/* linux/drivers/spi/spi_s3c64xx.c * * Copyright (C) 2009 Samsung Electronics Ltd. * Jaswinder Singh <jassi.brar@samsung.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/init.h> #include <linux/module.h> #include <linux/workqueue.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <mach/dma.h> #include <plat/s3c64xx-spi.h> /* Registers and bit-fields */ #define S3C64XX_SPI_CH_CFG 0x00 #define S3C64XX_SPI_CLK_CFG 0x04 #define S3C64XX_SPI_MODE_CFG 0x08 #define S3C64XX_SPI_SLAVE_SEL 0x0C #define S3C64XX_SPI_INT_EN 0x10 #define S3C64XX_SPI_STATUS 0x14 #define S3C64XX_SPI_TX_DATA 0x18 #define S3C64XX_SPI_RX_DATA 0x1C #define S3C64XX_SPI_PACKET_CNT 0x20 #define S3C64XX_SPI_PENDING_CLR 0x24 #define S3C64XX_SPI_SWAP_CFG 0x28 #define S3C64XX_SPI_FB_CLK 0x2C #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */ #define S3C64XX_SPI_CH_SW_RST (1<<5) #define S3C64XX_SPI_CH_SLAVE (1<<4) #define S3C64XX_SPI_CPOL_L (1<<3) #define S3C64XX_SPI_CPHA_B (1<<2) #define S3C64XX_SPI_CH_RXCH_ON (1<<1) #define S3C64XX_SPI_CH_TXCH_ON (1<<0) #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9) #define S3C64XX_SPI_CLKSEL_SRCSHFT 9 #define S3C64XX_SPI_ENCLK_ENABLE (1<<8) #define S3C64XX_SPI_PSR_MASK 0xff #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29) #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29) #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29) #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29) #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17) #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17) #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17) #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17) #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2) #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1) #define S3C64XX_SPI_MODE_4BURST (1<<0) #define S3C64XX_SPI_SLAVE_AUTO (1<<1) #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0) #define S3C64XX_SPI_ACT(c) writel(0, (c)->regs + S3C64XX_SPI_SLAVE_SEL) #define S3C64XX_SPI_DEACT(c) writel(S3C64XX_SPI_SLAVE_SIG_INACT, \ (c)->regs + S3C64XX_SPI_SLAVE_SEL) #define S3C64XX_SPI_INT_TRAILING_EN (1<<6) #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5) #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4) #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3) #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2) #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1) #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0) #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5) #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4) #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3) #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2) #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1) #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0) #define S3C64XX_SPI_PACKET_CNT_EN (1<<16) #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4) #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3) #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2) #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1) #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0) #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7) #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6) #define S3C64XX_SPI_SWAP_RX_BIT (1<<5) #define S3C64XX_SPI_SWAP_RX_EN (1<<4) #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3) #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2) #define S3C64XX_SPI_SWAP_TX_BIT (1<<1) #define S3C64XX_SPI_SWAP_TX_EN (1<<0) #define S3C64XX_SPI_FBCLK_MSK (3<<0) #define S3C64XX_SPI_ST_TRLCNTZ(v, i) ((((v) >> (i)->rx_lvl_offset) & \ (((i)->fifo_lvl_mask + 1))) \ ? 1 : 0) #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & (1 << (i)->tx_st_done)) ? 