/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/delay.h> #include <linux/kernel.h> #include <linux/string.h> #include <bcmdefs.h> #include <linux/module.h> #include <linux/pci.h> #include <bcmutils.h> #include <aiutils.h> #include <hndsoc.h> #include <sbchipc.h> #include <pcicfg.h> #include <bcmdevs.h> /* ********** from siutils.c *********** */ #include <pci_core.h> #include <pcie_core.h> #include <nicpci.h> #include <bcmnvram.h> #include <bcmsrom.h> #include <wlc_pmu.h> #define BCM47162_DMP() ((sih->chip == BCM47162_CHIP_ID) && \ (sih->chiprev == 0) && \ (sii->coreid[sii->curidx] == MIPS74K_CORE_ID)) /* EROM parsing */ static u32 get_erom_ent(si_t *sih, u32 **eromptr, u32 mask, u32 match) { u32 ent; uint inv = 0, nom = 0; while (true) { ent = R_REG(*eromptr); (*eromptr)++; if (mask == 0) break; if ((ent & ER_VALID) == 0) { inv++; continue; } if (ent == (ER_END | ER_VALID)) break; if ((ent & mask) == match) break; nom++; } SI_VMSG(("%s: Returning ent 0x%08x\n", __func__, ent)); if (inv + nom) { SI_VMSG((" after %d invalid and %d non-matching entries\n", inv, nom)); } return ent; } static u32 get_asd(si_t *sih, u32 **eromptr, uint sp, uint ad, uint st, u32 *addrl, u32 *addrh, u32 *sizel, u32 *sizeh) { u32 asd, sz, szd; asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID); if (((asd & ER_TAG1) != ER_ADD) || (((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) || ((asd & AD_ST_MASK) != st)) { /* This is not what we want, "push" it back */ (*eromptr)--; return 0; } *addrl = asd & AD_ADDR_MASK; if (asd & AD_AG32) *addrh = get_erom_ent(sih, eromptr, 0, 0); else *addrh = 0; *sizeh = 0; sz = asd & AD_SZ_MASK; if (sz == AD_SZ_SZD) { szd = get_erom_ent(sih, eromptr, 0, 0); *sizel = szd & SD_SZ_MASK; if (szd & SD_SG32) *sizeh = get_erom_ent(sih, eromptr, 0, 0); } else *sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT); SI_VMSG((" SP %d, ad %d: st = %d, 0x%08x_0x%08x @ 0x%08x_0x%08x\n", sp, ad, st, *sizeh, *sizel, *addrh, *addrl)); return asd; } static void ai_hwfixup(si_info_t *sii) { } /* parse the enumeration rom to identify all cores */ void ai_scan(si_t *sih, void *regs, uint devid) { si_info_t *sii = SI_INFO(sih); chipcregs_t *cc = (chipcregs_t *) regs; u32 erombase, *eromptr, *eromlim; erombase = R_REG(&cc->eromptr); switch (sih->bustype) { case SI_BUS: eromptr = (u32 *) REG_MAP(erombase, SI_CORE_SIZE); break; case PCI_BUS: /* Set wrappers address */ sii->curwrap = (void *)((unsigned long)regs + SI_CORE_SIZE); /* Now point the window at the erom */ pci_write_config_dword(sii->pbus, PCI_BAR0_WIN, erombase); eromptr = regs; break; case SPI_BUS: case SDIO_BUS: eromptr = (u32 *)(unsigned long)erombase; break; default: SI_ERROR(("Don't know how to do AXI enumertion on bus %d\n", sih->bustype)); return; } eromlim = eromptr + (ER_REMAPCONTROL / sizeof(u32)); SI_VMSG(("ai_scan: regs = 0x%p, erombase = 0x%08x, eromptr = 0x%p, eromlim = 0x%p\n", regs, erombase, eromptr, eromlim)); while (eromptr < eromlim) { u32 cia, cib, cid, mfg, crev, nmw, nsw, nmp, nsp; u32 mpd, asd, addrl, addrh, sizel, sizeh; u32 *base; uint i, j, idx; bool br; br = false; /* Grok a component */ cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI); if (cia == (ER_END | ER_VALID)) { SI_VMSG(("Found END of erom after %d cores\n", sii->numcores)); ai_hwfixup(sii); return; } base = eromptr - 1; cib = get_erom_ent(sih, &eromptr, 0, 0); if ((cib & ER_TAG) != ER_CI) { SI_ERROR(("CIA not followed by CIB\n")); goto error; } cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT; mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT; crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT; nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT; nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT; nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT; nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT; SI_VMSG(("Found component 0x%04x/0x%04x rev %d at erom addr 0x%p, with nmw = %d, " "nsw = %d, nmp = %d & nsp = %d\n", mfg, cid, crev, base, nmw, nsw, nmp, nsp)); if (((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) || (nsp == 0)) continue; if ((nmw + nsw == 0)) { /* A component which is not a core */ if (cid == OOB_ROUTER_CORE_ID) { asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); if (asd != 0) { sii->oob_router = addrl; } } continue; } idx = sii->numcores; /* sii->eromptr[idx] = base; */ sii->cia[idx] = cia; sii->cib[idx] = cib; sii->coreid[idx] = cid; for (i = 0; i < nmp; i++) { mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID); if ((mpd & ER_TAG) != ER_MP) { SI_ERROR(("Not enough MP entries for component 0x%x\n", cid)); goto error; } SI_VMSG((" Master port %d, mp: %d id: %d\n", i, (mpd & MPD_MP_MASK) >> MPD_MP_SHIFT, (mpd & MPD_MUI_MASK) >> MPD_MUI_SHIFT)); } /* First Slave Address Descriptor should be port 0: * the main register space for the core */ asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); if (asd == 0) { /* Try again to see if it is a bridge */ asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh, &sizel, &sizeh); if (asd != 0) br = true; else if ((addrh != 0) || (sizeh != 0) || (sizel != SI_CORE_SIZE)) { SI_ERROR(("First Slave ASD for core 0x%04x malformed " "(0x%08x)\n", cid, asd)); goto error; } } sii->coresba[idx] = addrl; sii->coresba_size[idx] = sizel; /* Get any more ASDs in port 0 */ j = 1; do { asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE)) { sii->coresba2[idx] = addrl; sii->coresba2_size[idx] = sizel; } j++; } while (asd != 0); /* Go through the ASDs for other slave ports */ for (i = 1; i < nsp; i++) { j = 0; do { asd = get_asd(sih, &eromptr, i, j++, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); } while (asd != 0); if (j == 0) { SI_ERROR((" SP %d has no address descriptors\n", i)); goto error; } } /* Now get master wrappers */ for (i = 0; i < nmw; i++) { asd = get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl, &addrh, &sizel, &sizeh); if (asd == 0) { SI_ERROR(("Missing descriptor for MW %d\n", i)); goto error; } if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) { SI_ERROR(("Master wrapper %d is not 4KB\n", i)); goto error; } if (i == 0) sii->wrapba[idx] = addrl; } /* And finally slave wrappers */ for (i = 0; i < nsw; i++) { uint fwp = (nsp == 1) ? 