & SCB_XFERLEN_ODD) != 0) { /* * If the residual occurred on the last * transfer and the transfer request was * expected to end on an odd count, do * nothing. */ } else { uint32_t data_cnt; uint64_t data_addr; uint32_t sglen; /* Pull in the rest of the sgptr */ sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT); if ((sgptr & SG_LIST_NULL) != 0) { /* * The residual data count is not updated * for the command run to completion case. * Explicitly zero the count. */ data_cnt &= ~AHD_SG_LEN_MASK; } data_addr = ahd_inq(ahd, SHADDR); data_cnt += 1; data_addr -= 1; sgptr &= SG_PTR_MASK; if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { struct ahd_dma64_seg *sg; sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); /* * The residual sg ptr points to the next S/G * to load so we must go back one. */ sg--; sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK; if (sg != scb->sg_list && sglen < (data_cnt & AHD_SG_LEN_MASK)) { sg--; sglen = ahd_le32toh(sg->len); /* * Preserve High Address and SG_LIST * bits while setting the count to 1. */ data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK)); data_addr = ahd_le64toh(sg->addr) + (sglen & AHD_SG_LEN_MASK) - 1; /* * Increment sg so it points to the * "next" sg. */ sg++; sgptr = ahd_sg_virt_to_bus(ahd, scb, sg); } } else { struct ahd_dma_seg *sg; sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); /* * The residual sg ptr points to the next S/G * to load so we must go back one. */ sg--; sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK; if (sg != scb->sg_list && sglen < (data_cnt & AHD_SG_LEN_MASK)) { sg--; sglen = ahd_le32toh(sg->len); /* * Preserve High Address and SG_LIST * bits while setting the count to 1. */ data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK)); data_addr = ahd_le32toh(sg->addr) + (sglen & AHD_SG_LEN_MASK) - 1; /* * Increment sg so it points to the * "next" sg. */ sg++; sgptr = ahd_sg_virt_to_bus(ahd, scb, sg); } } /* * Toggle the "oddness" of the transfer length * to handle this mid-transfer ignore wide * residue. This ensures that the oddness is * correct for subsequent data transfers. */ ahd_outb(ahd, SCB_TASK_ATTRIBUTE, ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE) ^ SCB_XFERLEN_ODD); ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr); ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt); /* * The FIFO's pointers will be updated if/when the * sequencer re-enters a data phase. */ } } } /* * Reinitialize the data pointers for the active transfer * based on its current residual. */ static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd) { struct scb *scb; ahd_mode_state saved_modes; u_int scb_index; u_int wait; uint32_t sgptr; uint32_t resid; uint64_t dataptr; AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK); scb_index = ahd_get_scbptr(ahd); scb = ahd_lookup_scb(ahd, scb_index); /* * Release and reacquire the FIFO so we * have a clean slate. */ ahd_outb(ahd, DFFSXFRCTL, CLRCHN); wait = 1000; while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE)) ahd_delay(100); if (wait == 0) { ahd_print_path(ahd, scb); printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n"); ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT); } saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); ahd_outb(ahd, DFFSTAT, ahd_inb(ahd, DFFSTAT) | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0)); /* * Determine initial values for data_addr and data_cnt * for resuming the data phase. */ sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); sgptr &= SG_PTR_MASK; resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16) | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8) | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT); if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { struct ahd_dma64_seg *sg; sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); /* The residual sg_ptr always points to the next sg */ sg--; dataptr = ahd_le64toh(sg->addr) + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK) - resid; ahd_outl(ahd, HADDR + 4, dataptr >> 32); } else { struct ahd_dma_seg *sg; sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); /* The residual sg_ptr always points to the next sg */ sg--; dataptr = ahd_le32toh(sg->addr) + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK) - resid; ahd_outb(ahd, HADDR + 4, (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24); } ahd_outl(ahd, HADDR, dataptr); ahd_outb(ahd, HCNT + 2, resid >> 16); ahd_outb(ahd, HCNT + 1, resid >> 8); ahd_outb(ahd, HCNT, resid); } /* * Handle the effects of issuing a bus device reset message. */ static void ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, u_int lun, cam_status status, char *message, int verbose_level) { #ifdef AHD_TARGET_MODE struct ahd_tmode_tstate* tstate; #endif int found; found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel, lun, SCB_LIST_NULL, devinfo->role, status); #ifdef AHD_TARGET_MODE /* * Send an immediate notify ccb to all target mord peripheral * drivers affected by this action. */ tstate = ahd->enabled_targets[devinfo->our_scsiid]; if (tstate != NULL) { u_int cur_lun; u_int max_lun; if (lun != CAM_LUN_WILDCARD) { cur_lun = 0; max_lun = AHD_NUM_LUNS - 1; } else { cur_lun = lun; max_lun = lun; } for (;cur_lun <= max_lun; cur_lun++) { struct ahd_tmode_lstate* lstate; lstate = tstate->enabled_luns[cur_lun]; if (lstate == NULL) continue; ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid, MSG_BUS_DEV_RESET, /*arg*/0); ahd_send_lstate_events(ahd, lstate); } } #endif /* * Go back to async/narrow transfers and renegotiate. */ ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_CUR, /*paused*/TRUE); ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0, /*ppr_options*/0, AHD_TRANS_CUR, /*paused*/TRUE); if (status != CAM_SEL_TIMEOUT) ahd_send_async(ahd, devinfo->channel, devinfo->target, CAM_LUN_WILDCARD, AC_SENT_BDR); if (message != NULL && bootverbose) printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd), message, devinfo->channel, devinfo->target, found); } #ifdef AHD_TARGET_MODE static void ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, struct scb *scb) { /* * To facilitate adding multiple messages together, * each routine should increment the index and len * variables instead of setting them explicitly. */ ahd->msgout_index = 0; ahd->msgout_len = 0; if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0) ahd_build_transfer_msg(ahd, devinfo); else panic("ahd_intr: AWAITING target message with no message"); ahd->msgout_index = 0; ahd->msg_type = MSG_TYPE_TARGET_MSGIN; } #endif /**************************** Initialization **********************************/ static u_int ahd_sglist_size(struct ahd_softc *ahd) { bus_size_t list_size; list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG; if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG; return (list_size); } /* * Calculate the optimum S/G List allocation size. S/G elements used * for a given transaction must be physically contiguous. Assume the * OS will allocate full pages to us, so it doesn't make sense to request * less than a page. */ static u_int ahd_sglist_allocsize(struct ahd_softc *ahd) { bus_size_t sg_list_increment; bus_size_t sg_list_size; bus_size_t max_list_size; bus_size_t best_list_size; /* Start out with the minimum required for AHD_NSEG. */ sg_list_increment = ahd_sglist_size(ahd); sg_list_size = sg_list_increment; /* Get us as close as possible to a page in size. */ while ((sg_list_size + sg_list_increment) <= PAGE_SIZE) sg_list_size += sg_list_increment; /* * Try to reduce the amount of wastage by allocating * multiple pages. */ best_list_size = sg_list_size; max_list_size = roundup(sg_list_increment, PAGE_SIZE); if (max_list_size < 4 * PAGE_SIZE) max_list_size = 4 * PAGE_SIZE; if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment)) max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment); while ((sg_list_size + sg_list_increment) <= max_list_size && (sg_list_size % PAGE_SIZE) != 0) { bus_size_t new_mod; bus_size_t best_mod; sg_list_size += sg_list_increment; new_mod = sg_list_size % PAGE_SIZE; best_mod = best_list_size % PAGE_SIZE; if (new_mod > best_mod || new_mod == 0) { best_list_size = sg_list_size; } } return (best_list_size); } /* * Allocate a controller structure for a new device * and perform initial initializion. */ struct ahd_softc * ahd_alloc(void *platform_arg, char *name) { struct ahd_softc *ahd; #ifndef __FreeBSD__ ahd = kmalloc(sizeof(*ahd), GFP_ATOMIC); if (!ahd) { printk("aic7xxx: cannot malloc softc!\n"); kfree(name); return NULL; } #else ahd = device_get_softc((device_t)platform_arg); #endif memset(ahd, 0, sizeof(*ahd)); ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC); if (ahd->seep_config == NULL) { #ifndef __FreeBSD__ kfree(ahd); #endif kfree(name); return (NULL); } LIST_INIT(&ahd->pending_scbs); /* We don't know our unit number until the OSM sets it */ ahd->name = name; ahd->unit = -1; ahd->description = NULL; ahd->bus_description = NULL; ahd->channel = 'A'; ahd->chip = AHD_NONE; ahd->features = AHD_FENONE; ahd->bugs = AHD_BUGNONE; ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A; ahd_timer_init(&ahd->reset_timer); ahd_timer_init(&ahd->stat_timer); ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT; ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT; ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT; ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT; ahd->int_coalescing_stop_threshold = AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT; if (ahd_platform_alloc(ahd, platform_arg) != 0) { ahd_free(ahd); ahd = NULL; } #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MEMORY) != 0) { printk("%s: scb size = 0x%x, hscb size = 0x%x\n", ahd_name(ahd), (u_int)sizeof(struct scb), (u_int)sizeof(struct hardware_scb)); } #endif return (ahd); } int ahd_softc_init(struct ahd_softc *ahd) { ahd->unpause = 0; ahd->pause = PAUSE; return (0); } void ahd_set_unit(struct ahd_softc *ahd, int unit) { ahd->unit = unit; } void ahd_set_name(struct ahd_softc *ahd, char *name) { if (ahd->name != NULL) kfree(ahd->name); ahd->name = name; } void ahd_free(struct ahd_softc *ahd) { int i; switch (ahd->init_level) { default: case 5: ahd_shutdown(ahd); /* FALLTHROUGH */ case 4: ahd_dmamap_unload(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap); /* FALLTHROUGH */ case 3: ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo, ahd->shared_data_map.dmamap); ahd_dmamap_destroy(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap); /* FALLTHROUGH */ case 2: ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat); case 1: #ifndef __linux__ ahd_dma_tag_destroy(ahd, ahd->buffer_dmat); #endif break; case 0: break; } #ifndef __linux__ ahd_dma_tag_destroy(ahd, ahd->parent_dmat); #endif ahd_platform_free(ahd); ahd_fini_scbdata(ahd); for (i = 0; i < AHD_NUM_TARGETS; i++) { struct ahd_tmode_tstate *tstate; tstate = ahd->enabled_targets[i]; if (tstate != NULL) { #ifdef AHD_TARGET_MODE int j; for (j = 0; j < AHD_NUM_LUNS; j++) { struct ahd_tmode_lstate *lstate; lstate = tstate->enabled_luns[j]; if (lstate != NULL) { xpt_free_path(lstate->path); kfree(lstate); } } #endif kfree(tstate); } } #ifdef AHD_TARGET_MODE if (ahd->black_hole != NULL) { xpt_free_path(ahd->black_hole->path); kfree(ahd->black_hole); } #endif if (ahd->name != NULL) kfree(ahd->name); if (ahd->seep_config != NULL) kfree(ahd->seep_config); if (ahd->saved_stack != NULL) kfree(ahd->saved_stack); #ifndef __FreeBSD__ kfree(ahd); #endif return; } static void ahd_shutdown(void *arg) { struct ahd_softc *ahd; ahd = (struct ahd_softc *)arg; /* * Stop periodic timer callbacks. */ ahd_timer_stop(&ahd->reset_timer); ahd_timer_stop(&ahd->stat_timer); /* This will reset most registers to 0, but not all */ ahd_reset(ahd, /*reinit*/FALSE); } /* * Reset the controller and record some information about it * that is only available just after a reset. If "reinit" is * non-zero, this reset occurred after initial configuration * and the caller requests that the chip be fully reinitialized * to a runable state. Chip interrupts are *not* enabled after * a reinitialization. The caller must enable interrupts via * ahd_intr_enable(). */ int ahd_reset(struct ahd_softc *ahd, int reinit) { u_int sxfrctl1; int wait; uint32_t cmd; /* * Preserve the value of the SXFRCTL1 register for all channels. * It contains settings that affect termination and we don't want * to disturb the integrity of the bus. */ ahd_pause(ahd); ahd_update_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); sxfrctl1 = ahd_inb(ahd, SXFRCTL1); cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2); if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) { uint32_t mod_cmd; /* * A4 Razor #632 * During the assertion of CHIPRST, the chip * does not disable its parity logic prior to * the start of the reset. This may cause a * parity error to be detected and thus a * spurious SERR or PERR assertion. Disble * PERR and SERR responses during the CHIPRST. */ mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN); ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, mod_cmd, /*bytes*/2); } ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause); /* * Ensure that the reset has finished. We delay 1000us * prior to reading the register to make sure the chip * has sufficiently completed its reset to handle register * accesses. */ wait = 1000; do { ahd_delay(1000); } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK)); if (wait == 0) { printk("%s: WARNING - Failed chip reset! " "Trying to initialize anyway.