1 : 0) #define TX_FIFO_LVL(v, i) (((v) >> 6) & (i)->fifo_lvl_mask) #define RX_FIFO_LVL(v, i) (((v) >> (i)->rx_lvl_offset) & (i)->fifo_lvl_mask) #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff #define S3C64XX_SPI_TRAILCNT_OFF 19 #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) #define SUSPND (1<<0) #define SPIBUSY (1<<1) #define RXBUSY (1<<2) #define TXBUSY (1<<3) /** * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver. * @clk: Pointer to the spi clock. * @src_clk: Pointer to the clock used to generate SPI signals. * @master: Pointer to the SPI Protocol master. * @workqueue: Work queue for the SPI xfer requests. * @cntrlr_info: Platform specific data for the controller this driver manages. * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint. * @work: Work * @queue: To log SPI xfer requests. * @lock: Controller specific lock. * @state: Set of FLAGS to indicate status. * @rx_dmach: Controller's DMA channel for Rx. * @tx_dmach: Controller's DMA channel for Tx. * @sfr_start: BUS address of SPI controller regs. * @regs: Pointer to ioremap'ed controller registers. * @xfer_completion: To indicate completion of xfer task. * @cur_mode: Stores the active configuration of the controller. * @cur_bpw: Stores the active bits per word settings. * @cur_speed: Stores the active xfer clock speed. */ struct s3c64xx_spi_driver_data { void __iomem *regs; struct clk *clk; struct clk *src_clk; struct platform_device *pdev; struct spi_master *master; struct workqueue_struct *workqueue; struct s3c64xx_spi_info *cntrlr_info; struct spi_device *tgl_spi; struct work_struct work; struct list_head queue; spinlock_t lock; enum dma_ch rx_dmach; enum dma_ch tx_dmach; unsigned long sfr_start; struct completion xfer_completion; unsigned state; unsigned cur_mode, cur_bpw; unsigned cur_speed; }; static struct s3c2410_dma_client s3c64xx_spi_dma_client = { .name = "samsung-spi-dma", }; static void flush_fifo(struct s3c64xx_spi_driver_data *sdd) { struct s3c64xx_spi_info *sci = sdd->cntrlr_info; void __iomem *regs = sdd->regs; unsigned long loops; u32 val; writel(0, regs + S3C64XX_SPI_PACKET_CNT); val = readl(regs + S3C64XX_SPI_CH_CFG); val |= S3C64XX_SPI_CH_SW_RST; val &= ~S3C64XX_SPI_CH_HS_EN; writel(val, regs + S3C64XX_SPI_CH_CFG); /* Flush TxFIFO*/ loops = msecs_to_loops(1); do { val = readl(regs + S3C64XX_SPI_STATUS); } while (TX_FIFO_LVL(val, sci) && loops--); if (loops == 0) dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n"); /* Flush RxFIFO*/ loops = msecs_to_loops(1); do { val = readl(regs + S3C64XX_SPI_STATUS); if (RX_FIFO_LVL(val, sci)) readl(regs + S3C64XX_SPI_RX_DATA); else break; } while (loops--); if (loops == 0) dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n"); val = readl(regs + S3C64XX_SPI_CH_CFG); val &= ~S3C64XX_SPI_CH_SW_RST; writel(val, regs + S3C64XX_SPI_CH_CFG); val = readl(regs + S3C64XX_SPI_MODE_CFG); val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON); writel(val, regs + S3C64XX_SPI_MODE_CFG); val = readl(regs + S3C64XX_SPI_CH_CFG); val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON); writel(val, regs + S3C64XX_SPI_CH_CFG); } static void enable_datapath(struct s3c64xx_spi_driver_data *sdd, struct spi_device *spi, struct spi_transfer *xfer, int dma_mode) { struct s3c64xx_spi_info *sci = sdd->cntrlr_info; void __iomem *regs = sdd->regs; u32 modecfg, chcfg; modecfg = readl(regs + S3C64XX_SPI_MODE_CFG); modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON); chcfg = readl(regs + S3C64XX_SPI_CH_CFG); chcfg &= ~S3C64XX_SPI_CH_TXCH_ON; if (dma_mode) { chcfg &= ~S3C64XX_SPI_CH_RXCH_ON; } else { /* Always shift in data in FIFO, even if xfer is Tx only, * this helps setting PCKT_CNT value for generating clocks * as exactly needed. */ chcfg |= S3C64XX_SPI_CH_RXCH_ON; writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff) | S3C64XX_SPI_PACKET_CNT_EN, regs + S3C64XX_SPI_PACKET_CNT); } if (xfer->tx_buf != NULL) { sdd->state |= TXBUSY; chcfg |= S3C64XX_SPI_CH_TXCH_ON; if (dma_mode) { modecfg |= S3C64XX_SPI_MODE_TXDMA_ON; s3c2410_dma_config(sdd->tx_dmach, sdd->cur_bpw / 8); s3c2410_dma_enqueue(sdd->tx_dmach, (void *)sdd, xfer->tx_dma, xfer->len); s3c2410_dma_ctrl(sdd->tx_dmach, S3C2410_DMAOP_START); } else { switch (sdd->cur_bpw) { case 32: iowrite32_rep(regs + S3C64XX_SPI_TX_DATA, xfer->tx_buf, xfer->len / 4); break; case 16: iowrite16_rep(regs + S3C64XX_SPI_TX_DATA, xfer->tx_buf, xfer->len / 2); break; default: iowrite8_rep(regs + S3C64XX_SPI_TX_DATA, xfer->tx_buf, xfer->len); break; } } } if (xfer->rx_buf != NULL) { sdd->state |= RXBUSY; if (sci->high_speed && sdd->cur_speed >= 30000000UL && !(sdd->cur_mode & SPI_CPHA)) chcfg |= S3C64XX_SPI_CH_HS_EN; if (dma_mode) { modecfg |= S3C64XX_SPI_MODE_RXDMA_ON; chcfg |= S3C64XX_SPI_CH_RXCH_ON; writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff) | S3C64XX_SPI_PACKET_CNT_EN, regs + S3C64XX_SPI_PACKET_CNT); s3c2410_dma_config(sdd->rx_dmach, sdd->cur_bpw / 8); s3c2410_dma_enqueue(sdd->rx_dmach, (void *)sdd, xfer->rx_dma, xfer->len); s3c2410_dma_ctrl(sdd->rx_dmach, S3C2410_DMAOP_START); } } writel(modecfg, regs + S3C64XX_SPI_MODE_CFG); writel(chcfg, regs + S3C64XX_SPI_CH_CFG); } static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd, struct spi_device *spi) { struct s3c64xx_spi_csinfo *cs; if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */ if (sdd->tgl_spi != spi) { /* if last mssg on diff device */ /* Deselect the last toggled device */ cs = sdd->tgl_spi->controller_data; cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1); } sdd->tgl_spi = NULL; } cs = spi->controller_data; cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0); } static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd, struct spi_transfer *xfer, int dma_mode) { struct s3c64xx_spi_info *sci = sdd->cntrlr_info; void __iomem *regs = sdd->regs; unsigned long val; int ms; /* millisecs to xfer 'len' bytes @ 'cur_speed' */ ms = xfer->len * 8 * 1000 / sdd->cur_speed; ms += 10; /* some tolerance */ if (dma_mode) { val = msecs_to_jiffies(ms) + 10; val = wait_for_completion_timeout(&sdd->xfer_completion, val); } else { u32 status; val = msecs_to_loops(ms); do { status = readl(regs + S3C64XX_SPI_STATUS); } while (RX_FIFO_LVL(status, sci) < xfer->len && --val); } if (!val) return -EIO; if (dma_mode) { u32 status; /* * DmaTx returns after simply writing data in the FIFO, * w/o waiting for real transmission on the bus to finish. * DmaRx returns only after Dma read data from FIFO which * needs bus transmission to finish, so we don't worry if * Xfer involved Rx(with or without Tx). */ if (xfer->rx_buf == NULL) { val = msecs_to_loops(10); status = readl(regs + S3C64XX_SPI_STATUS); while ((TX_FIFO_LVL(status, sci) || !S3C64XX_SPI_ST_TX_DONE(status, sci)) && --val) { cpu_relax(); status = readl(regs + S3C64XX_SPI_STATUS); } if (!val) return -EIO; } } else { /* If it was only Tx */ if (xfer->rx_buf == NULL) { sdd->state &= ~TXBUSY; return 0; } switch (sdd->cur_bpw) { case 32: ioread32_rep(regs + S3C64XX_SPI_RX_DATA, xfer->rx_buf, xfer->len / 4); break; case 16: ioread16_rep(regs + S3C64XX_SPI_RX_DATA, xfer->rx_buf, xfer->len / 2); break; default: ioread8_rep(regs + S3C64XX_SPI_RX_DATA, xfer->rx_buf, xfer->len); break; } sdd->state &= ~RXBUSY; } return 0; } static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd, struct spi_device *spi) { struct s3c64xx_spi_csinfo *cs = spi->controller_data; if (sdd->tgl_spi == spi) sdd->tgl_spi = NULL; cs->set_level(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1); } static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd) { struct s3c64xx_spi_info *sci = sdd->cntrlr_info; void __iomem *regs = sdd->regs; u32 val; /* Disable Clock */ if (sci->clk_from_cmu) { clk_disable(sdd->src_clk); } else { val = readl(regs + S3C64XX_SPI_CLK_CFG); val &= ~S3C64XX_SPI_ENCLK_ENABLE; writel(val, regs + S3C64XX_SPI_CLK_CFG); } /* Set Polarity and Phase */ val = readl(regs + S3C64XX_SPI_CH_CFG); val &= ~(S3C64XX_SPI_CH_SLAVE | S3C64XX_SPI_CPOL_L | S3C64XX_SPI_CPHA_B); if (sdd->cur_mode & SPI_CPOL) val |= S3C64XX_SPI_CPOL_L; if (sdd->cur_mode & SPI_CPHA) val |= S3C64XX_SPI_CPHA_B; writel(val, regs + S3C64XX_SPI_CH_CFG); /* Set Channel & DMA Mode */ val = readl(regs + S3C64XX_SPI_MODE_CFG); val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK | S3C64XX_SPI_MODE_CH_TSZ_MASK); switch (sdd->cur_bpw) { case 32: val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD; val |= S3C64XX_SPI_MODE_CH_TSZ_WORD; break; case 16: val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD; val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD; break; default: val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE; val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE; break; } writel(val, regs + S3C64XX_SPI_MODE_CFG); if (sci->clk_from_cmu) { /* Configure Clock */ /* There is half-multiplier before the SPI */ clk_set_rate(sdd->src_clk, sdd->cur_speed * 2); /* Enable Clock */ clk_enable(sdd->src_clk); } else { /* Configure Clock */ val = readl(regs + S3C64XX_SPI_CLK_CFG); val &= ~S3C64XX_SPI_PSR_MASK; val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1) & S3C64XX_SPI_PSR_MASK); writel(val, regs + S3C64XX_SPI_CLK_CFG); /* Enable Clock */ val = readl(regs + S3C64XX_SPI_CLK_CFG); val |= S3C64XX_SPI_ENCLK_ENABLE; writel(val, regs + S3C64XX_SPI_CLK_CFG); } } static void s3c64xx_spi_dma_rxcb(struct s3c2410_dma_chan *chan, void *buf_id, int size, enum s3c2410_dma_buffresult res) { struct s3c64xx_spi_driver_data *sdd = buf_id; unsigned long flags; spin_lock_irqsave(&sdd->lock, flags); if (res == S3C2410_RES_OK) sdd->state &= ~RXBUSY; else dev_err(&sdd->pdev->dev, "DmaAbrtRx-%d\n", size); /* If the other done */ if (!(sdd->state & TXBUSY)) complete(&sdd->xfer_completion); spin_unlock_irqrestore(&sdd->lock, flags); } static void s3c64xx_spi_dma_txcb(struct s3c2410_dma_chan *chan, void *buf_id, int size, enum s3c2410_dma_buffresult res) { struct s3c64xx_spi_driver_data *sdd = buf_id; unsigned long flags; spin_lock_irqsave(&sdd->lock, flags); if (res == S3C2410_RES_OK) sdd->state &= ~TXBUSY; else dev_err(&sdd->pdev->dev, "DmaAbrtTx-%d \n", size); /* If the other done */ if (!(sdd->state & RXBUSY)) complete(&sdd->xfer_completion); spin_unlock_irqrestore(&sdd->lock, flags); } #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32) static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd, struct spi_message *msg) { struct s3c64xx_spi_info *sci = sdd->cntrlr_info; struct device *dev = &sdd->pdev->dev; struct spi_transfer *xfer; if (msg->is_dma_mapped) return 0; /* First mark all xfer unmapped */ list_for_each_entry(xfer, &msg->transfers, transfer_list) { xfer->rx_dma = XFER_DMAADDR_INVALID; xfer->tx_dma = XFER_DMAADDR_INVALID; } /* Map until end or first fail */ list_for_each_entry(xfer, &msg->transfers, transfer_list) { if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1)) continue; if (xfer->tx_buf != NULL) { xfer->tx_dma = dma_map_single(dev, (void *)xfer->tx_buf, xfer->len, DMA_TO_DEVICE); if (dma_mapping_error(dev, xfer->tx_dma)) { dev_err(dev, "dma_map_single Tx failed\n"); xfer->tx_dma = XFER_DMAADDR_INVALID; return -ENOMEM; } } if (xfer->rx_buf != NULL) { xfer->rx_dma = dma_map_single(dev, xfer->rx_buf, xfer->len, DMA_FROM_DEVICE); if (dma_mapping_error(dev, xfer->rx_dma)) { dev_err(dev, "dma_map_single Rx failed\n"); dma_unmap_single(dev, xfer->tx_dma, xfer->len, DMA_TO_DEVICE); xfer->tx_dma = XFER_DMAADDR_INVALID; xfer->rx_dma = XFER_DMAADDR_INVALID; return -ENOMEM; } } } return 0; } static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd, struct spi_message *msg) { struct s3c64xx_spi_info *sci = sdd->cntrlr_info; struct device *dev = &sdd->pdev->dev; struct spi_transfer *xfer; if (msg->is_dma_mapped) return; list_for_each_entry(xfer, &msg->transfers, transfer_list) { if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1)) continue; if (xfer->rx_buf != NULL && xfer->rx_dma != XFER_DMAADDR_INVALID) dma_unmap_single(dev, xfer->rx_dma, xfer->len, DMA_FROM_DEVICE); if (xfer->tx_buf != NULL && xfer->tx_dma != XFER_DMAADDR_INVALID) dma_unmap_single(dev, xfer->tx_dma, xfer->len, DMA_TO_DEVICE); } } static void handle_msg(struct s3c64xx_spi_driver_data *sdd, struct spi_message *msg) { struct s3c64xx_spi_info *sci = sdd->cntrlr_info; struct spi_device *spi = msg->spi; struct s3c64xx_spi_csinfo *cs = spi->controller_data; struct spi_transfer *xfer; int status = 0, cs_toggle = 0; u32 speed; u8 bpw; /* If Master's(controller) state differs from that needed by Slave */ if (sdd->cur_speed != spi->max_speed_hz || sdd->cur_mode != spi->mode || sdd->cur_bpw != spi->bits_per_word) { sdd->cur_bpw = spi->bits_per_word; sdd->cur_speed = spi->max_speed_hz; sdd->cur_mode = spi->mode; s3c64xx_spi_config(sdd); } /* Map all the transfers if needed */ if (s3c64xx_spi_map_mssg(sdd, msg)) { dev_err(&spi->dev, "Xfer: Unable to map message buffers!\n"); status = -ENOMEM; goto out; } /* Configure feedback delay */ writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK); list_for_each_entry(xfer, &msg->transfers, transfer_list) { unsigned long flags; int use_dma; INIT_COMPLETION(sdd->xfer_completion); /* Only BPW and Speed may change across transfers */ bpw = xfer->bits_per_word ? : spi->bits_per_word; speed = xfer->speed_hz ? : spi->max_speed_hz; if (xfer->len % (bpw / 8)) { dev_err(&spi->dev, "Xfer length(%u) not a multiple of word size(%u)\n", xfer->len, bpw / 8); status = -EIO; goto out; } if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) { sdd->cur_bpw = bpw; sdd->cur_speed = speed; s3c64xx_spi_config(sdd); } /* Polling method for xfers not bigger than FIFO capacity */ if (xfer->len <= ((sci->fifo_lvl_mask >> 1) + 1)) use_dma = 0; else use_dma = 1; spin_lock_irqsave(&sdd->lock, flags); /* Pending only which is to be done */ sdd->state &= ~RXBUSY; sdd->state &= ~TXBUSY; enable_datapath(sdd, spi, xfer, use_dma); /* Slave Select */ enable_cs(sdd, spi); /* Start the signals */ S3C64XX_SPI_ACT(sdd); spin_unlock_irqrestore(&sdd->lock, flags); status = wait_for_xfer(sdd, xfer, use_dma); /* Quiese the signals */ S3C64XX_SPI_DEACT(sdd); if (status) { dev_err(&spi->dev, "I/O Error: " "rx-%d tx-%d res:rx-%c tx-%c len-%d\n", xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0, (sdd->state & RXBUSY) ? 'f' : 'p', (sdd->state & TXBUSY) ? 'f' : 'p', xfer->len); if (use_dma) { if (xfer->tx_buf != NULL && (sdd->state & TXBUSY)) s3c2410_dma_ctrl(sdd->tx_dmach, S3C2410_DMAOP_FLUSH); if (xfer->rx_buf != NULL && (sdd->state & RXBUSY)) s3c2410_dma_ctrl(sdd->rx_dmach, S3C2410_DMAOP_FLUSH); } goto out; } if (xfer->delay_usecs) udelay(xfer->delay_usecs); if (xfer->cs_change) { /* Hint that the next mssg is gonna be for the same device */ if (list_is_last(&xfer->transfer_list, &msg->transfers)) cs_toggle = 1; else disable_cs(sdd, spi); } msg->actual_length += xfer->len; flush_fifo(sdd); } out: if (!cs_toggle || status) disable_cs(sdd, spi); else sdd->tgl_spi = spi; s3c64xx_spi_unmap_mssg(sdd, msg); msg->status = status; if (msg->complete) msg->complete(msg->context); } static int acquire_dma(struct s3c64xx_spi_driver_data *sdd) { if (s3c2410_dma_request(sdd->rx_dmach, &s3c64xx_spi_dma_client, NULL) < 0) { dev_err(&sdd->pdev->dev, "cannot get RxDMA\n"); return 