0 : 1; asd = get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP, &addrl, &addrh, &sizel, &sizeh); if (asd == 0) { SI_ERROR(("Missing descriptor for SW %d\n", i)); goto error; } if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) { SI_ERROR(("Slave wrapper %d is not 4KB\n", i)); goto error; } if ((nmw == 0) && (i == 0)) sii->wrapba[idx] = addrl; } /* Don't record bridges */ if (br) continue; /* Done with core */ sii->numcores++; } SI_ERROR(("Reached end of erom without finding END")); error: sii->numcores = 0; return; } /* This function changes the logical "focus" to the indicated core. * Return the current core's virtual address. */ void *ai_setcoreidx(si_t *sih, uint coreidx) { si_info_t *sii = SI_INFO(sih); u32 addr = sii->coresba[coreidx]; u32 wrap = sii->wrapba[coreidx]; void *regs; if (coreidx >= sii->numcores) return NULL; switch (sih->bustype) { case SI_BUS: /* map new one */ if (!sii->regs[coreidx]) { sii->regs[coreidx] = REG_MAP(addr, SI_CORE_SIZE); } sii->curmap = regs = sii->regs[coreidx]; if (!sii->wrappers[coreidx]) { sii->wrappers[coreidx] = REG_MAP(wrap, SI_CORE_SIZE); } sii->curwrap = sii->wrappers[coreidx]; break; case PCI_BUS: /* point bar0 window */ pci_write_config_dword(sii->pbus, PCI_BAR0_WIN, addr); regs = sii->curmap; /* point bar0 2nd 4KB window */ pci_write_config_dword(sii->pbus, PCI_BAR0_WIN2, wrap); break; case SPI_BUS: case SDIO_BUS: sii->curmap = regs = (void *)(unsigned long)addr; sii->curwrap = (void *)(unsigned long)wrap; break; default: regs = NULL; break; } sii->curmap = regs; sii->curidx = coreidx; return regs; } /* Return the number of address spaces in current core */ int ai_numaddrspaces(si_t *sih) { return 2; } /* Return the address of the nth address space in the current core */ u32 ai_addrspace(si_t *sih, uint asidx) { si_info_t *sii; uint cidx; sii = SI_INFO(sih); cidx = sii->curidx; if (asidx == 0) return sii->coresba[cidx]; else if (asidx == 1) return sii->coresba2[cidx]; else { SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n", __func__, asidx)); return 0; } } /* Return the size of the nth address space in the current core */ u32 ai_addrspacesize(si_t *sih, uint asidx) { si_info_t *sii; uint cidx; sii = SI_INFO(sih); cidx = sii->curidx; if (asidx == 0) return sii->coresba_size[cidx]; else if (asidx == 1) return sii->coresba2_size[cidx]; else { SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n", __func__, asidx)); return 0; } } uint ai_flag(si_t *sih) { si_info_t *sii; aidmp_t *ai; sii = SI_INFO(sih); if (BCM47162_DMP()) { SI_ERROR(("%s: Attempting to read MIPS DMP registers on 47162a0", __func__)); return sii->curidx; } ai = sii->curwrap; return R_REG(&ai->oobselouta30) & 0x1f; } void ai_setint(si_t *sih, int siflag) { } uint ai_corevendor(si_t *sih) { si_info_t *sii; u32 cia; sii = SI_INFO(sih); cia = sii->cia[sii->curidx]; return (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT; } uint ai_corerev(si_t *sih) { si_info_t *sii; u32 cib; sii = SI_INFO(sih); cib = sii->cib[sii->curidx]; return (cib & CIB_REV_MASK) >> CIB_REV_SHIFT; } bool ai_iscoreup(si_t *sih) { si_info_t *sii; aidmp_t *ai; sii = SI_INFO(sih); ai = sii->curwrap; return (((R_REG(&ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) && ((R_REG(&ai->resetctrl) & AIRC_RESET) == 0)); } void ai_core_cflags_wo(si_t *sih, u32 mask, u32 val) { si_info_t *sii; aidmp_t *ai; u32 w; sii = SI_INFO(sih); if (BCM47162_DMP()) { SI_ERROR(("%s: Accessing MIPS DMP register (ioctrl) on 47162a0", __func__)); return; } ai = sii->curwrap; if (mask || val) { w = ((R_REG(&ai->ioctrl) & ~mask) | val); W_REG(&ai->ioctrl, w); } } u32 ai_core_cflags(si_t *sih, u32 mask, u32 val) { si_info_t *sii; aidmp_t *ai; u32 w; sii = SI_INFO(sih); if (BCM47162_DMP()) { SI_ERROR(("%s: Accessing MIPS DMP register (ioctrl) on 47162a0", __func__)); return 