\n", ahd_name(ahd)); } ahd_outb(ahd, HCNTRL, ahd->pause); if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) { /* * Clear any latched PCI error status and restore * previous SERR and PERR response enables. */ ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1, 0xFF, /*bytes*/1); ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, cmd, /*bytes*/2); } /* * Mode should be SCSI after a chip reset, but lets * set it just to be safe. We touch the MODE_PTR * register directly so as to bypass the lazy update * code in ahd_set_modes(). */ ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI)); /* * Restore SXFRCTL1. * * We must always initialize STPWEN to 1 before we * restore the saved values. STPWEN is initialized * to a tri-state condition which can only be cleared * by turning it on. */ ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN); ahd_outb(ahd, SXFRCTL1, sxfrctl1); /* Determine chip configuration */ ahd->features &= ~AHD_WIDE; if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0) ahd->features |= AHD_WIDE; /* * If a recovery action has forced a chip reset, * re-initialize the chip to our liking. */ if (reinit != 0) ahd_chip_init(ahd); return (0); } /* * Determine the number of SCBs available on the controller */ static int ahd_probe_scbs(struct ahd_softc *ahd) { int i; AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); for (i = 0; i < AHD_SCB_MAX; i++) { int j; ahd_set_scbptr(ahd, i); ahd_outw(ahd, SCB_BASE, i); for (j = 2; j < 64; j++) ahd_outb(ahd, SCB_BASE+j, 0); /* Start out life as unallocated (needing an abort) */ ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE); if (ahd_inw_scbram(ahd, SCB_BASE) != i) break; ahd_set_scbptr(ahd, 0); if (ahd_inw_scbram(ahd, SCB_BASE) != 0) break; } return (i); } static void ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { dma_addr_t *baddr; baddr = (dma_addr_t *)arg; *baddr = segs->ds_addr; } static void ahd_initialize_hscbs(struct ahd_softc *ahd) { int i; for (i = 0; i < ahd->scb_data.maxhscbs; i++) { ahd_set_scbptr(ahd, i); /* Clear the control byte. */ ahd_outb(ahd, SCB_CONTROL, 0); /* Set the next pointer */ ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL); } } static int ahd_init_scbdata(struct ahd_softc *ahd) { struct scb_data *scb_data; int i; scb_data = &ahd->scb_data; TAILQ_INIT(&scb_data->free_scbs); for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++) LIST_INIT(&scb_data->free_scb_lists[i]); LIST_INIT(&scb_data->any_dev_free_scb_list); SLIST_INIT(&scb_data->hscb_maps); SLIST_INIT(&scb_data->sg_maps); SLIST_INIT(&scb_data->sense_maps); /* Determine the number of hardware SCBs and initialize them */ scb_data->maxhscbs = ahd_probe_scbs(ahd); if (scb_data->maxhscbs == 0) { printk("%s: No SCB space found\n", ahd_name(ahd)); return (ENXIO); } ahd_initialize_hscbs(ahd); /* * Create our DMA tags. These tags define the kinds of device * accessible memory allocations and memory mappings we will * need to perform during normal operation. * * Unless we need to further restrict the allocation, we rely * on the restrictions of the parent dmat, hence the common * use of MAXADDR and MAXSIZE. */ /* DMA tag for our hardware scb structures */ if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, PAGE_SIZE, /*nsegments*/1, /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, /*flags*/0, &scb_data->hscb_dmat) != 0) { goto error_exit; } scb_data->init_level++; /* DMA tag for our S/G structures. */ if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8, /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, ahd_sglist_allocsize(ahd), /*nsegments*/1, /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, /*flags*/0, &scb_data->sg_dmat) != 0) { goto error_exit; } #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MEMORY) != 0) printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd), ahd_sglist_allocsize(ahd)); #endif scb_data->init_level++; /* DMA tag for our sense buffers. We allocate in page sized chunks */ if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, PAGE_SIZE, /*nsegments*/1, /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, /*flags*/0, &scb_data->sense_dmat) != 0) { goto error_exit; } scb_data->init_level++; /* Perform initial CCB allocation */ ahd_alloc_scbs(ahd); if (scb_data->numscbs == 0) { printk("%s: ahd_init_scbdata - " "Unable to allocate initial scbs\n", ahd_name(ahd)); goto error_exit; } /* * Note that we were successful */ return (0); error_exit: return (ENOMEM); } static struct scb * ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag) { struct scb *scb; /* * Look on the pending list. */ LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { if (SCB_GET_TAG(scb) == tag) return (scb); } /* * Then on all of the collision free lists. */ TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) { struct scb *list_scb; list_scb = scb; do { if (SCB_GET_TAG(list_scb) == tag) return (list_scb); list_scb = LIST_NEXT(list_scb, collision_links); } while (list_scb); } /* * And finally on the generic free list. */ LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) { if (SCB_GET_TAG(scb) == tag) return (scb); } return (NULL); } static void ahd_fini_scbdata(struct ahd_softc *ahd) { struct scb_data *scb_data; scb_data = &ahd->scb_data; if (scb_data == NULL) return; switch (scb_data->init_level) { default: case 7: { struct map_node *sns_map; while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) { SLIST_REMOVE_HEAD(&scb_data->sense_maps, links); ahd_dmamap_unload(ahd, scb_data->sense_dmat, sns_map->dmamap); ahd_dmamem_free(ahd, scb_data->sense_dmat, sns_map->vaddr, sns_map->dmamap); kfree(sns_map); } ahd_dma_tag_destroy(ahd, scb_data->sense_dmat); /* FALLTHROUGH */ } case 6: { struct map_node *sg_map; while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) { SLIST_REMOVE_HEAD(&scb_data->sg_maps, links); ahd_dmamap_unload(ahd, scb_data->sg_dmat, sg_map->dmamap); ahd_dmamem_free(ahd, scb_data->sg_dmat, sg_map->vaddr, sg_map->dmamap); kfree(sg_map); } ahd_dma_tag_destroy(ahd, scb_data->sg_dmat); /* FALLTHROUGH */ } case 5: { struct map_node *hscb_map; while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) { SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links); ahd_dmamap_unload(ahd, scb_data->hscb_dmat, hscb_map->dmamap); ahd_dmamem_free(ahd, scb_data->hscb_dmat, hscb_map->vaddr, hscb_map->dmamap); kfree(hscb_map); } ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat); /* FALLTHROUGH */ } case 4: case 3: case 2: case 1: case 0: break; } } /* * DSP filter Bypass must be enabled until the first selection * after a change in bus mode (Razor #491 and #493). */ static void ahd_setup_iocell_workaround(struct ahd_softc *ahd) { ahd_mode_state saved_modes; saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL) | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS); ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI)); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) printk("%s: Setting up iocell workaround\n", ahd_name(ahd)); #endif ahd_restore_modes(ahd, saved_modes); ahd->flags &= ~AHD_HAD_FIRST_SEL; } static void ahd_iocell_first_selection(struct ahd_softc *ahd) { ahd_mode_state saved_modes; u_int sblkctl; if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0) return; saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); sblkctl = ahd_inb(ahd, SBLKCTL); ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) printk("%s: iocell first selection\n", ahd_name(ahd)); #endif if ((sblkctl & ENAB40) != 0) { ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) printk("%s: BYPASS now disabled\n", ahd_name(ahd)); #endif } ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI)); ahd_outb(ahd, CLRINT, CLRSCSIINT); ahd_restore_modes(ahd, saved_modes); ahd->flags |= AHD_HAD_FIRST_SEL; } /*************************** SCB Management ***********************************/ static void ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx) { struct scb_list *free_list; struct scb_tailq *free_tailq; struct scb *first_scb; scb->flags |= SCB_ON_COL_LIST; AHD_SET_SCB_COL_IDX(scb, col_idx); free_list = &ahd->scb_data.free_scb_lists[col_idx]; free_tailq = &ahd->scb_data.free_scbs; first_scb = LIST_FIRST(free_list); if (first_scb != NULL) { LIST_INSERT_AFTER(first_scb, scb, collision_links); } else { LIST_INSERT_HEAD(free_list, scb, collision_links); TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe); } } static void ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb) { struct scb_list *free_list; struct scb_tailq *free_tailq; struct scb *first_scb; u_int col_idx; scb->flags &= ~SCB_ON_COL_LIST; col_idx = AHD_GET_SCB_COL_IDX(ahd, scb); free_list = &ahd->scb_data.free_scb_lists[col_idx]; free_tailq = &ahd->scb_data.free_scbs; first_scb = LIST_FIRST(free_list); if (first_scb == scb) { struct scb *next_scb; /* * Maintain order in the collision free * lists for fairness if this device has * other colliding tags active. */ next_scb = LIST_NEXT(scb, collision_links); if (next_scb != NULL) { TAILQ_INSERT_AFTER(free_tailq, scb, next_scb, links.tqe); } TAILQ_REMOVE(free_tailq, scb, links.tqe); } LIST_REMOVE(scb, collision_links); } /* * Get a free scb. If there are none, see if we can allocate a new SCB. */ struct scb * ahd_get_scb(struct ahd_softc *ahd, u_int col_idx) { struct scb *scb; int tries; tries = 0; look_again: TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) { if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) { ahd_rem_col_list(ahd, scb); goto found; } } if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) { if (tries++ != 0) return (NULL); ahd_alloc_scbs(ahd); goto look_again; } LIST_REMOVE(scb, links.le); if (col_idx != AHD_NEVER_COL_IDX && (scb->col_scb != NULL) && (scb->col_scb->flags & SCB_ACTIVE) == 0) { LIST_REMOVE(scb->col_scb, links.le); ahd_add_col_list(ahd, scb->col_scb, col_idx); } found: scb->flags |= SCB_ACTIVE; return (scb); } /* * Return an SCB resource to the free list. */ void ahd_free_scb(struct ahd_softc *ahd, struct scb *scb) { /* Clean up for the next user */ scb->flags = SCB_FLAG_NONE; scb->hscb->control = 0; ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL; if (scb->col_scb == NULL) { /* * No collision possible. Just free normally. */ LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, scb, links.le); } else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) { /* * The SCB we might have collided with is on * a free collision list. Put both SCBs on * the generic list. */ ahd_rem_col_list(ahd, scb->col_scb); LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, scb, links.le); LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, scb->col_scb, links.le); } else if ((scb->col_scb->flags & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE && (scb->col_scb->hscb->control & TAG_ENB) != 0) { /* * The SCB we might collide with on the next allocation * is still active in a non-packetized, tagged, context. * Put us on the SCB collision list. */ ahd_add_col_list(ahd, scb, AHD_GET_SCB_COL_IDX(ahd, scb->col_scb)); } else { /* * The SCB we might collide with on the next allocation * is either active in a packetized context, or free. * Since we can't collide, put this SCB on the generic * free list. */ LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, scb, links.le); } ahd_platform_scb_free(ahd, scb); } static void ahd_alloc_scbs(struct ahd_softc *ahd) { struct scb_data *scb_data; struct scb *next_scb; struct hardware_scb *hscb; struct map_node *hscb_map; struct map_node *sg_map; struct map_node *sense_map; uint8_t *segs; uint8_t *sense_data; dma_addr_t hscb_busaddr; dma_addr_t sg_busaddr; dma_addr_t sense_busaddr; int newcount; int i; scb_data = &ahd->scb_data; if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC) /* Can't allocate any more */ return; if (scb_data->scbs_left != 0) { int offset; offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left; hscb_map = SLIST_FIRST(&scb_data->hscb_maps); hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset]; hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb)); } else { hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC); if (hscb_map == NULL) return; /* Allocate the next batch of hardware SCBs */ if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat, (void **)&hscb_map->vaddr, BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) { kfree(hscb_map); return; } SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links); ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap, hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb, &hscb_map->physaddr, /*flags*/0); hscb = (struct hardware_scb *)hscb_map->vaddr; hscb_busaddr = hscb_map->physaddr; scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb); } if (scb_data->sgs_left != 0) { int offset; offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd)) - scb_data->sgs_left) * ahd_sglist_size(ahd); sg_map = SLIST_FIRST(&scb_data->sg_maps); segs = sg_map->vaddr + offset; sg_busaddr = sg_map->physaddr + offset; } else { sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC); if (sg_map == NULL) return; /* Allocate the next batch of S/G lists */ if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat, (void **)&sg_map->vaddr, BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) { kfree(sg_map); return; } SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links); ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap, sg_map->vaddr, ahd_sglist_allocsize(ahd), ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0); segs = sg_map->vaddr; sg_busaddr = sg_map->physaddr; scb_data->sgs_left = ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_MEMORY) printk("Mapped SG data\n"); #endif } if (scb_data->sense_left != 0) { int offset; offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left); sense_map = SLIST_FIRST(&scb_data->sense_maps); sense_data = sense_map->vaddr + offset; sense_busaddr = sense_map->physaddr + offset; } else { sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC); if (sense_map == NULL) return; /* Allocate the next batch of sense buffers */ if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat, (void **)&sense_map->vaddr, BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) { kfree(sense_map); return; } SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links); ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap, sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb, &sense_map->physaddr, /*flags*/0); sense_data = sense_map->vaddr; sense_busaddr = sense_map->physaddr; scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE; #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_MEMORY) printk("Mapped sense data\n"); #endif } newcount = min(scb_data->sense_left, scb_data->scbs_left); newcount = min(newcount, scb_data->sgs_left); newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs)); for (i = 0; i < newcount; i++) { struct scb_platform_data *pdata; u_int col_tag; #ifndef __linux__ int error; #endif next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC); if (next_scb == NULL) break; pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC); if (pdata == NULL) { kfree(next_scb); break; } next_scb->platform_data = pdata; next_scb->hscb_map = hscb_map; next_scb->sg_map = sg_map; next_scb->sense_map = sense_map; next_scb->sg_list = segs; next_scb->sense_data = sense_data; next_scb->sense_busaddr = sense_busaddr; memset(hscb, 0, sizeof(*hscb)); next_scb->hscb = hscb; hscb->hscb_busaddr = ahd_htole32(hscb_busaddr); /* * The sequencer always starts with the second entry. * The first entry is embedded in the scb. */ next_scb->sg_list_busaddr = sg_busaddr; if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) next_scb->sg_list_busaddr += sizeof(struct ahd_dma64_seg); else next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg); next_scb->ahd_softc = ahd; next_scb->flags = SCB_FLAG_NONE; #ifndef __linux__ error = ahd_dmamap_create(ahd, ahd->buffer_dmat, /*flags*/0, &next_scb->dmamap); if (error != 0) { kfree(next_scb); kfree(pdata); break; } #endif next_scb->hscb->tag = ahd_htole16(scb_data->numscbs); col_tag = scb_data->numscbs ^ 0x100; next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag); if (next_scb->col_scb != NULL) next_scb->col_scb->col_scb = next_scb; ahd_free_scb(ahd, next_scb); hscb++; hscb_busaddr += sizeof(*hscb); segs += ahd_sglist_size(ahd); sg_busaddr += ahd_sglist_size(ahd); sense_data += AHD_SENSE_BUFSIZE; sense_busaddr += AHD_SENSE_BUFSIZE; scb_data->numscbs++; scb_data->sense_left--; scb_data->scbs_left--; scb_data->sgs_left--; } } void ahd_controller_info(struct ahd_softc *ahd, char *buf) { const char *speed; const char *type; int len; len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]); buf += len; speed = "Ultra320 "; if ((ahd->features & AHD_WIDE) != 0) { type = "Wide "; } else { type = "Single "; } len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ", speed, type, ahd->channel, ahd->our_id); buf += len; sprintf(buf, "%s, %d SCBs", ahd->bus_description, ahd->scb_data.maxhscbs); } static const char *channel_strings[] = { "Primary Low", "Primary High", "Secondary Low", "Secondary High" }; static const char *termstat_strings[] = { "Terminated Correctly", "Over Terminated", "Under Terminated", "Not Configured" }; /***************************** Timer Facilities *******************************/ #define ahd_timer_init init_timer #define ahd_timer_stop del_timer_sync typedef void ahd_linux_callback_t (u_long); static void ahd_timer_reset(ahd_timer_t *timer, int usec, ahd_callback_t *func, void *arg) { struct ahd_softc *ahd; ahd = (struct ahd_softc *)arg; del_timer(timer); timer->data = (u_long)arg; timer->expires = jiffies + (usec * HZ)/1000000; timer->function = (ahd_linux_callback_t*)func; add_timer(timer); } /* * Start the board, ready for normal operation */ int ahd_init(struct ahd_softc *ahd) { uint8_t *next_vaddr; dma_addr_t next_baddr; size_t driver_data_size; int i; int error; u_int warn_user; uint8_t current_sensing; uint8_t fstat; AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); ahd->stack_size = ahd_probe_stack_size(ahd); ahd->saved_stack = kmalloc(ahd->stack_size * sizeof(uint16_t), GFP_ATOMIC); if (ahd->saved_stack == NULL) return (ENOMEM); /* * Verify that the compiler hasn't over-aggressively * padded important structures. */ if (sizeof(struct hardware_scb) != 64) panic("Hardware SCB size is incorrect"); #ifdef AHD_DEBUG if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0) ahd->flags |= AHD_SEQUENCER_DEBUG; #endif /* * Default to allowing initiator operations. */ ahd->flags |= AHD_INITIATORROLE; /* * Only allow target mode features if this unit has them enabled. */ if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0) ahd->features &= ~AHD_TARGETMODE; #ifndef __linux__ /* DMA tag for mapping buffers into device visible space. */ if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, /*lowaddr*/ahd->flags & AHD_39BIT_ADDRESSING ? (dma_addr_t)0x7FFFFFFFFFULL : BUS_SPACE_MAXADDR_32BIT, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, /*maxsize*/(AHD_NSEG - 1) * PAGE_SIZE, /*nsegments*/AHD_NSEG, /*maxsegsz*/AHD_MAXTRANSFER_SIZE, /*flags*/BUS_DMA_ALLOCNOW, &ahd->buffer_dmat) != 0) { return (ENOMEM); } #endif ahd->init_level++; /* * DMA tag for our command fifos and other data in system memory * the card's sequencer must be able to access. For initiator * roles, we need to allocate space for the qoutfifo. When providing * for the target mode role, we must additionally provide space for * the incoming target command fifo. */ driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo) + sizeof(struct hardware_scb); if ((ahd->features & AHD_TARGETMODE) != 0) driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd); if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) driver_data_size += PKT_OVERRUN_BUFSIZE; if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, driver_data_size, /*nsegments*/1, /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, /*flags*/0, &ahd->shared_data_dmat) != 0) { return (ENOMEM); } ahd->init_level++; /* Allocation of driver data */ if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat, (void **)&ahd->shared_data_map.vaddr, BUS_DMA_NOWAIT, &ahd->shared_data_map.dmamap) != 0) { return (ENOMEM); } ahd->init_level++; /* And permanently map it in */ ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, ahd->shared_data_map.vaddr, driver_data_size, ahd_dmamap_cb, &ahd->shared_data_map.physaddr, /*flags*/0); ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr; next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE]; next_baddr = ahd->shared_data_map.physaddr + AHD_QOUT_SIZE*sizeof(struct ahd_completion); if ((ahd->features & AHD_TARGETMODE) != 0) { ahd->targetcmds = (struct target_cmd *)next_vaddr; next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd); next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd); } if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { ahd->overrun_buf = next_vaddr; next_vaddr += PKT_OVERRUN_BUFSIZE; next_baddr += PKT_OVERRUN_BUFSIZE; } /* * We need one SCB to serve as the "next SCB". Since the * tag identifier in this SCB will never be used, there is * no point in using a valid HSCB tag from an SCB pulled from * the standard free pool. So, we allocate this "sentinel" * specially from the DMA safe memory chunk used for the QOUTFIFO. */ ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr; ahd->next_queued_hscb_map = &ahd->shared_data_map; ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr); ahd->init_level++; /* Allocate SCB data now that buffer_dmat is initialized */ if (ahd_init_scbdata(ahd) != 0) return (ENOMEM); if ((ahd->flags & AHD_INITIATORROLE) == 0) ahd->flags &= ~AHD_RESET_BUS_A; /* * Before committing these settings to the chip, give * the OSM one last chance to modify our configuration. */ ahd_platform_init(ahd); /* Bring up the chip. */ ahd_chip_init(ahd); AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); if ((ahd->flags & AHD_CURRENT_SENSING) == 0) goto init_done; /* * Verify termination based on current draw and * warn user if the bus is over/under terminated. */ error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, CURSENSE_ENB); if (error != 0) { printk("%s: current sensing timeout 1\n", ahd_name(ahd)); goto init_done; } for (i = 20, fstat = FLX_FSTAT_BUSY; (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) { error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat); if (error != 0) { printk("%s: current sensing timeout 2\n", ahd_name(ahd)); goto init_done; } } if (i == 0) { printk("%s: Timedout during current-sensing test\n", ahd_name(ahd)); goto init_done; } /* Latch Current Sensing status. */ error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, ¤t_sensing); if (error != 0) { printk("%s: current sensing timeout 3\n", ahd_name(ahd)); goto init_done; } /* Diable current sensing. */ ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) { printk("%s: current_sensing == 0x%x\n", ahd_name(ahd), current_sensing); } #endif warn_user = 0; for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) { u_int term_stat; term_stat = (current_sensing & FLX_CSTAT_MASK); switch (term_stat) { case FLX_CSTAT_OVER: case FLX_CSTAT_UNDER: warn_user++; case FLX_CSTAT_INVALID: case FLX_CSTAT_OKAY: if (warn_user == 0 && bootverbose == 0) break; printk("%s: %s Channel %s\n", ahd_name(ahd), channel_strings[i], termstat_strings[term_stat]); break; } } if (warn_user) { printk("%s: WARNING. Termination is not configured correctly.\n" "%s: WARNING. SCSI bus operations may FAIL.\n", ahd_name(ahd), ahd_name(ahd)); } init_done: ahd_restart(ahd); ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US, ahd_stat_timer, ahd); return (0); } /* * (Re)initialize chip state after a chip reset. */ static void ahd_chip_init(struct ahd_softc *ahd) { uint32_t busaddr; u_int sxfrctl1; u_int scsiseq_template; u_int wait; u_int i; u_int target; ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); /* * Take the LED out of diagnostic mode */ ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON)); /* * Return HS_MAILBOX to its default value. */ ahd->hs_mailbox = 0; ahd_outb(ahd, HS_MAILBOX, 0); /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */ ahd_outb(ahd, IOWNID, ahd->our_id); ahd_outb(ahd, TOWNID, ahd->our_id); sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0; sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0; if ((ahd->bugs & AHD_LONG_SETIMO_BUG) && (ahd->seltime != STIMESEL_MIN)) { /* * The selection timer duration is twice as long * as it should be. Halve it by adding "1" to * the user specified setting. */ sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ; } else { sxfrctl1 |= ahd->seltime; } ahd_outb(ahd, SXFRCTL0, DFON); ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN); ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR); /* * Now that termination is set, wait for up * to 500ms for our transceivers to settle. If * the adapter does not have a cable attached, * the transceivers may never settle, so don't * complain if we fail here. */ for (wait = 10000; (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait; wait--) ahd_delay(100); /* Clear any false bus resets due to the transceivers settling */ ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI); ahd_outb(ahd, CLRINT, CLRSCSIINT); /* Initialize mode specific S/G state. */ for (i = 0; i < 2; i++) { ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i); ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR); ahd_outb(ahd, SG_STATE, 0); ahd_outb(ahd, CLRSEQINTSRC, 0xFF); ahd_outb(ahd, SEQIMODE, ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD); } ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN); ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75); ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN); ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR); if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE); } else { ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE); } ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS); if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX) /* * Do not issue a target abort when a split completion * error occurs. Let our PCIX interrupt handler deal * with it instead. H2A4 Razor #625 */ ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS); if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0) ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER); /* * Tweak IOCELL settings. */ if ((ahd->flags & AHD_HP_BOARD) != 0) { for (i = 0; i < NUMDSPS; i++) { ahd_outb(ahd, DSPSELECT, i); ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT); } #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd), WRTBIASCTL_HP_DEFAULT); #endif } ahd_setup_iocell_workaround(ahd); /* * Enable LQI Manager interrupts. */ ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI | ENLQIOVERI_LQ|ENLQIOVERI_NLQ); ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC); /* * We choose to have the sequencer catch LQOPHCHGINPKT errors * manually for the command phase at the start of a packetized * selection case. ENLQOBUSFREE should be made redundant by * the BUSFREE interrupt, but it seems that some LQOBUSFREE * events fail to assert the BUSFREE interrupt so we must * also enable LQOBUSFREE interrupts. */ ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE); /* * Setup sequencer interrupt handlers. */ ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr)); ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr)); /* * Setup SCB Offset registers. */ if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, pkt_long_lun)); } else { ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun)); } ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len)); ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute)); ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management)); ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb, shared_data.idata.cdb)); ahd_outb(ahd, QNEXTPTR, offsetof(struct hardware_scb, next_hscb_busaddr)); ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET); ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control)); if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { ahd_outb(ahd, LUNLEN, sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1); } else { ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN); } ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1); ahd_outb(ahd, MAXCMD, 0xFF); ahd_outb(ahd, SCBAUTOPTR, AUSCBPTR_EN | offsetof(struct hardware_scb, tag)); /* We haven't been enabled for target mode yet. */ ahd_outb(ahd, MULTARGID, 0); ahd_outb(ahd, MULTARGID + 1, 0); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); /* Initialize the negotiation table. */ if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) { /* * Clear the spare bytes in the neg table to avoid * spurious parity errors. */ for (target = 0; target < AHD_NUM_TARGETS; target++) { ahd_outb(ahd, NEGOADDR, target); ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0); for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++) ahd_outb(ahd, ANNEXDAT, 0); } } for (target = 0; target < AHD_NUM_TARGETS; target++) { struct ahd_devinfo devinfo; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, target, &tstate); ahd_compile_devinfo(&devinfo, ahd->our_id, target, CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR); ahd_update_neg_table(ahd, &devinfo, &tinfo->curr); } ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR); ahd_outb(ahd, CLRINT, CLRSCSIINT); #ifdef NEEDS_MORE_TESTING /* * Always enable abort on incoming L_Qs if this feature is * supported. We use this to catch invalid SCB references. */ if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0) ahd_outb(ahd, LQCTL1, ABORTPENDING); else #endif ahd_outb(ahd, LQCTL1, 0); /* All of our queues are empty */ ahd->qoutfifonext = 0; ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID; ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID); for (i = 0; i < AHD_QOUT_SIZE; i++) ahd->qoutfifo[i].valid_tag = 0; ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD); ahd->qinfifonext = 0; for (i = 0; i < AHD_QIN_SIZE; i++) ahd->qinfifo[i] = SCB_LIST_NULL; if ((ahd->features & AHD_TARGETMODE) != 0) { /* All target command blocks start out invalid. */ for (i = 0; i < AHD_TMODE_CMDS; i++) ahd->targetcmds[i].cmd_valid = 0; ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD); ahd->tqinfifonext = 1; ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1); ahd_outb(ahd, TQINPOS, ahd->tqinfifonext); } /* Initialize Scratch Ram. */ ahd_outb(ahd, SEQ_FLAGS, 0); ahd_outb(ahd, SEQ_FLAGS2, 0); /* We don't have any waiting selections */ ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL); ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL); ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL); ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF); for (i = 0; i < AHD_NUM_TARGETS; i++) ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL); /* * Nobody is waiting to be DMAed into the QOUTFIFO. */ ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL); ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL); ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL); ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL); ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL); /* * The Freeze Count is 0. */ ahd->qfreeze_cnt = 0; ahd_outw(ahd, QFREEZE_COUNT, 0); ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0); /* * Tell the sequencer where it can find our arrays in memory. */ busaddr = ahd->shared_data_map.physaddr; ahd_outl(ahd, SHARED_DATA_ADDR, busaddr); ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr); /* * Setup the allowed SCSI Sequences based on operational mode. * If we are a target, we'll enable select in operations once * we've had a lun enabled. */ scsiseq_template = ENAUTOATNP; if ((ahd->flags & AHD_INITIATORROLE) != 0) scsiseq_template |= ENRSELI; ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template); /* There are no busy SCBs yet. */ for (target = 0; target < AHD_NUM_TARGETS; target++) { int lun; for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++) ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun)); } /* * Initialize the group code to command length table. * Vendor Unique codes are set to 0 so we only capture * the first byte of the cdb. These can be overridden * when target mode is enabled. */ ahd_outb(ahd, CMDSIZE_TABLE, 5); ahd_outb(ahd, CMDSIZE_TABLE + 1, 9); ahd_outb(ahd, CMDSIZE_TABLE + 2, 9); ahd_outb(ahd, CMDSIZE_TABLE + 3, 0); ahd_outb(ahd, CMDSIZE_TABLE + 4, 15); ahd_outb(ahd, CMDSIZE_TABLE + 5, 11); ahd_outb(ahd, CMDSIZE_TABLE + 6, 0); ahd_outb(ahd, CMDSIZE_TABLE + 7, 0); /* Tell the sequencer of our initial queue positions */ ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512); ahd->qinfifonext = 0; ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); ahd_set_hescb_qoff(ahd, 0); ahd_set_snscb_qoff(ahd, 0); ahd_set_sescb_qoff(ahd, 0); ahd_set_sdscb_qoff(ahd, 0); /* * Tell the sequencer which SCB will be the next one it receives. */ busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr); ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr); /* * Default to coalescing disabled. */ ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0); ahd_outw(ahd, CMDS_PENDING, 0); ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer, ahd->int_coalescing_maxcmds, ahd->int_coalescing_mincmds); ahd_enable_coalescing(ahd, FALSE); ahd_loadseq(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); if (ahd->features & AHD_AIC79XXB_SLOWCRC) { u_int negodat3 = ahd_inb(ahd, NEGCONOPTS); negodat3 |= ENSLOWCRC; ahd_outb(ahd, NEGCONOPTS, negodat3); negodat3 = ahd_inb(ahd, NEGCONOPTS); if (!