/* * Xilinx SPI controller driver (master mode only) * * Author: MontaVista Software, Inc. * source@mvista.com * * Copyright (c) 2010 Secret Lab Technologies, Ltd. * Copyright (c) 2009 Intel Corporation * 2002-2007 (c) MontaVista Software, Inc. * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #include <linux/spi/xilinx_spi.h> #include <linux/io.h> #define XILINX_SPI_NAME "xilinx_spi" /* Register definitions as per "OPB Serial Peripheral Interface (SPI) (v1.00e) * Product Specification", DS464 */ #define XSPI_CR_OFFSET 0x60 /* Control Register */ #define XSPI_CR_ENABLE 0x02 #define XSPI_CR_MASTER_MODE 0x04 #define XSPI_CR_CPOL 0x08 #define XSPI_CR_CPHA 0x10 #define XSPI_CR_MODE_MASK (XSPI_CR_CPHA | XSPI_CR_CPOL) #define XSPI_CR_TXFIFO_RESET 0x20 #define XSPI_CR_RXFIFO_RESET 0x40 #define XSPI_CR_MANUAL_SSELECT 0x80 #define XSPI_CR_TRANS_INHIBIT 0x100 #define XSPI_CR_LSB_FIRST 0x200 #define XSPI_SR_OFFSET 0x64 /* Status Register */ #define XSPI_SR_RX_EMPTY_MASK 0x01 /* Receive FIFO is empty */ #define XSPI_SR_RX_FULL_MASK 0x02 /* Receive FIFO is full */ #define XSPI_SR_TX_EMPTY_MASK 0x04 /* Transmit FIFO is empty */ #define XSPI_SR_TX_FULL_MASK 0x08 /* Transmit FIFO is full */ #define XSPI_SR_MODE_FAULT_MASK 0x10 /* Mode fault error */ #define XSPI_TXD_OFFSET 0x68 /* Data Transmit Register */ #define XSPI_RXD_OFFSET 0x6c /* Data Receive Register */ #define XSPI_SSR_OFFSET 0x70 /* 32-bit Slave Select Register */ /* Register definitions as per "OPB IPIF (v3.01c) Product Specification", DS414 * IPIF registers are 32 bit */ #define XIPIF_V123B_DGIER_OFFSET 0x1c /* IPIF global int enable reg */ #define XIPIF_V123B_GINTR_ENABLE 0x80000000 #define XIPIF_V123B_IISR_OFFSET 0x20 /* IPIF interrupt status reg */ #define XIPIF_V123B_IIER_OFFSET 0x28 /* IPIF interrupt enable reg */ #define XSPI_INTR_MODE_FAULT 0x01 /* Mode fault error */ #define XSPI_INTR_SLAVE_MODE_FAULT 0x02 /* Selected as slave while * disabled */ #define XSPI_INTR_TX_EMPTY 0x04 /* TxFIFO is empty */ #define XSPI_INTR_TX_UNDERRUN 0x08 /* TxFIFO was underrun */ #define XSPI_INTR_RX_FULL 0x10 /* RxFIFO is full */ #define XSPI_INTR_RX_OVERRUN 0x20 /* RxFIFO was overrun */ #define XSPI_INTR_TX_HALF_EMPTY 0x40 /* TxFIFO is half empty */ #define XIPIF_V123B_RESETR_OFFSET 0x40 /* IPIF reset register */ #define XIPIF_V123B_RESET_MASK 0x0a /* the value to write */ struct xilinx_spi { /* bitbang has to be first */ struct spi_bitbang bitbang; struct completion done; struct resource mem; /* phys mem */ void __iomem *regs; /* virt. address of the control registers */ u32 irq; u8 *rx_ptr; /* pointer in the Tx buffer */ const u8 *tx_ptr; /* pointer in the Rx buffer */ int remaining_bytes; /* the number of bytes left to transfer */ u8 bits_per_word; unsigned int (*read_fn) (void __iomem *); void (*write_fn) (u32, void __iomem *); void (*tx_fn) (struct xilinx_spi *); void (*rx_fn) (struct xilinx_spi *); }; static void xspi_write32(u32 val, void __iomem *addr) { iowrite32(val, addr); } static unsigned int xspi_read32(void __iomem *addr) { return ioread32(addr); } static void xspi_write32_be(u32 val, void __iomem *addr) { iowrite32be(val, addr); } static unsigned int xspi_read32_be(void __iomem *addr) { return ioread32be(addr); } static void xspi_tx8(struct xilinx_spi *xspi) { xspi->write_fn(*xspi->tx_ptr, xspi->regs + XSPI_TXD_OFFSET); xspi->tx_ptr++; } static void xspi_tx16(struct xilinx_spi *xspi) { xspi->write_fn(*(u16 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET); xspi->tx_ptr += 2; } static void xspi_tx32(struct xilinx_spi *xspi) { xspi->write_fn(*(u32 *)(xspi->tx_ptr), xspi->regs + XSPI_TXD_OFFSET); xspi->tx_ptr += 4; } static void xspi_rx8(struct xilinx_spi *xspi) { u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET); if (xspi->rx_ptr) { *xspi->rx_ptr = data & 0xff; xspi->rx_ptr++; } } static void xspi_rx16(struct xilinx_spi *xspi) { u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET); if (xspi->rx_ptr) { *(u16 *)(xspi->rx_ptr) = data & 0xffff; xspi->rx_ptr += 2; } } static void xspi_rx32(struct xilinx_spi *xspi) { u32 data = xspi->read_fn(xspi->regs + XSPI_RXD_OFFSET); if (xspi->rx_ptr) { *(u32 *)(xspi->rx_ptr) = data; xspi->rx_ptr += 4; } } static void xspi_init_hw(struct xilinx_spi *xspi) { void __iomem *regs_base = xspi->regs; /* Reset the SPI device */ xspi->write_fn(XIPIF_V123B_RESET_MASK, regs_base + XIPIF_V123B_RESETR_OFFSET); /* Disable all the interrupts just in case */ xspi->write_fn(0, regs_base + XIPIF_V123B_IIER_OFFSET); /* Enable the global IPIF interrupt */ xspi->write_fn(XIPIF_V123B_GINTR_ENABLE, regs_base + XIPIF_V123B_DGIER_OFFSET); /* Deselect the slave on the SPI bus */ xspi->write_fn(0xffff, regs_base + XSPI_SSR_OFFSET); /* Disable the transmitter, enable Manual Slave Select Assertion, * put SPI controller into master mode, and enable it */ xspi->write_fn(XSPI_CR_TRANS_INHIBIT | XSPI_CR_MANUAL_SSELECT | XSPI_CR_MASTER_MODE | XSPI_CR_ENABLE | XSPI_CR_TXFIFO_RESET | XSPI_CR_RXFIFO_RESET, regs_base + XSPI_CR_OFFSET); } static void xilinx_spi_chipselect(struct spi_device *spi, int is_on) { struct xilinx_spi *xspi = spi_master_get_devdata(spi->master); if (is_on == BITBANG_CS_INACTIVE) { /* Deselect the slave on the SPI bus */ xspi->write_fn(0xffff, xspi->regs + XSPI_SSR_OFFSET); } else if (is_on == BITBANG_CS_ACTIVE) { /* Set the SPI clock phase and polarity */ u16 cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET) & ~XSPI_CR_MODE_MASK; if (spi->mode & SPI_CPHA) cr |= XSPI_CR_CPHA; if (spi->mode & SPI_CPOL) cr |= XSPI_CR_CPOL; xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET); /* We do not check spi->max_speed_hz here as the SPI clock * frequency is not software programmable (the IP block design * parameter) */ /* Activate the chip select */ xspi->write_fn(~(0x0001 << spi->chip_select), xspi->regs + XSPI_SSR_OFFSET); } } /* spi_bitbang requires custom setup_transfer() to be defined if there is a * custom txrx_bufs(). We have nothing to setup here as the SPI IP block * supports 8 or 16 bits per word which cannot be changed in software. * SPI clock can't be changed in software either. * Check for correct bits per word. Chip select delay calculations could be * added here as soon as bitbang_work() can be made aware of the delay value. */ static int xilinx_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct xilinx_spi *xspi = spi_master_get_devdata(spi->master); u8 bits_per_word; bits_per_word = (t && t->bits_per_word) ? t->bits_per_word : spi->bits_per_word; if (bits_per_word != xspi->bits_per_word) { dev_err(&spi->dev, "%s, unsupported bits_per_word=%d\n", __func__, bits_per_word); return -EINVAL; } return 0; } static int xilinx_spi_setup(struct spi_device *spi) { /* always return 0, we can not check the number of bits. * There are cases when SPI setup is called before any driver is * there, in that case the SPI core defaults to 8 bits, which we * do not support in some cases. But if we return an error, the * SPI device would not be registered and no driver can get hold of it * When the driver is there, it will call SPI setup again with the * correct number of bits per transfer. * If a driver setups with the wrong bit number, it will fail when * it tries to do a transfer */ return 0; } static void xilinx_spi_fill_tx_fifo(struct xilinx_spi *xspi) { u8 sr; /* Fill the Tx FIFO with as many bytes as possible */ sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET); while ((sr & XSPI_SR_TX_FULL_MASK) == 