0; } s3c2410_dma_set_buffdone_fn(sdd->rx_dmach, s3c64xx_spi_dma_rxcb); s3c2410_dma_devconfig(sdd->rx_dmach, S3C2410_DMASRC_HW, sdd->sfr_start + S3C64XX_SPI_RX_DATA); if (s3c2410_dma_request(sdd->tx_dmach, &s3c64xx_spi_dma_client, NULL) < 0) { dev_err(&sdd->pdev->dev, "cannot get TxDMA\n"); s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client); return 0; } s3c2410_dma_set_buffdone_fn(sdd->tx_dmach, s3c64xx_spi_dma_txcb); s3c2410_dma_devconfig(sdd->tx_dmach, S3C2410_DMASRC_MEM, sdd->sfr_start + S3C64XX_SPI_TX_DATA); return 1; } static void s3c64xx_spi_work(struct work_struct *work) { struct s3c64xx_spi_driver_data *sdd = container_of(work, struct s3c64xx_spi_driver_data, work); unsigned long flags; /* Acquire DMA channels */ while (!acquire_dma(sdd)) msleep(10); spin_lock_irqsave(&sdd->lock, flags); while (!list_empty(&sdd->queue) && !(sdd->state & SUSPND)) { struct spi_message *msg; msg = container_of(sdd->queue.next, struct spi_message, queue); list_del_init(&msg->queue); /* Set Xfer busy flag */ sdd->state |= SPIBUSY; spin_unlock_irqrestore(&sdd->lock, flags); handle_msg(sdd, msg); spin_lock_irqsave(&sdd->lock, flags); sdd->state &= ~SPIBUSY; } spin_unlock_irqrestore(&sdd->lock, flags); /* Free DMA channels */ s3c2410_dma_free(sdd->tx_dmach, &s3c64xx_spi_dma_client); s3c2410_dma_free(sdd->rx_dmach, &s3c64xx_spi_dma_client); } static int s3c64xx_spi_transfer(struct spi_device *spi, struct spi_message *msg) { struct s3c64xx_spi_driver_data *sdd; unsigned long flags; sdd = spi_master_get_devdata(spi->master); spin_lock_irqsave(&sdd->lock, flags); if (sdd->state & SUSPND) { spin_unlock_irqrestore(&sdd->lock, flags); return -ESHUTDOWN; } msg->status = -EINPROGRESS; msg->actual_length = 0; list_add_tail(&msg->queue, &sdd->queue); queue_work(sdd->workqueue, &sdd->work); spin_unlock_irqrestore(&sdd->lock, flags); return 0; } /* * Here we only check the validity of requested configuration * and save the configuration in a local data-structure. * The controller is actually configured only just before we * get a message to transfer. */ static int s3c64xx_spi_setup(struct spi_device *spi) { struct s3c64xx_spi_csinfo *cs = spi->controller_data; struct s3c64xx_spi_driver_data *sdd; struct s3c64xx_spi_info *sci; struct spi_message *msg; unsigned long flags; int err = 0; if (cs == NULL || cs->set_level == NULL) { dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select); return -ENODEV; } sdd = spi_master_get_devdata(spi->master); sci = sdd->cntrlr_info; spin_lock_irqsave(&sdd->lock, flags); list_for_each_entry(msg, &sdd->queue, queue) { /* Is some mssg is already queued for this device */ if (msg->spi == spi) { dev_err(&spi->dev, "setup: attempt while mssg in queue!\n"); spin_unlock_irqrestore(&sdd->lock, flags); return -EBUSY; } } if (sdd->state & SUSPND) { spin_unlock_irqrestore(&sdd->lock, flags); dev_err(&spi->dev, "setup: SPI-%d not active!\n", spi->master->bus_num); return -ESHUTDOWN; } spin_unlock_irqrestore(&sdd->lock, flags); if (spi->bits_per_word != 8 && spi->bits_per_word != 16 && spi->bits_per_word != 32) { dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n", spi->bits_per_word); err = -EINVAL; goto setup_exit; } /* Check if we can provide the requested rate */ if (!sci->clk_from_cmu) { u32 psr, speed; /* Max possible */ speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1); if (spi->max_speed_hz > speed) spi->max_speed_hz = speed; psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1; psr &= S3C64XX_SPI_PSR_MASK; if (psr == S3C64XX_SPI_PSR_MASK) psr--; speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1); if (spi->max_speed_hz < speed) { if (psr+1 < S3C64XX_SPI_PSR_MASK) { psr++; } else { err = -EINVAL; goto setup_exit; } } speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1); if (spi->max_speed_hz >= speed) spi->max_speed_hz = speed; else err = -EINVAL; } setup_exit: /* setup() returns with device de-selected */ disable_cs(sdd, spi); return err; } static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel) { struct s3c64xx_spi_info *sci = sdd->cntrlr_info; void __iomem *regs = sdd->regs; unsigned int val; sdd->cur_speed = 0; S3C64XX_SPI_DEACT(sdd); /* Disable Interrupts - we use Polling if not DMA mode */ writel(0, regs + S3C64XX_SPI_INT_EN); if (!sci->clk_from_cmu) writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT, regs + S3C64XX_SPI_CLK_CFG); writel(0, regs + S3C64XX_SPI_MODE_CFG); writel(0, regs + S3C64XX_SPI_PACKET_CNT); /* Clear any irq pending bits */ writel(readl(regs + S3C64XX_SPI_PENDING_CLR), regs + S3C64XX_SPI_PENDING_CLR); writel(0, regs + S3C64XX_SPI_SWAP_CFG); val = readl(regs + S3C64XX_SPI_MODE_CFG); val &= ~S3C64XX_SPI_MODE_4BURST; val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF); val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF); writel(val, regs + S3C64XX_SPI_MODE_CFG); flush_fifo(sdd); } static int __init s3c64xx_spi_probe(struct platform_device *pdev) { struct resource *mem_res, *dmatx_res, *dmarx_res; struct s3c64xx_spi_driver_data *sdd; struct s3c64xx_spi_info *sci; struct spi_master *master; int ret; if (pdev->id < 0) { dev_err(&pdev->dev, "Invalid platform device id-%d\n", pdev->id); return -ENODEV; } if (pdev->dev.platform_data == NULL) { dev_err(&pdev->dev, "platform_data missing!\n"); return -ENODEV; } sci = pdev->dev.platform_data; if (!sci->src_clk_name) { dev_err(&pdev->dev, "Board init must call s3c64xx_spi_set_info()\n"); return -EINVAL; } /* Check for availability of necessary resource */ dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (dmatx_res == NULL) { dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource\n"); return -ENXIO; } dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (dmarx_res == NULL) { dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource\n"); return -ENXIO; } mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (mem_res == NULL) { dev_err(&pdev->dev, "Unable to get SPI MEM resource\n"); return -ENXIO; } master = spi_alloc_master(&pdev->dev, sizeof(struct s3c64xx_spi_driver_data)); if (master == NULL) { dev_err(&pdev->dev, "Unable to allocate SPI Master\n"); return -ENOMEM; } platform_set_drvdata(pdev, master); sdd = spi_master_get_devdata(master); sdd->master = master; sdd->cntrlr_info = sci; sdd->pdev = pdev; sdd->sfr_start = mem_res->start; sdd->tx_dmach = dmatx_res->start; sdd->rx_dmach = dmarx_res->start; sdd->cur_bpw = 8; master->bus_num = pdev->id; master->setup = s3c64xx_spi_setup; master->transfer = s3c64xx_spi_transfer; master->num_chipselect = sci->num_cs; master->dma_alignment = 8; /* the spi->mode bits understood by this driver: */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; if (request_mem_region(mem_res->start, resource_size(mem_res), pdev->name) == NULL) { dev_err(&pdev->dev, "Req mem region failed\n"); ret = -ENXIO; goto err0; } sdd->regs = ioremap(mem_res->start, resource_size(mem_res)); if (sdd->regs == NULL) { dev_err(&pdev->dev, "Unable to remap IO\n"); ret = -ENXIO; goto err1; } if (sci->cfg_gpio == NULL || sci->cfg_gpio(pdev)) { dev_err(&pdev->dev, "Unable to config gpio\n"); ret = -EBUSY; goto err2; } /* Setup clocks */ sdd->clk = clk_get(&pdev->dev, "spi"); if (IS_ERR(sdd->clk)) { dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n"); ret = PTR_ERR(sdd->clk); goto err3; } if (clk_enable(sdd->clk)) { dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n"); ret = -EBUSY; goto err4; } sdd->src_clk = clk_get(&pdev->dev, sci->src_clk_name); if (IS_ERR(sdd->src_clk)) { dev_err(&pdev->dev, "Unable to acquire clock '%s'\n", sci->src_clk_name); ret = PTR_ERR(sdd->src_clk); goto err5; } if (clk_enable(sdd->src_clk)) { dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", sci->src_clk_name); ret = -EBUSY; goto err6; } sdd->workqueue = create_singlethread_workqueue( dev_name(master->dev.parent)); if (sdd->workqueue == NULL) { dev_err(&pdev->dev, "Unable to create workqueue\n"); ret = -ENOMEM; goto err7; } /* Setup Deufult Mode */ s3c64xx_spi_hwinit(sdd, pdev->id); spin_lock_init(&sdd->lock); init_completion(&sdd->xfer_completion); INIT_WORK(&sdd->work, s3c64xx_spi_work); INIT_LIST_HEAD(&sdd->queue); if (spi_register_master(master)) { dev_err(&pdev->dev, "cannot register SPI master\n"); ret = -EBUSY; goto err8; } dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d " "with %d Slaves attached\n", pdev->id, master->num_chipselect); dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n", mem_res->end, mem_res->start, sdd->rx_dmach, sdd->tx_dmach); return 0; err8: destroy_workqueue(sdd->workqueue); err7: clk_disable(sdd->src_clk); err6: clk_put(sdd->src_clk); err5: clk_disable(sdd->clk); err4: clk_put(sdd->clk); err3: err2: iounmap((void *) sdd->regs); err1: release_mem_region(mem_res->start, resource_size(mem_res)); err0: platform_set_drvdata(pdev, NULL); spi_master_put(master); return ret; } static int s3c64xx_spi_remove(struct platform_device *pdev) { struct spi_master *master = spi_master_get(platform_get_drvdata(pdev)); struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master); struct resource *mem_res; unsigned long flags; spin_lock_irqsave(&sdd->lock, flags); sdd->state |= SUSPND; spin_unlock_irqrestore(&sdd->lock, flags); while (sdd->state & SPIBUSY) msleep(10); spi_unregister_master(master); destroy_workqueue(sdd->workqueue); clk_disable(sdd->src_clk); clk_put(sdd->src_clk); clk_disable(sdd->clk); clk_put(sdd->clk); iounmap((void *) sdd->regs); mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (mem_res != NULL) release_mem_region(mem_res->start, resource_size(mem_res)); platform_set_drvdata(pdev, NULL); spi_master_put(master); return 0; } #ifdef CONFIG_PM static int s3c64xx_spi_suspend(struct platform_device *pdev, pm_message_t state) { struct spi_master *master = spi_master_get(platform_get_drvdata(pdev)); struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master); unsigned long flags; spin_lock_irqsave(&sdd->lock, flags); sdd->state |= SUSPND; spin_unlock_irqrestore(&sdd->lock, flags); while (sdd->state & SPIBUSY) msleep(10); /* Disable the clock */ clk_disable(sdd->src_clk); clk_disable(sdd->clk); sdd->cur_speed = 0; /* Output Clock is stopped */ return 0; } static int s3c64xx_spi_resume(struct platform_device *pdev) { struct spi_master *master = spi_master_get(platform_get_drvdata(pdev)); struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master); struct s3c64xx_spi_info *sci = sdd->cntrlr_info; unsigned long flags; sci->cfg_gpio(pdev); /* Enable the clock */ clk_enable(sdd->src_clk); clk_enable(sdd->clk); s3c64xx_spi_hwinit(sdd, pdev->id); spin_lock_irqsave(&sdd->lock, flags); sdd->state &= ~SUSPND; spin_unlock_irqrestore(&sdd->lock, flags); return 0; } #else #define s3c64xx_spi_suspend NULL #define s3c64xx_spi_resume NULL #endif /* CONFIG_PM */ static struct platform_driver s3c64xx_spi_driver = { .driver = { .name = "s3c64xx-spi", .owner = THIS_MODULE, }, .remove = s3c64xx_spi_remove, .suspend = s3c64xx_spi_suspend, .resume = s3c64xx_spi_resume, }; MODULE_ALIAS("platform:s3c64xx-spi"); static int __init s3c64xx_spi_init(void) { return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe); } subsys_initcall(s3c64xx_spi_init); static void __exit s3c64xx_spi_exit(void) { platform_driver_unregister(&s3c64xx_spi_driver); } module_exit(s3c64xx_spi_exit); MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>"); MODULE_DESCRIPTION("S3C64XX SPI Controller Driver"); MODULE_LICENSE("GPL");