(negodat3 & ENSLOWCRC)) printk("aic79xx: failed to set the SLOWCRC bit\n"); else printk("aic79xx: SLOWCRC bit set\n"); } } /* * Setup default device and controller settings. * This should only be called if our probe has * determined that no configuration data is available. */ int ahd_default_config(struct ahd_softc *ahd) { int targ; ahd->our_id = 7; /* * Allocate a tstate to house information for our * initiator presence on the bus as well as the user * data for any target mode initiator. */ if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) { printk("%s: unable to allocate ahd_tmode_tstate. " "Failing attach\n", ahd_name(ahd)); return (ENOMEM); } for (targ = 0; targ < AHD_NUM_TARGETS; targ++) { struct ahd_devinfo devinfo; struct ahd_initiator_tinfo *tinfo; struct ahd_tmode_tstate *tstate; uint16_t target_mask; tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, targ, &tstate); /* * We support SPC2 and SPI4. */ tinfo->user.protocol_version = 4; tinfo->user.transport_version = 4; target_mask = 0x01 << targ; ahd->user_discenable |= target_mask; tstate->discenable |= target_mask; ahd->user_tagenable |= target_mask; #ifdef AHD_FORCE_160 tinfo->user.period = AHD_SYNCRATE_DT; #else tinfo->user.period = AHD_SYNCRATE_160; #endif tinfo->user.offset = MAX_OFFSET; tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM | MSG_EXT_PPR_WR_FLOW | MSG_EXT_PPR_HOLD_MCS | MSG_EXT_PPR_IU_REQ | MSG_EXT_PPR_QAS_REQ | MSG_EXT_PPR_DT_REQ; if ((ahd->features & AHD_RTI) != 0) tinfo->user.ppr_options |= MSG_EXT_PPR_RTI; tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT; /* * Start out Async/Narrow/Untagged and with * conservative protocol support. */ tinfo->goal.protocol_version = 2; tinfo->goal.transport_version = 2; tinfo->curr.protocol_version = 2; tinfo->curr.transport_version = 2; ahd_compile_devinfo(&devinfo, ahd->our_id, targ, CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR); tstate->tagenable &= ~target_mask; ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE); ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE); } return (0); } /* * Parse device configuration information. */ int ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc) { int targ; int max_targ; max_targ = sc->max_targets & CFMAXTARG; ahd->our_id = sc->brtime_id & CFSCSIID; /* * Allocate a tstate to house information for our * initiator presence on the bus as well as the user * data for any target mode initiator. */ if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) { printk("%s: unable to allocate ahd_tmode_tstate. " "Failing attach\n", ahd_name(ahd)); return (ENOMEM); } for (targ = 0; targ < max_targ; targ++) { struct ahd_devinfo devinfo; struct ahd_initiator_tinfo *tinfo; struct ahd_transinfo *user_tinfo; struct ahd_tmode_tstate *tstate; uint16_t target_mask; tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, targ, &tstate); user_tinfo = &tinfo->user; /* * We support SPC2 and SPI4. */ tinfo->user.protocol_version = 4; tinfo->user.transport_version = 4; target_mask = 0x01 << targ; ahd->user_discenable &= ~target_mask; tstate->discenable &= ~target_mask; ahd->user_tagenable &= ~target_mask; if (sc->device_flags[targ] & CFDISC) { tstate->discenable |= target_mask; ahd->user_discenable |= target_mask; ahd->user_tagenable |= target_mask; } else { /* * Cannot be packetized without disconnection. */ sc->device_flags[targ] &= ~CFPACKETIZED; } user_tinfo->ppr_options = 0; user_tinfo->period = (sc->device_flags[targ] & CFXFER); if (user_tinfo->period < CFXFER_ASYNC) { if (user_tinfo->period <= AHD_PERIOD_10MHz) user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ; user_tinfo->offset = MAX_OFFSET; } else { user_tinfo->offset = 0; user_tinfo->period = AHD_ASYNC_XFER_PERIOD; } #ifdef AHD_FORCE_160 if (user_tinfo->period <= AHD_SYNCRATE_160) user_tinfo->period = AHD_SYNCRATE_DT; #endif if ((sc->device_flags[targ] & CFPACKETIZED) != 0) { user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM | MSG_EXT_PPR_WR_FLOW | MSG_EXT_PPR_HOLD_MCS | MSG_EXT_PPR_IU_REQ; if ((ahd->features & AHD_RTI) != 0) user_tinfo->ppr_options |= MSG_EXT_PPR_RTI; } if ((sc->device_flags[targ] & CFQAS) != 0) user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ; if ((sc->device_flags[targ] & CFWIDEB) != 0) user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT; else user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width, user_tinfo->period, user_tinfo->offset, user_tinfo->ppr_options); #endif /* * Start out Async/Narrow/Untagged and with * conservative protocol support. */ tstate->tagenable &= ~target_mask; tinfo->goal.protocol_version = 2; tinfo->goal.transport_version = 2; tinfo->curr.protocol_version = 2; tinfo->curr.transport_version = 2; ahd_compile_devinfo(&devinfo, ahd->our_id, targ, CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR); ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE); ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE); } ahd->flags &= ~AHD_SPCHK_ENB_A; if (sc->bios_control & CFSPARITY) ahd->flags |= AHD_SPCHK_ENB_A; ahd->flags &= ~AHD_RESET_BUS_A; if (sc->bios_control & CFRESETB) ahd->flags |= AHD_RESET_BUS_A; ahd->flags &= ~AHD_EXTENDED_TRANS_A; if (sc->bios_control & CFEXTEND) ahd->flags |= AHD_EXTENDED_TRANS_A; ahd->flags &= ~AHD_BIOS_ENABLED; if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED) ahd->flags |= AHD_BIOS_ENABLED; ahd->flags &= ~AHD_STPWLEVEL_A; if ((sc->adapter_control & CFSTPWLEVEL) != 0) ahd->flags |= AHD_STPWLEVEL_A; return (0); } /* * Parse device configuration information. */ int ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd) { int error; error = ahd_verify_vpd_cksum(vpd); if (error == 0) return (EINVAL); if ((vpd->bios_flags & VPDBOOTHOST) != 0) ahd->flags |= AHD_BOOT_CHANNEL; return (0); } void ahd_intr_enable(struct ahd_softc *ahd, int enable) { u_int hcntrl; hcntrl = ahd_inb(ahd, HCNTRL); hcntrl &= ~INTEN; ahd->pause &= ~INTEN; ahd->unpause &= ~INTEN; if (enable) { hcntrl |= INTEN; ahd->pause |= INTEN; ahd->unpause |= INTEN; } ahd_outb(ahd, HCNTRL, hcntrl); } static void ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds, u_int mincmds) { if (timer > AHD_TIMER_MAX_US) timer = AHD_TIMER_MAX_US; ahd->int_coalescing_timer = timer; if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX) maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX; if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX) mincmds = AHD_INT_COALESCING_MINCMDS_MAX; ahd->int_coalescing_maxcmds = maxcmds; ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK); ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds); ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds); } static void ahd_enable_coalescing(struct ahd_softc *ahd, int enable) { ahd->hs_mailbox &= ~ENINT_COALESCE; if (enable) ahd->hs_mailbox |= ENINT_COALESCE; ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox); ahd_flush_device_writes(ahd); ahd_run_qoutfifo(ahd); } /* * Ensure that the card is paused in a location * outside of all critical sections and that all * pending work is completed prior to returning. * This routine should only be called from outside * an interrupt context. */ void ahd_pause_and_flushwork(struct ahd_softc *ahd) { u_int intstat; u_int maxloops; maxloops = 1000; ahd->flags |= AHD_ALL_INTERRUPTS; ahd_pause(ahd); /* * Freeze the outgoing selections. We do this only * until we are safely paused without further selections * pending. */ ahd->qfreeze_cnt--; ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt); ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN); do { ahd_unpause(ahd); /* * Give the sequencer some time to service * any active selections. */ ahd_delay(500); ahd_intr(ahd); ahd_pause(ahd); intstat = ahd_inb(ahd, INTSTAT); if ((intstat & INT_PEND) == 0) { ahd_clear_critical_section(ahd); intstat = ahd_inb(ahd, INTSTAT); } } while (--maxloops && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0) && ((intstat & INT_PEND) != 0 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0 || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0)); if (maxloops == 0) { printk("Infinite interrupt loop, INTSTAT = %x", ahd_inb(ahd, INTSTAT)); } ahd->qfreeze_cnt++; ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt); ahd_flush_qoutfifo(ahd); ahd->flags &= ~AHD_ALL_INTERRUPTS; } #ifdef CONFIG_PM int ahd_suspend(struct ahd_softc *ahd) { ahd_pause_and_flushwork(ahd); if (LIST_FIRST(&ahd->pending_scbs) != NULL) { ahd_unpause(ahd); return (EBUSY); } ahd_shutdown(ahd); return (0); } void ahd_resume(struct ahd_softc *ahd) { ahd_reset(ahd, /*reinit*/TRUE); ahd_intr_enable(ahd, TRUE); ahd_restart(ahd); } #endif /************************** Busy Target Table *********************************/ /* * Set SCBPTR to the SCB that contains the busy * table entry for TCL. Return the offset into * the SCB that contains the entry for TCL. * saved_scbid is dereferenced and set to the * scbid that should be restored once manipualtion * of the TCL entry is complete. */ static inline u_int ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl) { /* * Index to the SCB that contains the busy entry. */ AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); *saved_scbid = ahd_get_scbptr(ahd); ahd_set_scbptr(ahd, TCL_LUN(tcl) | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4)); /* * And now calculate the SCB offset to the entry. * Each entry is 2 bytes wide, hence the * multiplication by 2. */ return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS); } /* * Return the untagged transaction id for a given target/channel lun. */ static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl) { u_int scbid; u_int scb_offset; u_int saved_scbptr; scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl); scbid = ahd_inw_scbram(ahd, scb_offset); ahd_set_scbptr(ahd, saved_scbptr); return (scbid); } static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid) { u_int scb_offset; u_int saved_scbptr; scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl); ahd_outw(ahd, scb_offset, scbid); ahd_set_scbptr(ahd, saved_scbptr); } /************************** SCB and SCB queue management **********************/ static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target, char channel, int lun, u_int tag, role_t role) { int targ = SCB_GET_TARGET(ahd, scb); char chan = SCB_GET_CHANNEL(ahd, scb); int slun = SCB_GET_LUN(scb); int match; match = ((chan == channel) || (channel == ALL_CHANNELS)); if (match != 0) match = ((targ == target) || (target == CAM_TARGET_WILDCARD)); if (match != 0) match = ((lun == slun) || (lun == CAM_LUN_WILDCARD)); if (match != 0) { #ifdef AHD_TARGET_MODE int group; group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code); if (role == ROLE_INITIATOR) { match = (group != XPT_FC_GROUP_TMODE) && ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL)); } else if (role == ROLE_TARGET) { match = (group == XPT_FC_GROUP_TMODE) && ((tag == scb->io_ctx->csio.tag_id) || (tag == SCB_LIST_NULL)); } #else /* !AHD_TARGET_MODE */ match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL)); #endif /* AHD_TARGET_MODE */ } return match; } static void ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb) { int target; char channel; int lun; target = SCB_GET_TARGET(ahd, scb); lun = SCB_GET_LUN(scb); channel = SCB_GET_CHANNEL(ahd, scb); ahd_search_qinfifo(ahd, target, channel, lun, /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN, CAM_REQUEUE_REQ, SEARCH_COMPLETE); ahd_platform_freeze_devq(ahd, scb); } void ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb) { struct scb *prev_scb; ahd_mode_state saved_modes; saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); prev_scb = NULL; if (ahd_qinfifo_count(ahd) != 0) { u_int prev_tag; u_int prev_pos; prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1); prev_tag = ahd->qinfifo[prev_pos]; prev_scb = ahd_lookup_scb(ahd, prev_tag); } ahd_qinfifo_requeue(ahd, prev_scb, scb); ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); ahd_restore_modes(ahd, saved_modes); } static void ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb, struct scb *scb) { if (prev_scb == NULL) { uint32_t busaddr; busaddr = ahd_le32toh(scb->hscb->hscb_busaddr); ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr); } else { prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr; ahd_sync_scb(ahd, prev_scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb); ahd->qinfifonext++; scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr; ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } static int ahd_qinfifo_count(struct ahd_softc *ahd) { u_int qinpos; u_int wrap_qinpos; u_int wrap_qinfifonext; AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); qinpos = ahd_get_snscb_qoff(ahd); wrap_qinpos = AHD_QIN_WRAP(qinpos); wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext); if (wrap_qinfifonext >= wrap_qinpos) return (wrap_qinfifonext - wrap_qinpos); else return (wrap_qinfifonext + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos); } static void ahd_reset_cmds_pending(struct ahd_softc *ahd) { struct scb *scb; ahd_mode_state saved_modes; u_int pending_cmds; saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); /* * Don't count any commands as outstanding that the * sequencer has already marked for completion. */ ahd_flush_qoutfifo(ahd); pending_cmds = 0; LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { pending_cmds++; } ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd)); ahd_restore_modes(ahd, saved_modes); ahd->flags &= ~AHD_UPDATE_PEND_CMDS; } static void ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status) { cam_status ostat; cam_status cstat; ostat = ahd_get_transaction_status(scb); if (ostat == CAM_REQ_INPROG) ahd_set_transaction_status(scb, status); cstat = ahd_get_transaction_status(scb); if (cstat != CAM_REQ_CMP) ahd_freeze_scb(scb); ahd_done(ahd, scb); } int ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel, int lun, u_int tag, role_t role, uint32_t status, ahd_search_action action) { struct scb *scb; struct scb *mk_msg_scb; struct scb *prev_scb; ahd_mode_state saved_modes; u_int qinstart; u_int qinpos; u_int qintail; u_int tid_next; u_int tid_prev; u_int scbid; u_int seq_flags2; u_int savedscbptr; uint32_t busaddr; int found; int targets; /* Must be in CCHAN mode */ saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); /* * Halt any pending SCB DMA. The sequencer will reinitiate * this dma if the qinfifo is not empty once we unpause. */ if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR)) == (CCARREN|CCSCBEN|CCSCBDIR)) { ahd_outb(ahd, CCSCBCTL, ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN)); while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0) ; } /* Determine sequencer's position in the qinfifo. */ qintail = AHD_QIN_WRAP(ahd->qinfifonext); qinstart = ahd_get_snscb_qoff(ahd); qinpos = AHD_QIN_WRAP(qinstart); found = 0; prev_scb = NULL; if (action == SEARCH_PRINT) { printk("qinstart = %d qinfifonext = %d\nQINFIFO:", qinstart, ahd->qinfifonext); } /* * Start with an empty queue. Entries that are not chosen * for removal will be re-added to the queue as we go. */ ahd->qinfifonext = qinstart; busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr); ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr); while (qinpos != qintail) { scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]); if (scb == NULL) { printk("qinpos = %d, SCB index = %d\n", qinpos, ahd->qinfifo[qinpos]); panic("Loop 1\n"); } if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) { /* * We found an scb that needs to be acted on. */ found++; switch (action) { case SEARCH_COMPLETE: if ((scb->flags & SCB_ACTIVE) == 0) printk("Inactive SCB in qinfifo\n"); ahd_done_with_status(ahd, scb, status); /* FALLTHROUGH */ case SEARCH_REMOVE: break; case SEARCH_PRINT: printk(" 0x%x", ahd->qinfifo[qinpos]); /* FALLTHROUGH */ case SEARCH_COUNT: ahd_qinfifo_requeue(ahd, prev_scb, scb); prev_scb = scb; break; } } else { ahd_qinfifo_requeue(ahd, prev_scb, scb); prev_scb = scb; } qinpos = AHD_QIN_WRAP(qinpos+1); } ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); if (action == SEARCH_PRINT) printk("\nWAITING_TID_QUEUES:\n"); /* * Search waiting for selection lists. We traverse the * list of "their ids" waiting for selection and, if * appropriate, traverse the SCBs of each "their id" * looking for matches. */ ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2); if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) { scbid = ahd_inw(ahd, MK_MESSAGE_SCB); mk_msg_scb = ahd_lookup_scb(ahd, scbid); } else mk_msg_scb = NULL; savedscbptr = ahd_get_scbptr(ahd); tid_next = ahd_inw(ahd, WAITING_TID_HEAD); tid_prev = SCB_LIST_NULL; targets = 0; for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) { u_int tid_head; u_int tid_tail; targets++; if (targets > AHD_NUM_TARGETS) panic("TID LIST LOOP"); if (scbid >= ahd->scb_data.numscbs) { printk("%s: Waiting TID List inconsistency. " "SCB index == 0x%x, yet numscbs == 0x%x.", ahd_name(ahd), scbid, ahd->scb_data.numscbs); ahd_dump_card_state(ahd); panic("for safety"); } scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { printk("%s: SCB = 0x%x Not Active!