0 && xspi->remaining_bytes > 0) { if (xspi->tx_ptr) xspi->tx_fn(xspi); else xspi->write_fn(0, xspi->regs + XSPI_TXD_OFFSET); xspi->remaining_bytes -= xspi->bits_per_word / 8; sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET); } } static int xilinx_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t) { struct xilinx_spi *xspi = spi_master_get_devdata(spi->master); u32 ipif_ier; u16 cr; /* We get here with transmitter inhibited */ xspi->tx_ptr = t->tx_buf; xspi->rx_ptr = t->rx_buf; xspi->remaining_bytes = t->len; INIT_COMPLETION(xspi->done); xilinx_spi_fill_tx_fifo(xspi); /* Enable the transmit empty interrupt, which we use to determine * progress on the transmission. */ ipif_ier = xspi->read_fn(xspi->regs + XIPIF_V123B_IIER_OFFSET); xspi->write_fn(ipif_ier | XSPI_INTR_TX_EMPTY, xspi->regs + XIPIF_V123B_IIER_OFFSET); /* Start the transfer by not inhibiting the transmitter any longer */ cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET) & ~XSPI_CR_TRANS_INHIBIT; xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET); wait_for_completion(&xspi->done); /* Disable the transmit empty interrupt */ xspi->write_fn(ipif_ier, xspi->regs + XIPIF_V123B_IIER_OFFSET); return t->len - xspi->remaining_bytes; } /* This driver supports single master mode only. Hence Tx FIFO Empty * is the only interrupt we care about. * Receive FIFO Overrun, Transmit FIFO Underrun, Mode Fault, and Slave Mode * Fault are not to happen. */ static irqreturn_t xilinx_spi_irq(int irq, void *dev_id) { struct xilinx_spi *xspi = dev_id; u32 ipif_isr; /* Get the IPIF interrupts, and clear them immediately */ ipif_isr = xspi->read_fn(xspi->regs + XIPIF_V123B_IISR_OFFSET); xspi->write_fn(ipif_isr, xspi->regs + XIPIF_V123B_IISR_OFFSET); if (ipif_isr & XSPI_INTR_TX_EMPTY) { /* Transmission completed */ u16 cr; u8 sr; /* A transmit has just completed. Process received data and * check for more data to transmit. Always inhibit the * transmitter while the Isr refills the transmit register/FIFO, * or make sure it is stopped if we're done. */ cr = xspi->read_fn(xspi->regs + XSPI_CR_OFFSET); xspi->write_fn(cr | XSPI_CR_TRANS_INHIBIT, xspi->regs + XSPI_CR_OFFSET); /* Read out all the data from the Rx FIFO */ sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET); while ((sr & XSPI_SR_RX_EMPTY_MASK) == 0) { xspi->rx_fn(xspi); sr = xspi->read_fn(xspi->regs + XSPI_SR_OFFSET); } /* See if there is more data to send */ if (xspi->remaining_bytes > 0) { xilinx_spi_fill_tx_fifo(xspi); /* Start the transfer by not inhibiting the * transmitter any longer */ xspi->write_fn(cr, xspi->regs + XSPI_CR_OFFSET); } else { /* No more data to send. * Indicate the transfer is completed. */ complete(&xspi->done); } } return IRQ_HANDLED; } static const struct of_device_id xilinx_spi_of_match[] = { { .compatible = "xlnx,xps-spi-2.00.a", }, { .compatible = "xlnx,xps-spi-2.00.b", }, {} }; MODULE_DEVICE_TABLE(of, xilinx_spi_of_match); struct spi_master *xilinx_spi_init(struct device *dev, struct resource *mem, u32 irq, s16 bus_num, int num_cs, int little_endian, int bits_per_word) { struct spi_master *master; struct xilinx_spi *xspi; int ret; master = spi_alloc_master(dev, sizeof(struct xilinx_spi)); if (!master) return NULL; /* the spi->mode bits understood by this driver: */ master->mode_bits = SPI_CPOL | SPI_CPHA; xspi = spi_master_get_devdata(master); xspi->bitbang.master = spi_master_get(master); xspi->bitbang.chipselect = xilinx_spi_chipselect; xspi->bitbang.setup_transfer = xilinx_spi_setup_transfer; xspi->bitbang.txrx_bufs = xilinx_spi_txrx_bufs; xspi->bitbang.master->setup = xilinx_spi_setup; init_completion(&xspi->done); if (!request_mem_region(mem->start, resource_size(mem), XILINX_SPI_NAME)) goto