\n", ahd_name(ahd), scbid); panic("Waiting TID List traversal\n"); } ahd_set_scbptr(ahd, scbid); tid_next = ahd_inw_scbram(ahd, SCB_NEXT2); if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN) == 0) { tid_prev = scbid; continue; } /* * We found a list of scbs that needs to be searched. */ if (action == SEARCH_PRINT) printk(" %d ( ", SCB_GET_TARGET(ahd, scb)); tid_head = scbid; found += ahd_search_scb_list(ahd, target, channel, lun, tag, role, status, action, &tid_head, &tid_tail, SCB_GET_TARGET(ahd, scb)); /* * Check any MK_MESSAGE SCB that is still waiting to * enter this target's waiting for selection queue. */ if (mk_msg_scb != NULL && ahd_match_scb(ahd, mk_msg_scb, target, channel, lun, tag, role)) { /* * We found an scb that needs to be acted on. */ found++; switch (action) { case SEARCH_COMPLETE: if ((mk_msg_scb->flags & SCB_ACTIVE) == 0) printk("Inactive SCB pending MK_MSG\n"); ahd_done_with_status(ahd, mk_msg_scb, status); /* FALLTHROUGH */ case SEARCH_REMOVE: { u_int tail_offset; printk("Removing MK_MSG scb\n"); /* * Reset our tail to the tail of the * main per-target list. */ tail_offset = WAITING_SCB_TAILS + (2 * SCB_GET_TARGET(ahd, mk_msg_scb)); ahd_outw(ahd, tail_offset, tid_tail); seq_flags2 &= ~PENDING_MK_MESSAGE; ahd_outb(ahd, SEQ_FLAGS2, seq_flags2); ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING)-1); mk_msg_scb = NULL; break; } case SEARCH_PRINT: printk(" 0x%x", SCB_GET_TAG(scb)); /* FALLTHROUGH */ case SEARCH_COUNT: break; } } if (mk_msg_scb != NULL && SCBID_IS_NULL(tid_head) && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN)) { /* * When removing the last SCB for a target * queue with a pending MK_MESSAGE scb, we * must queue the MK_MESSAGE scb. */ printk("Queueing mk_msg_scb\n"); tid_head = ahd_inw(ahd, MK_MESSAGE_SCB); seq_flags2 &= ~PENDING_MK_MESSAGE; ahd_outb(ahd, SEQ_FLAGS2, seq_flags2); mk_msg_scb = NULL; } if (tid_head != scbid) ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next); if (!SCBID_IS_NULL(tid_head)) tid_prev = tid_head; if (action == SEARCH_PRINT) printk(")\n"); } /* Restore saved state. */ ahd_set_scbptr(ahd, savedscbptr); ahd_restore_modes(ahd, saved_modes); return (found); } static int ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel, int lun, u_int tag, role_t role, uint32_t status, ahd_search_action action, u_int *list_head, u_int *list_tail, u_int tid) { struct scb *scb; u_int scbid; u_int next; u_int prev; int found; AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); found = 0; prev = SCB_LIST_NULL; next = *list_head; *list_tail = SCB_LIST_NULL; for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) { if (scbid >= ahd->scb_data.numscbs) { printk("%s:SCB List inconsistency. " "SCB == 0x%x, yet numscbs == 0x%x.", ahd_name(ahd), scbid, ahd->scb_data.numscbs); ahd_dump_card_state(ahd); panic("for safety"); } scb = ahd_lookup_scb(ahd, scbid); if (scb == NULL) { printk("%s: SCB = %d Not Active!\n", ahd_name(ahd), scbid); panic("Waiting List traversal\n"); } ahd_set_scbptr(ahd, scbid); *list_tail = scbid; next = ahd_inw_scbram(ahd, SCB_NEXT); if (ahd_match_scb(ahd, scb, target, channel, lun, SCB_LIST_NULL, role) == 0) { prev = scbid; continue; } found++; switch (action) { case SEARCH_COMPLETE: if ((scb->flags & SCB_ACTIVE) == 0) printk("Inactive SCB in Waiting List\n"); ahd_done_with_status(ahd, scb, status); /* FALLTHROUGH */ case SEARCH_REMOVE: ahd_rem_wscb(ahd, scbid, prev, next, tid); *list_tail = prev; if (SCBID_IS_NULL(prev)) *list_head = next; break; case SEARCH_PRINT: printk("0x%x ", scbid); case SEARCH_COUNT: prev = scbid; break; } if (found > AHD_SCB_MAX) panic("SCB LIST LOOP"); } if (action == SEARCH_COMPLETE || action == SEARCH_REMOVE) ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found); return (found); } static void ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev, u_int tid_cur, u_int tid_next) { AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); if (SCBID_IS_NULL(tid_cur)) { /* Bypass current TID list */ if (SCBID_IS_NULL(tid_prev)) { ahd_outw(ahd, WAITING_TID_HEAD, tid_next); } else { ahd_set_scbptr(ahd, tid_prev); ahd_outw(ahd, SCB_NEXT2, tid_next); } if (SCBID_IS_NULL(tid_next)) ahd_outw(ahd, WAITING_TID_TAIL, tid_prev); } else { /* Stitch through tid_cur */ if (SCBID_IS_NULL(tid_prev)) { ahd_outw(ahd, WAITING_TID_HEAD, tid_cur); } else { ahd_set_scbptr(ahd, tid_prev); ahd_outw(ahd, SCB_NEXT2, tid_cur); } ahd_set_scbptr(ahd, tid_cur); ahd_outw(ahd, SCB_NEXT2, tid_next); if (SCBID_IS_NULL(tid_next)) ahd_outw(ahd, WAITING_TID_TAIL, tid_cur); } } /* * Manipulate the waiting for selection list and return the * scb that follows the one that we remove. */ static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid, u_int prev, u_int next, u_int tid) { u_int tail_offset; AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); if (!SCBID_IS_NULL(prev)) { ahd_set_scbptr(ahd, prev); ahd_outw(ahd, SCB_NEXT, next); } /* * SCBs that have MK_MESSAGE set in them may * cause the tail pointer to be updated without * setting the next pointer of the previous tail. * Only clear the tail if the removed SCB was * the tail. */ tail_offset = WAITING_SCB_TAILS + (2 * tid); if (SCBID_IS_NULL(next) && ahd_inw(ahd, tail_offset) == scbid) ahd_outw(ahd, tail_offset, prev); ahd_add_scb_to_free_list(ahd, scbid); return (next); } /* * Add the SCB as selected by SCBPTR onto the on chip list of * free hardware SCBs. This list is empty/unused if we are not * performing SCB paging. */ static void ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid) { /* XXX Need some other mechanism to designate "free". */ /* * Invalidate the tag so that our abort * routines don't think it's active. ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL); */ } /******************************** Error Handling ******************************/ /* * Abort all SCBs that match the given description (target/channel/lun/tag), * setting their status to the passed in status if the status has not already * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer * is paused before it is called. */ static int ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel, int lun, u_int tag, role_t role, uint32_t status) { struct scb *scbp; struct scb *scbp_next; u_int i, j; u_int maxtarget; u_int minlun; u_int maxlun; int found; ahd_mode_state saved_modes; /* restore this when we're done */ saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL, role, CAM_REQUEUE_REQ, SEARCH_COMPLETE); /* * Clean out the busy target table for any untagged commands. */ i = 0; maxtarget = 16; if (target != CAM_TARGET_WILDCARD) { i = target; if (channel == 'B') i += 8; maxtarget = i + 1; } if (lun == CAM_LUN_WILDCARD) { minlun = 0; maxlun = AHD_NUM_LUNS_NONPKT; } else if (lun >= AHD_NUM_LUNS_NONPKT) { minlun = maxlun = 0; } else { minlun = lun; maxlun = lun + 1; } if (role != ROLE_TARGET) { for (;i < maxtarget; i++) { for (j = minlun;j < maxlun; j++) { u_int scbid; u_int tcl; tcl = BUILD_TCL_RAW(i, 'A', j); scbid = ahd_find_busy_tcl(ahd, tcl); scbp = ahd_lookup_scb(ahd, scbid); if (scbp == NULL || ahd_match_scb(ahd, scbp, target, channel, lun, tag, role) == 0) continue; ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j)); } } } /* * Don't abort commands that have already completed, * but haven't quite made it up to the host yet. */ ahd_flush_qoutfifo(ahd); /* * Go through the pending CCB list and look for * commands for this target that are still active. * These are other tagged commands that were * disconnected when the reset occurred. */ scbp_next = LIST_FIRST(&ahd->pending_scbs); while (scbp_next != NULL) { scbp = scbp_next; scbp_next = LIST_NEXT(scbp, pending_links); if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) { cam_status ostat; ostat = ahd_get_transaction_status(scbp); if (ostat == CAM_REQ_INPROG) ahd_set_transaction_status(scbp, status); if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP) ahd_freeze_scb(scbp); if ((scbp->flags & SCB_ACTIVE) == 0) printk("Inactive SCB on pending list\n"); ahd_done(ahd, scbp); found++; } } ahd_restore_modes(ahd, saved_modes); ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status); ahd->flags |= AHD_UPDATE_PEND_CMDS; return found; } static void ahd_reset_current_bus(struct ahd_softc *ahd) { uint8_t scsiseq; AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST); scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO); ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO); ahd_flush_device_writes(ahd); ahd_delay(AHD_BUSRESET_DELAY); /* Turn off the bus reset */ ahd_outb(ahd, SCSISEQ0, scsiseq); ahd_flush_device_writes(ahd); ahd_delay(AHD_BUSRESET_DELAY); if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) { /* * 2A Razor #474 * Certain chip state is not cleared for * SCSI bus resets that we initiate, so * we must reset the chip. */ ahd_reset(ahd, /*reinit*/TRUE); ahd_intr_enable(ahd, /*enable*/TRUE); AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); } ahd_clear_intstat(ahd); } int ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset) { struct ahd_devinfo caminfo; u_int initiator; u_int target; u_int max_scsiid; int found; u_int fifo; u_int next_fifo; uint8_t scsiseq; /* * Check if the last bus reset is cleared */ if (ahd->flags & AHD_BUS_RESET_ACTIVE) { printk("%s: bus reset still active\n", ahd_name(ahd)); return 0; } ahd->flags |= AHD_BUS_RESET_ACTIVE; ahd->pending_device = NULL; ahd_compile_devinfo(&caminfo, CAM_TARGET_WILDCARD, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD, channel, ROLE_UNKNOWN); ahd_pause(ahd); /* Make sure the sequencer is in a safe location. */ ahd_clear_critical_section(ahd); /* * Run our command complete fifos to ensure that we perform * completion processing on any commands that 'completed' * before the reset occurred. */ ahd_run_qoutfifo(ahd); #ifdef AHD_TARGET_MODE if ((ahd->flags & AHD_TARGETROLE) != 0) { ahd_run_tqinfifo(ahd, /*paused*/TRUE); } #endif ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); /* * Disable selections so no automatic hardware * functions will modify chip state. */ ahd_outb(ahd, SCSISEQ0, 0); ahd_outb(ahd, SCSISEQ1, 0); /* * Safely shut down our DMA engines. Always start with * the FIFO that is not currently active (if any are * actively connected). */ next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO; if (next_fifo > CURRFIFO_1) /* If disconneced, arbitrarily start with FIFO1. */ next_fifo = fifo = 0; do { next_fifo ^= CURRFIFO_1; ahd_set_modes(ahd, next_fifo, next_fifo); ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN)); while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) ahd_delay(10); /* * Set CURRFIFO to the now inactive channel. */ ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); ahd_outb(ahd, DFFSTAT, next_fifo); } while (next_fifo != fifo); /* * Reset the bus if we are initiating this reset */ ahd_clear_msg_state(ahd); ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST)); if (initiate_reset) ahd_reset_current_bus(ahd); ahd_clear_intstat(ahd); /* * Clean up all the state information for the * pending transactions on this bus. */ found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel, CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN, CAM_SCSI_BUS_RESET); /* * Cleanup anything left in the FIFOs. */ ahd_clear_fifo(ahd, 0); ahd_clear_fifo(ahd, 1); /* * Clear SCSI interrupt status */ ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI); /* * Reenable selections */ ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST); scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE); ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP)); max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7; #ifdef AHD_TARGET_MODE /* * Send an immediate notify ccb to all target more peripheral * drivers affected by this action. */ for (target = 0; target <= max_scsiid; target++) { struct ahd_tmode_tstate* tstate; u_int lun; tstate = ahd->enabled_targets[target]; if (tstate == NULL) continue; for (lun = 0; lun < AHD_NUM_LUNS; lun++) { struct ahd_tmode_lstate* lstate; lstate = tstate->enabled_luns[lun]; if (lstate == NULL) continue; ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD, EVENT_TYPE_BUS_RESET, /*arg*/0); ahd_send_lstate_events(ahd, lstate); } } #endif /* * Revert to async/narrow transfers until we renegotiate. */ for (target = 0; target <= max_scsiid; target++) { if (ahd->enabled_targets[target] == NULL) continue; for (initiator = 0; initiator <= max_scsiid; initiator++) { struct ahd_devinfo devinfo; ahd_compile_devinfo(&devinfo, target, initiator, CAM_LUN_WILDCARD, 'A', ROLE_UNKNOWN); ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, AHD_TRANS_CUR, /*paused*/TRUE); ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, /*ppr_options*/0, AHD_TRANS_CUR, /*paused*/TRUE); } } /* Notify the XPT that a bus reset occurred */ ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD, AC_BUS_RESET); ahd_restart(ahd); return (found); } /**************************** Statistics Processing ***************************/ static void ahd_stat_timer(void *arg) { struct ahd_softc *ahd = arg; u_long s; int enint_coal; ahd_lock(ahd, &s); enint_coal = ahd->hs_mailbox & ENINT_COALESCE; if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold) enint_coal |= ENINT_COALESCE; else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold) enint_coal &= ~ENINT_COALESCE; if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) { ahd_enable_coalescing(ahd, enint_coal); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0) printk("%s: Interrupt coalescing " "now %sabled. Cmds %d\n", ahd_name(ahd), (enint_coal & ENINT_COALESCE) ? "en" : "dis", ahd->cmdcmplt_total); #endif } ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1); ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]; ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0; ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US, ahd_stat_timer, ahd); ahd_unlock(ahd, &s); } /****************************** Status Processing *****************************/ static void ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb) { struct hardware_scb *hscb; int paused; /* * The sequencer freezes its select-out queue * anytime a SCSI status error occurs. We must * handle the error and increment our qfreeze count * to allow the sequencer to continue. We don't * bother clearing critical sections here since all * operations are on data structures that the sequencer * is not touching once the queue is frozen. */ hscb = scb->hscb; if (ahd_is_paused(ahd)) { paused = 1; } else { paused = 0; ahd_pause(ahd); } /* Freeze the queue until the client sees the error. */ ahd_freeze_devq(ahd, scb); ahd_freeze_scb(scb); ahd->qfreeze_cnt++; ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt); if (paused == 0) ahd_unpause(ahd); /* Don't want to clobber the original sense code */ if ((scb->flags & SCB_SENSE) != 0) { /* * Clear the SCB_SENSE Flag and perform * a normal command completion. */ scb->flags &= ~SCB_SENSE; ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL); ahd_done(ahd, scb); return; } ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR); ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status); switch (hscb->shared_data.istatus.scsi_status) { case STATUS_PKT_SENSE: { struct scsi_status_iu_header *siu; ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD); siu = (struct scsi_status_iu_header *)scb->sense_data; ahd_set_scsi_status(scb, siu->status); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_SENSE) != 0) { ahd_print_path(ahd, scb); printk("SCB 0x%x Received PKT Status of 0x%x\n", SCB_GET_TAG(scb), siu->status); printk("\tflags = 0x%x, sense len = 0x%x, " "pktfail = 0x%x\n", siu->flags, scsi_4btoul(siu->sense_length), scsi_4btoul(siu->pkt_failures_length)); } #endif if ((siu->flags & SIU_RSPVALID) != 0) { ahd_print_path(ahd, scb); if (scsi_4btoul(siu->pkt_failures_length) < 4) { printk("Unable to parse pkt_failures\n"); } else { switch (SIU_PKTFAIL_CODE(siu)) { case SIU_PFC_NONE: printk("No packet failure found\n"); break; case SIU_PFC_CIU_FIELDS_INVALID: printk("Invalid Command IU Field\n"); break; case SIU_PFC_TMF_NOT_SUPPORTED: printk("TMF not supportd\n"); break; case SIU_PFC_TMF_FAILED: printk("TMF failed\n"); break; case SIU_PFC_INVALID_TYPE_CODE: printk("Invalid L_Q Type code\n"); break; case SIU_PFC_ILLEGAL_REQUEST: printk("Illegal request\n"); default: break; } } if (siu->status == SCSI_STATUS_OK) ahd_set_transaction_status(scb, CAM_REQ_CMP_ERR); } if ((siu->flags & SIU_SNSVALID) != 0) { scb->flags |= SCB_PKT_SENSE; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_SENSE) != 0) printk("Sense data available\n"); #endif } ahd_done(ahd, scb); break; } case SCSI_STATUS_CMD_TERMINATED: case SCSI_STATUS_CHECK_COND: { struct ahd_devinfo devinfo; struct ahd_dma_seg *sg; struct scsi_sense *sc; struct ahd_initiator_tinfo *targ_info; struct ahd_tmode_tstate *tstate; struct ahd_transinfo *tinfo; #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_SENSE) { ahd_print_path(ahd, scb); printk("SCB %d: requests Check Status\n", SCB_GET_TAG(scb)); } #endif if (ahd_perform_autosense(scb) == 0) break; ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb), SCB_GET_TARGET(ahd, scb), SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), ROLE_INITIATOR); targ_info = ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); tinfo = &targ_info->curr; sg = scb->sg_list; sc = (struct scsi_sense *)hscb->shared_data.idata.cdb; /* * Save off the residual if there is one. */ ahd_update_residual(ahd, scb); #ifdef AHD_DEBUG if (ahd_debug & AHD_SHOW_SENSE) { ahd_print_path(ahd, scb); printk("Sending Sense\n"); } #endif scb->sg_count = 0; sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb), ahd_get_sense_bufsize(ahd, scb), /*last*/TRUE); sc->opcode = REQUEST_SENSE; sc->byte2 = 0; if (tinfo->protocol_version <= SCSI_REV_2 && SCB_GET_LUN(scb) < 8) sc->byte2 = SCB_GET_LUN(scb) << 5; sc->unused[0] = 0; sc->unused[1] = 0; sc->length = ahd_get_sense_bufsize(ahd, scb); sc->control = 0; /* * We can't allow the target to disconnect. * This will be an untagged transaction and * having the target disconnect will make this * transaction indestinguishable from outstanding * tagged transactions. */ hscb->control = 0; /* * This request sense could be because the * the device lost power or in some other * way has lost our transfer negotiations. * Renegotiate if appropriate. Unit attention * errors will be reported before any data * phases occur. */ if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) { ahd_update_neg_request(ahd, &devinfo, tstate, targ_info, AHD_NEG_IF_NON_ASYNC); } if (tstate->auto_negotiate & devinfo.target_mask) { hscb->control |= MK_MESSAGE; scb->flags &= ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET); scb->flags |= SCB_AUTO_NEGOTIATE; } hscb->cdb_len = sizeof(*sc); ahd_setup_data_scb(ahd, scb); scb->flags |= SCB_SENSE; ahd_queue_scb(ahd, scb); break; } case SCSI_STATUS_OK: printk("%s: Interrupted for staus of 0???\n", ahd_name(ahd)); /* FALLTHROUGH */ default: ahd_done(ahd, scb); break; } } static void ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb) { if (scb->hscb->shared_data.istatus.scsi_status != 0) { ahd_handle_scsi_status(ahd, scb); } else { ahd_calc_residual(ahd, scb); ahd_done(ahd, scb); } } /* * Calculate the residual for a just completed SCB. */ static void ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb) { struct hardware_scb *hscb; struct initiator_status *spkt; uint32_t sgptr; uint32_t resid_sgptr; uint32_t resid; /* * 5 cases. * 1) No residual. * SG_STATUS_VALID clear in sgptr. * 2) Transferless command * 3) Never performed any transfers. * sgptr has SG_FULL_RESID set. * 4) No residual but target did not * save data pointers after the * last transfer, so sgptr was * never updated. * 5) We have a partial residual. * Use residual_sgptr to determine * where we are. */ hscb = scb->hscb; sgptr = ahd_le32toh(hscb->sgptr); if ((sgptr & SG_STATUS_VALID) == 0) /* Case 1 */ return; sgptr &= ~SG_STATUS_VALID; if ((sgptr & SG_LIST_NULL) != 0) /* Case 2 */ return; /* * Residual fields are the same in both * target and initiator status packets, * so we can always use the initiator fields * regardless of the role for this SCB. */ spkt = &hscb->shared_data.istatus; resid_sgptr = ahd_le32toh(spkt->residual_sgptr); if ((sgptr & SG_FULL_RESID) != 0) { /* Case 3 */ resid = ahd_get_transfer_length(scb); } else if ((resid_sgptr & SG_LIST_NULL) != 0) { /* Case 4 */ return; } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) { ahd_print_path(ahd, scb); printk("data overrun detected Tag == 0x%x.\n", SCB_GET_TAG(scb)); ahd_freeze_devq(ahd, scb); ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR); ahd_freeze_scb(scb); return; } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) { panic("Bogus resid sgptr value 0x%x\n", resid_sgptr); /* NOTREACHED */ } else { struct ahd_dma_seg *sg; /* * Remainder of the SG where the transfer * stopped. */ resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK; sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK); /* The residual sg_ptr always points to the next sg */ sg--; /* * Add up the contents of all residual * SG segments that are after the SG where * the transfer stopped. */ while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) { sg++; resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK; } } if ((scb->flags & SCB_SENSE) == 0) ahd_set_residual(scb, resid); else ahd_set_sense_residual(scb, resid); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_MISC) != 0) { ahd_print_path(ahd, scb); printk("Handled %sResidual of %d bytes\n", (scb->flags & SCB_SENSE) ? "Sense " : "", resid); } #endif } /******************************* Target Mode **********************************/ #ifdef AHD_TARGET_MODE /* * Add a target mode event to this lun's queue */ static void ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate, u_int initiator_id, u_int event_type, u_int event_arg) { struct ahd_tmode_event *event; int pending; xpt_freeze_devq(lstate->path, /*count*/1); if (lstate->event_w_idx >= lstate->event_r_idx) pending = lstate->event_w_idx - lstate->event_r_idx; else pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1 - (lstate->event_r_idx - lstate->event_w_idx); if (event_type == EVENT_TYPE_BUS_RESET || event_type == MSG_BUS_DEV_RESET) { /* * Any earlier events are irrelevant, so reset our buffer. * This has the effect of allowing us to deal with reset * floods (an external device holding down the reset line) * without losing the event that is really interesting. */ lstate->event_r_idx = 0; lstate->event_w_idx = 0; xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE); } if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) { xpt_print_path(lstate->path); printk("immediate event %x:%x lost\n", lstate->event_buffer[lstate->event_r_idx].event_type, lstate->event_buffer[lstate->event_r_idx].event_arg); lstate->event_r_idx++; if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE) lstate->event_r_idx = 0; xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE); } event = &lstate->event_buffer[lstate->event_w_idx]; event->initiator_id = initiator_id; event->event_type = event_type; event->event_arg = event_arg; lstate->event_w_idx++; if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE) lstate->event_w_idx = 0; } /* * Send any target mode events queued up waiting * for immediate notify resources. */ void ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate) { struct ccb_hdr *ccbh; struct ccb_immed_notify *inot; while (lstate->event_r_idx != lstate->event_w_idx && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) { struct ahd_tmode_event *event; event = &lstate->event_buffer[lstate->event_r_idx]; SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle); inot = (struct ccb_immed_notify *)ccbh; switch (event->event_type) { case EVENT_TYPE_BUS_RESET: ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN; break; default: ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN; inot->message_args[0] = event->event_type; inot->message_args[1] = event->event_arg; break; } inot->initiator_id = event->initiator_id; inot->sense_len = 0; xpt_done((union ccb *)inot); lstate->event_r_idx++; if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE) lstate->event_r_idx = 0; } } #endif /******************** Sequencer Program Patching/Download *********************/ #ifdef AHD_DUMP_SEQ void ahd_dumpseq(struct ahd_softc* ahd) { int i; int max_prog; max_prog = 2048; ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM); ahd_outw(ahd, PRGMCNT, 0); for (i = 0; i < max_prog; i++) { uint8_t ins_bytes[4]; ahd_insb(ahd, SEQRAM, ins_bytes, 4); printk("0x%08x\n", ins_bytes[0] << 24 | ins_bytes[1] << 16 | ins_bytes[2] << 8 | ins_bytes[3]); } } #endif static void ahd_loadseq(struct ahd_softc *ahd) { struct cs cs_table[num_critical_sections]; u_int begin_set[num_critical_sections]; u_int end_set[num_critical_sections]; const struct patch *cur_patch; u_int cs_count; u_int cur_cs; u_int i; int downloaded; u_int skip_addr; u_int sg_prefetch_cnt; u_int sg_prefetch_cnt_limit; u_int sg_prefetch_align; u_int sg_size; u_int cacheline_mask; uint8_t download_consts[DOWNLOAD_CONST_COUNT]; if (bootverbose) printk("%s: Downloading Sequencer Program...", ahd_name(ahd)); #if DOWNLOAD_CONST_COUNT != 8 #error "Download Const Mismatch" #endif /* * Start out with 0 critical sections * that apply to this firmware load. */ cs_count = 0; cur_cs = 0; memset(begin_set, 0, sizeof(begin_set)); memset(end_set, 0, sizeof(end_set)); /* * Setup downloadable constant table. * * The computation for the S/G prefetch variables is * a bit complicated. We would like to always fetch * in terms of cachelined sized increments. However, * if the cacheline is not an even multiple of the * SG element size or is larger than our SG RAM, using * just the cache size might leave us with only a portion * of an SG element at the tail of a prefetch. If the * cacheline is larger than our S/G prefetch buffer less * the size of an SG element, we may round down to a cacheline * that doesn't contain any or all of the S/G of interest * within the bounds of our S/G ram. Provide variables to * the sequencer that will allow it to handle these edge * cases. */ /* Start by aligning to the nearest cacheline. */ sg_prefetch_align = ahd->pci_cachesize; if (sg_prefetch_align == 0) sg_prefetch_align = 8; /* Round down to the nearest power of 2. */ while (powerof2(sg_prefetch_align) == 0) sg_prefetch_align--; cacheline_mask = sg_prefetch_align - 1; /* * If the cacheline boundary is greater than half our prefetch RAM * we risk not being able to fetch even a single complete S/G * segment if we align to that boundary. */ if (sg_prefetch_align > CCSGADDR_MAX/2) sg_prefetch_align = CCSGADDR_MAX/2; /* Start by fetching a single cacheline. */ sg_prefetch_cnt = sg_prefetch_align; /* * Increment the prefetch count by cachelines until * at least one S/G element will fit. */ sg_size = sizeof(struct ahd_dma_seg); if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) sg_size = sizeof(struct ahd_dma64_seg); while (sg_prefetch_cnt < sg_size) sg_prefetch_cnt += sg_prefetch_align; /* * If the cacheline is not an even multiple of * the S/G size, we may only get a partial S/G when * we align. Add a cacheline if this is the case. */ if ((sg_prefetch_align % sg_size) != 0 && (sg_prefetch_cnt < CCSGADDR_MAX)) sg_prefetch_cnt += sg_prefetch_align; /* * Lastly, compute a value that the sequencer can use * to determine if the remainder of the CCSGRAM buffer * has a full S/G element in it. */ sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1); download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt; download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit; download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1); download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1); download_consts[SG_SIZEOF] = sg_size; download_consts[PKT_OVERRUN_BUFOFFSET] = (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256; download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN; download_consts[CACHELINE_MASK] = cacheline_mask; cur_patch = patches; downloaded = 0; skip_addr = 0; ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM); ahd_outw(ahd, PRGMCNT, 0); for (i = 0; i < sizeof(seqprog)/4; i++) { if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) { /* * Don't download this instruction as it * is in a patch that was removed. */ continue; } /* * Move through the CS table until we find a CS * that might apply to this instruction. */ for (; cur_cs < num_critical_sections; cur_cs++) { if (critical_sections[cur_cs].end <= i) { if (begin_set[cs_count] == TRUE && end_set[cs_count] == FALSE) { cs_table[cs_count].end = downloaded; end_set[cs_count] = TRUE; cs_count++; } continue; } if (critical_sections[cur_cs].begin <= i && begin_set[cs_count] == FALSE) { cs_table[cs_count].begin = downloaded; begin_set[cs_count] = TRUE; } break; } ahd_download_instr(ahd, i, download_consts); downloaded++; } ahd->num_critical_sections = cs_count; if (cs_count != 0) { cs_count *= sizeof(struct cs); ahd->critical_sections = kmalloc(cs_count, GFP_ATOMIC); if (ahd->critical_sections == NULL) panic("ahd_loadseq: Could not malloc"); memcpy(ahd->critical_sections, cs_table, cs_count); } ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE); if (bootverbose) { printk(" %d instructions downloaded\n", downloaded); printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n", ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags); } } static int ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch, u_int start_instr, u_int *skip_addr) { const struct patch *cur_patch; const struct patch *last_patch; u_int num_patches; num_patches = ARRAY_SIZE(patches); last_patch = &patches[num_patches]; cur_patch = *start_patch; while (cur_patch < last_patch && start_instr == cur_patch->begin) { if (cur_patch->patch_func(ahd) == 0) { /* Start rejecting code */ *skip_addr = start_instr + cur_patch->skip_instr; cur_patch += cur_patch->skip_patch; } else { /* Accepted this patch. Advance to the next * one and wait for our intruction pointer to * hit this point. */ cur_patch++; } } *start_patch = cur_patch; if (start_instr < *skip_addr) /* Still skipping */ return (0); return (1); } static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address) { const struct patch *cur_patch; int address_offset; u_int skip_addr; u_int i; address_offset = 0; cur_patch = patches; skip_addr = 0; for (i = 0; i < address;) { ahd_check_patch(ahd, &cur_patch, i, &skip_addr); if (skip_addr > i) { int end_addr; end_addr = min(address, skip_addr); address_offset += end_addr - i; i = skip_addr; } else { i++; } } return (address - address_offset); } static void ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts) { union ins_formats instr; struct ins_format1 *fmt1_ins; struct ins_format3 *fmt3_ins; u_int opcode; /* * The firmware is always compiled into a little endian format. */ instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]); fmt1_ins = &instr.format1; fmt3_ins = NULL; /* Pull the opcode */ opcode = instr.format1.opcode; switch (opcode) { case AIC_OP_JMP: case AIC_OP_JC: case AIC_OP_JNC: case AIC_OP_CALL: case AIC_OP_JNE: case AIC_OP_JNZ: case AIC_OP_JE: case AIC_OP_JZ: { fmt3_ins = &instr.format3; fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address); /* FALLTHROUGH */ } case AIC_OP_OR: case AIC_OP_AND: case AIC_OP_XOR: case AIC_OP_ADD: case AIC_OP_ADC: case AIC_OP_BMOV: if (fmt1_ins->parity != 0) { fmt1_ins->immediate = dconsts[fmt1_ins->immediate]; } fmt1_ins->parity = 0; /* FALLTHROUGH */ case AIC_OP_ROL: { int i, count; /* Calculate odd parity for the instruction */ for (i = 0, count = 0; i < 31; i++) { uint32_t mask; mask = 0x01 << i; if ((instr.integer & mask) != 0) count++; } if ((count & 0x01) == 0) instr.format1.parity = 1; /* The sequencer is a little endian cpu */ instr.integer = ahd_htole32(instr.integer); ahd_outsb(ahd, SEQRAM, instr.bytes, 4); break; } default: panic("Unknown opcode encountered in seq program"); break; } } static int ahd_probe_stack_size(struct ahd_softc *ahd) { int last_probe; last_probe = 0; while (1) { int i; /* * We avoid using 0 as a pattern to avoid * confusion if the stack implementation * "back-fills" with zeros when "poping' * entries. */ for (i = 1; i <= last_probe+1; i++) { ahd_outb(ahd, STACK, i & 0xFF); ahd_outb(ahd, STACK, (i >> 8) & 0xFF); } /* Verify */ for (i = last_probe+1; i > 0; i--) { u_int stack_entry; stack_entry = ahd_inb(ahd, STACK) |(ahd_inb(ahd, STACK) << 8); if (stack_entry != i) goto sized; } last_probe++; } sized: return (last_probe); } int ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries, const char *name, u_int address, u_int value, u_int *cur_column, u_int wrap_point) { int printed; u_int printed_mask; if (cur_column != NULL && *cur_column >= wrap_point) { printk("\n"); *cur_column = 0; } printed = printk("%s[0x%x]", name, value); if (table == NULL) { printed += printk(" "); *cur_column += printed; return (printed); } printed_mask = 0; while (printed_mask != 0xFF) { int entry; for (entry = 0; entry < num_entries; entry++) { if (((value & table[entry].mask) != table[entry].value) || ((printed_mask & table[entry].mask) == table[entry].mask)) continue; printed += printk("%s%s", printed_mask == 0 ? ":(" : "|", table[entry].name); printed_mask |= table[entry].mask; break; } if (entry >= num_entries) break; } if (printed_mask != 0) printed += printk(") "); else printed += printk(" "); if (cur_column != NULL) *cur_column += printed; return (printed); } void ahd_dump_card_state(struct ahd_softc *ahd) { struct scb *scb; ahd_mode_state saved_modes; u_int dffstat; int paused; u_int scb_index; u_int saved_scb_index; u_int cur_col; int i; if (ahd_is_paused(ahd)) { paused = 1; } else { paused = 0; ahd_pause(ahd); } saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n" "%s: Dumping Card State at program address 0x%x Mode 0x%x\n", ahd_name(ahd), ahd_inw(ahd, CURADDR), ahd_build_mode_state(ahd, ahd->saved_src_mode, ahd->saved_dst_mode)); if (paused) printk("Card was paused\n"); if (ahd_check_cmdcmpltqueues(ahd)) printk("Completions are pending\n"); /* * Mode independent registers. */ cur_col = 0; ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50); ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50); ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50); ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50); ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50); ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50); ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50); ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50); ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50); ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50); ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50); ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50); ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50); ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50); ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50); ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50); ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50); ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50); ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50); ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT), &cur_col, 50); ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50); ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID), &cur_col, 50); ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50); ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50); ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50); ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50); ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50); ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50); ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50); ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50); ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50); ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50); ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50); ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50); printk("\n"); printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x " "CURRSCB 0x%x NEXTSCB 0x%x\n", ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING), ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB), ahd_inw(ahd, NEXTSCB)); cur_col = 0; /* QINFIFO */ ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS, CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT); saved_scb_index = ahd_get_scbptr(ahd); printk("Pending list:"); i = 0; LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { if (i++ > AHD_SCB_MAX) break; cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb), ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT)); ahd_set_scbptr(ahd, SCB_GET_TAG(scb)); ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL), &cur_col, 60); ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID), &cur_col, 60); } printk("\nTotal %d\n", i); printk("Kernel Free SCB list: "); i = 0; TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) { struct scb *list_scb; list_scb = scb; do { printk("%d ", SCB_GET_TAG(list_scb)); list_scb = LIST_NEXT(list_scb, collision_links); } while (list_scb && i++ < AHD_SCB_MAX); } LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) { if (i++ > AHD_SCB_MAX) break; printk("%d ", SCB_GET_TAG(scb)); } printk("\n"); printk("Sequencer Complete DMA-inprog list: "); scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD); i = 0; while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { ahd_set_scbptr(ahd, scb_index); printk("%d ", scb_index); scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); } printk("\n"); printk("Sequencer Complete list: "); scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD); i = 0; while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { ahd_set_scbptr(ahd, scb_index); printk("%d ", scb_index); scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); } printk("\n"); printk("Sequencer DMA-Up and Complete list: "); scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD); i = 0; while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { ahd_set_scbptr(ahd, scb_index); printk("%d ", scb_index); scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); } printk("\n"); printk("Sequencer On QFreeze and Complete list: "); scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD); i = 0; while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { ahd_set_scbptr(ahd, scb_index); printk("%d ", scb_index); scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); } printk("\n"); ahd_set_scbptr(ahd, saved_scb_index); dffstat = ahd_inb(ahd, DFFSTAT); for (i = 0; i < 2; i++) { #ifdef AHD_DEBUG struct scb *fifo_scb; #endif u_int fifo_scbptr; ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i); fifo_scbptr = ahd_get_scbptr(ahd); printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n", ahd_name(ahd), i, (dffstat & (FIFO0FREE << i)) ? "Free" : "Active", ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr); cur_col = 0; ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50); ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50); ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50); ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50); ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW), &cur_col, 50); ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50); ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50); ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50); ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50); if (cur_col > 50) { printk("\n"); cur_col = 0; } cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ", ahd_inl(ahd, SHADDR+4), ahd_inl(ahd, SHADDR), (ahd_inb(ahd, SHCNT) | (ahd_inb(ahd, SHCNT + 1) << 8) | (ahd_inb(ahd, SHCNT + 2) << 16))); if (cur_col > 50) { printk("\n"); cur_col = 0; } cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ", ahd_inl(ahd, HADDR+4), ahd_inl(ahd, HADDR), (ahd_inb(ahd, HCNT) | (ahd_inb(ahd, HCNT + 1) << 8) | (ahd_inb(ahd, HCNT + 2) << 16))); ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50); #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_SG) != 0) { fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr); if (fifo_scb != NULL) ahd_dump_sglist(fifo_scb); } #endif } printk("\nLQIN: "); for (i = 0; i < 20; i++) printk("0x%x ", ahd_inb(ahd, LQIN + i)); printk("\n"); ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n", ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE), ahd_inb(ahd, OPTIONMODE)); printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n", ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT), ahd_inb(ahd, MAXCMDCNT)); printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n", ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN)); ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50); printk("\n"); ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); cur_col = 0; ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50); printk("\n"); ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode); printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n", ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX), ahd_inw(ahd, DINDEX)); printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n", ahd_name(ahd), ahd_get_scbptr(ahd), ahd_inw_scbram(ahd, SCB_NEXT), ahd_inw_scbram(ahd, SCB_NEXT2)); printk("CDB %x %x %x %x %x %x\n", ahd_inb_scbram(ahd, SCB_CDB_STORE), ahd_inb_scbram(ahd, SCB_CDB_STORE+1), ahd_inb_scbram(ahd, SCB_CDB_STORE+2), ahd_inb_scbram(ahd, SCB_CDB_STORE+3), ahd_inb_scbram(ahd, SCB_CDB_STORE+4), ahd_inb_scbram(ahd, SCB_CDB_STORE+5)); printk("STACK:"); for (i = 0; i < ahd->stack_size; i++) { ahd->saved_stack[i] = ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8); printk(" 0x%x", ahd->saved_stack[i]); } for (i = ahd->stack_size-1; i >= 0; i--) { ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF); ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF); } printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n"); ahd_restore_modes(ahd, saved_modes); if (paused == 0) ahd_unpause(ahd); } #if 0 void ahd_dump_scbs(struct ahd_softc *ahd) { ahd_mode_state saved_modes; u_int saved_scb_index; int i; saved_modes = ahd_save_modes(ahd); ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); saved_scb_index = ahd_get_scbptr(ahd); for (i = 0; i < AHD_SCB_MAX; i++) { ahd_set_scbptr(ahd, i); printk("%3d", i); printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n", ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb_scbram(ahd, SCB_SCSIID), ahd_inw_scbram(ahd, SCB_NEXT), ahd_inw_scbram(ahd, SCB_NEXT2), ahd_inl_scbram(ahd, SCB_SGPTR), ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR)); } printk("\n"); ahd_set_scbptr(ahd, saved_scb_index); ahd_restore_modes(ahd, saved_modes); } #endif /* 0 */ /**************************** Flexport Logic **********************************/ /* * Read count 16bit words from 16bit word address start_addr from the * SEEPROM attached to the controller, into buf, using the controller's * SEEPROM reading state machine. Optionally treat the data as a byte * stream in terms of byte order. */ int ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf, u_int start_addr, u_int count, int bytestream) { u_int cur_addr; u_int end_addr; int error; /* * If we never make it through the loop even once, * we were passed invalid arguments. */ error = EINVAL; AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); end_addr = start_addr + count; for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) { ahd_outb(ahd, SEEADR, cur_addr); ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART); error = ahd_wait_seeprom(ahd); if (error) break; if (bytestream != 0) { uint8_t *bytestream_ptr; bytestream_ptr = (uint8_t *)buf; *bytestream_ptr++ = ahd_inb(ahd, SEEDAT); *bytestream_ptr = ahd_inb(ahd, SEEDAT+1); } else { /* * ahd_inw() already handles machine byte order. */ *buf = ahd_inw(ahd, SEEDAT); } buf++; } return (error); } /* * Write count 16bit words from buf, into SEEPROM attache to the * controller starting at 16bit word address start_addr, using the * controller's SEEPROM writing state machine. */ int ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf, u_int start_addr, u_int count) { u_int cur_addr; u_int end_addr; int error; int retval; AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); error = ENOENT; /* Place the chip into write-enable mode */ ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR); ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART); error = ahd_wait_seeprom(ahd); if (error) return (error); /* * Write the data. If we don't get through the loop at * least once, the arguments were invalid. */ retval = EINVAL; end_addr = start_addr + count; for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) { ahd_outw(ahd, SEEDAT, *buf++); ahd_outb(ahd, SEEADR, cur_addr); ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART); retval = ahd_wait_seeprom(ahd); if (retval) break; } /* * Disable writes. */ ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR); ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART); error = ahd_wait_seeprom(ahd); if (error) return (error); return (retval); } /* * Wait ~100us for the serial eeprom to satisfy our request. */ static int ahd_wait_seeprom(struct ahd_softc *ahd) { int cnt; cnt = 5000; while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt) ahd_delay(5); if (cnt == 0) return (ETIMEDOUT); return (0); } /* * Validate the two checksums in the per_channel * vital product data struct. */ static int ahd_verify_vpd_cksum(struct vpd_config *vpd) { int i; int maxaddr; uint32_t checksum; uint8_t *vpdarray; vpdarray = (uint8_t *)vpd; maxaddr = offsetof(struct vpd_config, vpd_checksum); checksum = 0; for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++) checksum = checksum + vpdarray[i]; if (checksum == 0 || (-checksum & 0xFF) != vpd->vpd_checksum) return (0); checksum = 0; maxaddr = offsetof(struct vpd_config, checksum); for (i = offsetof(struct vpd_config, default_target_flags); i < maxaddr; i++) checksum = checksum + vpdarray[i]; if (checksum == 0 || (-checksum & 0xFF) != vpd->checksum) return (0); return (1); } int ahd_verify_cksum(struct seeprom_config *sc) { int i; int maxaddr; uint32_t checksum; uint16_t *scarray; maxaddr = (sizeof(*sc)/2) - 1; checksum = 0; scarray = (uint16_t *)sc; for (i = 0; i < maxaddr; i++) checksum = checksum + scarray[i]; if (checksum == 0 || (checksum & 0xFFFF) != sc->checksum) { return (0); } else { return (1); } } int ahd_acquire_seeprom(struct ahd_softc *ahd) { /* * We should be able to determine the SEEPROM type * from the flexport logic, but unfortunately not * all implementations have this logic and there is * no programatic method for determining if the logic * is present. */ return (1); #if 0 uint8_t seetype; int error; error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype); if (error != 0 || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE)) return (0); return (1); #endif } void ahd_release_seeprom(struct ahd_softc *ahd) { /* Currently a no-op */ } /* * Wait at most 2 seconds for flexport arbitration to succeed. */ static int ahd_wait_flexport(struct ahd_softc *ahd) { int cnt; AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); cnt = 1000000 * 2 / 5; while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt) ahd_delay(5); if (cnt == 0) return (ETIMEDOUT); return (0); } int ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value) { int error; AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); if (addr > 7) panic("ahd_write_flexport: address out of range"); ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3)); error = ahd_wait_flexport(ahd); if (error != 0) return (error); ahd_outb(ahd, BRDDAT, value); ahd_flush_device_writes(ahd); ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3)); ahd_flush_device_writes(ahd); ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3)); ahd_flush_device_writes(ahd); ahd_outb(ahd, BRDCTL, 0); ahd_flush_device_writes(ahd); return (0); } int ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value) { int error; AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); if (addr > 7) panic("ahd_read_flexport: address out of range"); ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3)); error = ahd_wait_flexport(ahd); if (error != 0) return (error); *value = ahd_inb(ahd, BRDDAT); ahd_outb(ahd, BRDCTL, 0); ahd_flush_device_writes(ahd); return (0); } /************************* Target Mode ****************************************/ #ifdef AHD_TARGET_MODE cam_status ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb, struct ahd_tmode_tstate **tstate, struct ahd_tmode_lstate **lstate, int notfound_failure) { if ((ahd->features & AHD_TARGETMODE) == 0) return (CAM_REQ_INVALID); /* * Handle the 'black hole' device that sucks up * requests to unattached luns on enabled targets. */ if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) { *tstate = NULL; *lstate = ahd->black_hole; } else { u_int max_id; max_id = (ahd->features & AHD_WIDE) ? 16 : 8; if (ccb->ccb_h.target_id >= max_id) return (CAM_TID_INVALID); if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS) return (CAM_LUN_INVALID); *tstate = ahd->enabled_targets[ccb->ccb_h.target_id]; *lstate = NULL; if (*tstate != NULL) *lstate = (*tstate)->enabled_luns[ccb->ccb_h.target_lun]; } if (notfound_failure != 0 && *lstate == NULL) return (CAM_PATH_INVALID); return (CAM_REQ_CMP); } void ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb) { #if NOT_YET struct ahd_tmode_tstate *tstate; struct ahd_tmode_lstate *lstate; struct ccb_en_lun *cel; cam_status status; u_int target; u_int lun; u_int target_mask; u_long s; char channel; status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate, /*notfound_failure*/FALSE); if (status != CAM_REQ_CMP) { ccb->ccb_h.status = status; return; } if ((ahd->features & AHD_MULTIROLE) != 0) { u_int our_id; our_id = ahd->our_id; if (ccb->ccb_h.target_id != our_id) { if ((ahd->features & AHD_MULTI_TID) != 0 && (ahd->flags & AHD_INITIATORROLE) != 0) { /* * Only allow additional targets if * the initiator role is disabled. * The hardware cannot handle a re-select-in * on the initiator id during a re-select-out * on a different target id. */ status = CAM_TID_INVALID; } else if ((ahd->flags & AHD_INITIATORROLE) != 0 || ahd->enabled_luns > 0) { /* * Only allow our target id to change * if the initiator role is not configured * and there are no enabled luns which * are attached to the currently registered * scsi id. */ status = CAM_TID_INVALID; } } } if (status != CAM_REQ_CMP) { ccb->ccb_h.status = status; return; } /* * We now have an id that is valid. * If we aren't in target mode, switch modes. */ if ((ahd->flags & AHD_TARGETROLE) == 0 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) { u_long s; printk("Configuring Target Mode\n"); ahd_lock(ahd, &s); if (LIST_FIRST(&ahd->pending_scbs) != NULL) { ccb->ccb_h.status = CAM_BUSY; ahd_unlock(ahd, &s); return; } ahd->flags |= AHD_TARGETROLE; if ((ahd->features & AHD_MULTIROLE) == 0) ahd->flags &= ~AHD_INITIATORROLE; ahd_pause(ahd); ahd_loadseq(ahd); ahd_restart(ahd); ahd_unlock(ahd, &s); } cel = &ccb->cel; target = ccb->ccb_h.target_id; lun = ccb->ccb_h.target_lun; channel = SIM_CHANNEL(ahd, sim); target_mask = 0x01 << target; if (channel == 'B') target_mask <<= 8; if (cel->enable != 0) { u_int scsiseq1; /* Are we already enabled?? */ if (lstate != NULL) { xpt_print_path(ccb->ccb_h.path); printk("Lun already enabled\n"); ccb->ccb_h.status = CAM_LUN_ALRDY_ENA; return; } if (cel->grp6_len != 0 || cel->grp7_len != 0) { /* * Don't (yet?) support vendor * specific commands. */ ccb->ccb_h.status = CAM_REQ_INVALID; printk("Non-zero Group Codes\n"); return; } /* * Seems to be okay. * Setup our data structures. */ if (target != CAM_TARGET_WILDCARD && tstate == NULL) { tstate = ahd_alloc_tstate(ahd, target, channel); if (tstate == NULL) { xpt_print_path(ccb->ccb_h.path); printk("Couldn't allocate tstate\n"); ccb->ccb_h.status = CAM_RESRC_UNAVAIL; return; } } lstate = kmalloc(sizeof(*lstate), GFP_ATOMIC); if (lstate == NULL) { xpt_print_path(ccb->ccb_h.path); printk("Couldn't allocate lstate\n"); ccb->ccb_h.status = CAM_RESRC_UNAVAIL; return; } memset(lstate, 0, sizeof(*lstate)); status = xpt_create_path(&lstate->path, /*periph*/NULL, xpt_path_path_id(ccb->ccb_h.path), xpt_path_target_id(ccb->ccb_h.path), xpt_path_lun_id(ccb->ccb_h.path)); if (status != CAM_REQ_CMP) { kfree(lstate); xpt_print_path(ccb->ccb_h.path); printk("Couldn't allocate path\n"); ccb->ccb_h.status = CAM_RESRC_UNAVAIL; return; } SLIST_INIT(&lstate->accept_tios); SLIST_INIT(&lstate->immed_notifies); ahd_lock(ahd, &s); ahd_pause(ahd); if (target != CAM_TARGET_WILDCARD) { tstate->enabled_luns[lun] = lstate; ahd->enabled_luns++; if ((ahd->features & AHD_MULTI_TID) != 0) { u_int targid_mask; targid_mask = ahd_inw(ahd, TARGID); targid_mask |= target_mask; ahd_outw(ahd, TARGID, targid_mask); ahd_update_scsiid(ahd, targid_mask); } else { u_int our_id; char channel; channel = SIM_CHANNEL(ahd, sim); our_id = SIM_SCSI_ID(ahd, sim); /* * This can only happen if selections * are not enabled */ if (target != our_id) { u_int sblkctl; char cur_channel; int swap; sblkctl = ahd_inb(ahd, SBLKCTL); cur_channel = (sblkctl & SELBUSB) ? 'B' : 'A'; if ((ahd->features & AHD_TWIN) == 0) cur_channel = 'A'; swap = cur_channel != channel; ahd->our_id = target; if (swap) ahd_outb(ahd, SBLKCTL, sblkctl ^ SELBUSB); ahd_outb(ahd, SCSIID, target); if (swap) ahd_outb(ahd, SBLKCTL, sblkctl); } } } else ahd->black_hole = lstate; /* Allow select-in operations */ if (ahd->black_hole != NULL && ahd->enabled_luns > 0) { scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE); scsiseq1 |= ENSELI; ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1); scsiseq1 = ahd_inb(ahd, SCSISEQ1); scsiseq1 |= ENSELI; ahd_outb(ahd, SCSISEQ1, scsiseq1); } ahd_unpause(ahd); ahd_unlock(ahd, &s); ccb->ccb_h.status = CAM_REQ_CMP; xpt_print_path(ccb->ccb_h.path); printk("Lun now enabled for target mode\n"); } else { struct scb *scb; int i, empty; if (lstate == NULL) { ccb->ccb_h.status = CAM_LUN_INVALID; return; } ahd_lock(ahd, &s); ccb->ccb_h.status = CAM_REQ_CMP; LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { struct ccb_hdr *ccbh; ccbh = &scb->io_ctx->ccb_h; if (ccbh->func_code == XPT_CONT_TARGET_IO && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){ printk("CTIO pending\n"); ccb->ccb_h.status = CAM_REQ_INVALID; ahd_unlock(ahd, &s); return; } } if (SLIST_FIRST(&lstate->accept_tios) != NULL) { printk("ATIOs pending\n"); ccb->ccb_h.status = CAM_REQ_INVALID; } if (SLIST_FIRST(&lstate->immed_notifies) != NULL) { printk("INOTs pending\n"); ccb->ccb_h.status = CAM_REQ_INVALID; } if (ccb->ccb_h.status != CAM_REQ_CMP) { ahd_unlock(ahd, &s); return; } xpt_print_path(ccb->ccb_h.path); printk("Target mode disabled\n"); xpt_free_path(lstate->path); kfree(lstate); ahd_pause(ahd); /* Can we clean up the target too? */ if (target != CAM_TARGET_WILDCARD) { tstate->enabled_luns[lun] = NULL; ahd->enabled_luns--; for (empty = 1, i = 0; i < 8; i++) if (tstate->enabled_luns[i] != NULL) { empty = 0; break; } if (empty) { ahd_free_tstate(ahd, target, channel, /*force*/FALSE); if (ahd->features & AHD_MULTI_TID) { u_int targid_mask; targid_mask = ahd_inw(ahd, TARGID); targid_mask &= ~target_mask; ahd_outw(ahd, TARGID, targid_mask); ahd_update_scsiid(ahd, targid_mask); } } } else { ahd->black_hole = NULL; /* * We can't allow selections without * our black hole device. */ empty = TRUE; } if (ahd->enabled_luns == 0) { /* Disallow select-in */ u_int scsiseq1; scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE); scsiseq1 &= ~ENSELI; ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1); scsiseq1 = ahd_inb(ahd, SCSISEQ1); scsiseq1 &= ~ENSELI; ahd_outb(ahd, SCSISEQ1, scsiseq1); if ((ahd->features & AHD_MULTIROLE) == 0) { printk("Configuring Initiator Mode\n"); ahd->flags &= ~AHD_TARGETROLE; ahd->flags |= AHD_INITIATORROLE; ahd_pause(ahd); ahd_loadseq(ahd); ahd_restart(ahd); /* * Unpaused. The extra unpause * that follows is harmless. */ } } ahd_unpause(ahd); ahd_unlock(ahd, &s); } #endif } static void ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask) { #if NOT_YET u_int scsiid_mask; u_int scsiid; if ((ahd->features & AHD_MULTI_TID) == 0) panic("ahd_update_scsiid called on non-multitid unit\n"); /* * Since we will rely on the TARGID mask * for selection enables, ensure that OID * in SCSIID is not set to some other ID * that we don't want to allow selections on. */ if ((ahd->features & AHD_ULTRA2) != 0) scsiid = ahd_inb(ahd, SCSIID_ULTRA2); else scsiid = ahd_inb(ahd, SCSIID); scsiid_mask = 0x1 << (scsiid & OID); if ((targid_mask & scsiid_mask) == 0) { u_int our_id; /* ffs counts from 1 */ our_id = ffs(targid_mask); if (our_id == 0) our_id = ahd->our_id; else our_id--; scsiid &= TID; scsiid |= our_id; } if ((ahd->features & AHD_ULTRA2) != 0) ahd_outb(ahd, SCSIID_ULTRA2, scsiid); else ahd_outb(ahd, SCSIID, scsiid); #endif } static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused) { struct target_cmd *cmd; ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD); while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) { /* * Only advance through the queue if we * have the resources to process the command. */ if (ahd_handle_target_cmd(ahd, cmd) != 0) break; cmd->cmd_valid = 0; ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, ahd_targetcmd_offset(ahd, ahd->tqinfifonext), sizeof(struct target_cmd), BUS_DMASYNC_PREREAD); ahd->tqinfifonext++; /* * Lazily update our position in the target mode incoming * command queue as seen by the sequencer. */ if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) { u_int hs_mailbox; hs_mailbox = ahd_inb(ahd, HS_MAILBOX); hs_mailbox &= ~HOST_TQINPOS; hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS; ahd_outb(ahd, HS_MAILBOX, hs_mailbox); } } } static int ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd) { struct ahd_tmode_tstate *tstate; struct ahd_tmode_lstate *lstate; struct ccb_accept_tio *atio; uint8_t *byte; int initiator; int target; int lun; initiator = SCSIID_TARGET(ahd, cmd->scsiid); target = SCSIID_OUR_ID(cmd->scsiid); lun = (cmd->identify & MSG_IDENTIFY_LUNMASK); byte = cmd->bytes; tstate = ahd->enabled_targets[target]; lstate = NULL; if (tstate != NULL) lstate = tstate->enabled_luns[lun]; /* * Commands for disabled luns go to the black hole driver. */ if (lstate == NULL) lstate = ahd->black_hole; atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios); if (atio == NULL) { ahd->flags |= AHD_TQINFIFO_BLOCKED; /* * Wait for more ATIOs from the peripheral driver for this lun. */ return (1); } else ahd->flags &= ~AHD_TQINFIFO_BLOCKED; #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_TQIN) != 0) printk("Incoming command from %d for %d:%d%s\n", initiator, target, lun, lstate == ahd->black_hole ? "(Black Holed)" : ""); #endif SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle); if (lstate == ahd->black_hole) { /* Fill in the wildcards */ atio->ccb_h.target_id = target; atio->ccb_h.target_lun = lun; } /* * Package it up and send it off to * whomever has this lun enabled. */ atio->sense_len = 0; atio->init_id = initiator; if (byte[0] != 0xFF) { /* Tag was included */ atio->tag_action = *byte++; atio->tag_id = *byte++; atio->ccb_h.flags = CAM_TAG_ACTION_VALID; } else { atio->ccb_h.flags = 0; } byte++; /* Okay. Now determine the cdb size based on the command code */ switch (*byte >> CMD_GROUP_CODE_SHIFT) { case 0: atio->cdb_len = 6; break; case 1: case 2: atio->cdb_len = 10; break; case 4: atio->cdb_len = 16; break; case 5: atio->cdb_len = 12; break; case 3: default: /* Only copy the opcode. */ atio->cdb_len = 1; printk("Reserved or VU command code type encountered\n"); break; } memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len); atio->ccb_h.status |= CAM_CDB_RECVD; if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) { /* * We weren't allowed to disconnect. * We're hanging on the bus until a * continue target I/O comes in response * to this accept tio. */ #ifdef AHD_DEBUG if ((ahd_debug & AHD_SHOW_TQIN) != 0) printk("Received Immediate Command %d:%d:%d - %p\n", initiator, target, lun, ahd->pending_device); #endif ahd->pending_device = lstate; ahd_freeze_ccb((union ccb *)atio); atio->ccb_h.flags |= CAM_DIS_DISCONNECT; } xpt_done((union ccb*)atio); return (0); } #endif