put_master; xspi->regs = ioremap(mem->start, resource_size(mem)); if (xspi->regs == NULL) { dev_warn(dev, "ioremap failure\n"); goto map_failed; } master->bus_num = bus_num; master->num_chipselect = num_cs; master->dev.of_node = dev->of_node; xspi->mem = *mem; xspi->irq = irq; if (little_endian) { xspi->read_fn = xspi_read32; xspi->write_fn = xspi_write32; } else { xspi->read_fn = xspi_read32_be; xspi->write_fn = xspi_write32_be; } xspi->bits_per_word = bits_per_word; if (xspi->bits_per_word == 8) { xspi->tx_fn = xspi_tx8; xspi->rx_fn = xspi_rx8; } else if (xspi->bits_per_word == 16) { xspi->tx_fn = xspi_tx16; xspi->rx_fn = xspi_rx16; } else if (xspi->bits_per_word == 32) { xspi->tx_fn = xspi_tx32; xspi->rx_fn = xspi_rx32; } else goto unmap_io; /* SPI controller initializations */ xspi_init_hw(xspi); /* Register for SPI Interrupt */ ret = request_irq(xspi->irq, xilinx_spi_irq, 0, XILINX_SPI_NAME, xspi); if (ret) goto unmap_io; ret = spi_bitbang_start(&xspi->bitbang); if (ret) { dev_err(dev, "spi_bitbang_start FAILED\n"); goto free_irq; } dev_info(dev, "at 0x%08llX mapped to 0x%p, irq=%d\n", (unsigned long long)mem->start, xspi->regs, xspi->irq); return master; free_irq: free_irq(xspi->irq, xspi); unmap_io: iounmap(xspi->regs); map_failed: release_mem_region(mem->start, resource_size(mem)); put_master: spi_master_put(master); return NULL; } EXPORT_SYMBOL(xilinx_spi_init); void xilinx_spi_deinit(struct spi_master *master) { struct xilinx_spi *xspi; xspi = spi_master_get_devdata(master); spi_bitbang_stop(&xspi->bitbang); free_irq(xspi->irq, xspi); iounmap(xspi->regs); release_mem_region(xspi->mem.start, resource_size(&xspi->mem)); spi_master_put(xspi->bitbang.master); } EXPORT_SYMBOL(xilinx_spi_deinit); static int __devinit xilinx_spi_probe(struct platform_device *dev) { struct xspi_platform_data *pdata; struct resource *r; int irq, num_cs = 0, little_endian = 0, bits_per_word = 8; struct spi_master *master; u8 i; pdata = dev->dev.platform_data; if (pdata) { num_cs = pdata->num_chipselect; little_endian = pdata->little_endian; bits_per_word = pdata->bits_per_word; } #ifdef CONFIG_OF if (dev->dev.of_node) { const __be32 *prop; int len; /* number of slave select bits is required */ prop = of_get_property(dev->dev.of_node, "xlnx,num-ss-bits", &len); if (prop && len >= sizeof(*prop)) num_cs = __be32_to_cpup(prop); } #endif if (!num_cs) { dev_err(&dev->dev, "Missing slave select configuration data\n"); return -EINVAL; } r = platform_get_resource(dev, IORESOURCE_MEM, 0); if (!r) return -ENODEV; irq = platform_get_irq(dev, 0); if (irq < 0) return -ENXIO; master = xilinx_spi_init(&dev->dev, r, irq, dev->id, num_cs, little_endian, bits_per_word); if (!master) return -ENODEV; if (pdata) { for (i = 0; i < pdata->num_devices; i++) spi_new_device(master, pdata->devices + i); } platform_set_drvdata(dev, master); return 0; } static int __devexit xilinx_spi_remove(struct platform_device *dev) { xilinx_spi_deinit(platform_get_drvdata(dev)); platform_set_drvdata(dev, 0); return 0; } /* work with hotplug and coldplug */ MODULE_ALIAS("platform:" XILINX_SPI_NAME); static struct platform_driver xilinx_spi_driver = { .probe = xilinx_spi_probe, .remove = __devexit_p(xilinx_spi_remove), .driver = { .name = XILINX_SPI_NAME, .owner = THIS_MODULE, .of_match_table = xilinx_spi_of_match, }, }; static int __init xilinx_spi_pltfm_init(void) { return platform_driver_register(&xilinx_spi_driver); } module_init(xilinx_spi_pltfm_init); static void __exit xilinx_spi_pltfm_exit(void) { platform_driver_unregister(&xilinx_spi_driver); } module_exit(xilinx_spi_pltfm_exit); MODULE_AUTHOR("MontaVista Software, Inc. <source@mvista.com>"); MODULE_DESCRIPTION("Xilinx SPI driver"); MODULE_LICENSE("GPL");