0; } ai = sii->curwrap; if (mask || val) { w = ((R_REG(&ai->ioctrl) & ~mask) | val); W_REG(&ai->ioctrl, w); } return R_REG(&ai->ioctrl); } u32 ai_core_sflags(si_t *sih, u32 mask, u32 val) { si_info_t *sii; aidmp_t *ai; u32 w; sii = SI_INFO(sih); if (BCM47162_DMP()) { SI_ERROR(("%s: Accessing MIPS DMP register (iostatus) on 47162a0", __func__)); return 0; } ai = sii->curwrap; if (mask || val) { w = ((R_REG(&ai->iostatus) & ~mask) | val); W_REG(&ai->iostatus, w); } return R_REG(&ai->iostatus); } /* *************** from siutils.c ************** */ /* local prototypes */ static si_info_t *ai_doattach(si_info_t *sii, uint devid, void *regs, uint bustype, void *sdh, char **vars, uint *varsz); static bool ai_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh); static bool ai_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, u32 savewin, uint *origidx, void *regs); static void ai_nvram_process(si_info_t *sii, char *pvars); /* dev path concatenation util */ static char *ai_devpathvar(si_t *sih, char *var, int len, const char *name); static bool _ai_clkctl_cc(si_info_t *sii, uint mode); static bool ai_ispcie(si_info_t *sii); /* global variable to indicate reservation/release of gpio's */ static u32 ai_gpioreservation; /* * Allocate a si handle. * devid - pci device id (used to determine chip#) * osh - opaque OS handle * regs - virtual address of initial core registers * bustype - pci/sb/sdio/etc * vars - pointer to a pointer area for "environment" variables * varsz - pointer to int to return the size of the vars */ si_t *ai_attach(uint devid, void *regs, uint bustype, void *sdh, char **vars, uint *varsz) { si_info_t *sii; /* alloc si_info_t */ sii = kmalloc(sizeof(si_info_t), GFP_ATOMIC); if (sii == NULL) { SI_ERROR(("si_attach: malloc failed!\n")); return NULL; } if (ai_doattach(sii, devid, regs, bustype, sdh, vars, varsz) == NULL) { kfree(sii); return NULL; } sii->vars = vars ? *vars : NULL; sii->varsz = varsz ? *varsz : 0; return (si_t *) sii; } /* global kernel resource */ static si_info_t ksii; static bool ai_buscore_prep(si_info_t *sii, uint bustype, uint devid, void *sdh) { /* kludge to enable the clock on the 4306 which lacks a slowclock */ if (bustype == PCI_BUS && !ai_ispcie(sii)) ai_clkctl_xtal(&sii->pub, XTAL | PLL, ON); return true; } static bool ai_buscore_setup(si_info_t *sii, chipcregs_t *cc, uint bustype, u32 savewin, uint *origidx, void *regs) { bool pci, pcie; uint i; uint pciidx, pcieidx, pcirev, pcierev; cc = ai_setcoreidx(&sii->pub, SI_CC_IDX); /* get chipcommon rev */ sii->pub.ccrev = (int)ai_corerev(&sii->pub); /* get chipcommon chipstatus */ if (sii->pub.ccrev >= 11) sii->pub.chipst = R_REG(&cc->chipstatus); /* get chipcommon capabilites */ sii->pub.cccaps = R_REG(&cc->capabilities); /* get chipcommon extended capabilities */ if (sii->pub.ccrev >= 35) sii->pub.cccaps_ext = R_REG(&cc->capabilities_ext); /* get pmu rev and caps */ if (sii->pub.cccaps & CC_CAP_PMU) { sii->pub.pmucaps = R_REG(&cc->pmucapabilities); sii->pub.pmurev = sii->pub.pmucaps & PCAP_REV_MASK; } /* figure out bus/orignal core idx */ sii->pub.buscoretype = NODEV_CORE_ID; sii->pub.buscorerev = NOREV; sii->pub.buscoreidx = BADIDX; pci = pcie = false; pcirev = pcierev = NOREV; pciidx = pcieidx = BADIDX; for (i = 0; i < sii->numcores; i++) { uint cid, crev; ai_setcoreidx(&sii->pub, i); cid = ai_coreid(&sii->pub); crev = ai_corerev(&sii->pub); /* Display cores found */ SI_VMSG(("CORE[%d]: id 0x%x rev %d base 0x%x regs 0x%p\n", i, cid, crev, sii->coresba[i], sii->regs[i])); if (bustype == PCI_BUS) { if (cid == PCI_CORE_ID) { pciidx = i; pcirev = crev; pci = true; } else if (cid == PCIE_CORE_ID) { pcieidx = i; pcierev = crev; pcie = true; } } /* find the core idx before entering this func. */ if ((savewin && (savewin == sii->coresba[i])) || (regs == sii->regs[i])) *origidx = i; } if (pci && pcie) { if (ai_ispcie(sii)) pci = false; else pcie = false; } if (pci) { sii->pub.buscoretype = PCI_CORE_ID; sii->pub.buscorerev = pcirev; sii->pub.buscoreidx = pciidx; } else if (pcie) { sii->pub.buscoretype = PCIE_CORE_ID; sii->pub.buscorerev = pcierev; sii->pub.buscoreidx = pcieidx; } SI_VMSG(("Buscore id/type/rev %d/0x%x/%d\n", sii->pub.buscoreidx, sii->pub.buscoretype, sii->pub.buscorerev)); /* fixup necessary chip/core configurations */ if (sii->pub.bustype == PCI_BUS) { if (SI_FAST(sii)) { if (!sii->pch) { sii->pch = (void *)pcicore_init( &sii->pub, sii->pbus, (void *)PCIEREGS(sii)); if (sii->pch == NULL) return false; } } if (ai_pci_fixcfg(&sii->pub)) { SI_ERROR(("si_doattach: si_pci_fixcfg failed\n")); return false; } } /* return to the original core */ ai_setcoreidx(&sii->pub, *origidx); return true; } static __used void ai_nvram_process(si_info_t *sii, char *pvars) { uint w = 0; /* get boardtype and boardrev */ switch (sii->pub.bustype) { case PCI_BUS: /* do a pci config read to get subsystem id and subvendor id */ pci_read_config_dword(sii->pbus, PCI_SUBSYSTEM_VENDOR_ID, &w); /* Let nvram variables override subsystem Vend/ID */ sii->pub.boardvendor = (u16)ai_getdevpathintvar(&sii->pub, "boardvendor"); if (sii->pub.boardvendor == 0) sii->pub.boardvendor = w & 0xffff; else SI_ERROR(("Overriding boardvendor: 0x%x instead of " "0x%x\n", sii->pub.boardvendor, w & 0xffff)); sii->pub.boardtype = (u16)ai_getdevpathintvar(&sii->pub, "boardtype"); if (sii->pub.boardtype == 0) sii->pub.boardtype = (w >> 16) & 0xffff; else SI_ERROR(("Overriding boardtype: 0x%x instead of 0x%x\n" , sii->pub.boardtype, (w >> 16) & 0xffff)); break; sii->pub.boardvendor = getintvar(pvars, "manfid"); sii->pub.boardtype = getintvar(pvars, "prodid"); break; case SI_BUS: case JTAG_BUS: sii->pub.boardvendor = PCI_VENDOR_ID_BROADCOM; sii->pub.boardtype = getintvar(pvars, "prodid"); if (pvars == NULL || (sii->pub.boardtype == 0)) { sii->pub.boardtype = getintvar(NULL, "boardtype"); if (sii->pub.boardtype == 0) sii->pub.boardtype = 0xffff; } break; } if (sii->pub.boardtype == 0) { SI_ERROR(("si_doattach: unknown board type\n")); } sii->pub.boardflags = getintvar(pvars, "boardflags"); } static si_info_t *ai_doattach(si_info_t *sii, uint devid, void *regs, uint bustype, void *pbus, char **vars, uint *varsz) { struct si_pub *sih = &sii->pub; u32 w, savewin; chipcregs_t *cc; char *pvars = NULL; uint socitype; uint origidx; memset((unsigned char *) sii, 0, sizeof(si_info_t)); savewin = 0; sih->buscoreidx = BADIDX; sii->curmap = regs; sii->pbus = pbus; /* check to see if we are a si core mimic'ing a pci core */ if (bustype == PCI_BUS) { pci_read_config_dword(sii->pbus, PCI_SPROM_CONTROL, &w); if (w == 0xffffffff) { SI_ERROR(("%s: incoming bus is PCI but it's a lie, " " switching to SI devid:0x%x\n", __func__, devid)); bustype = SI_BUS; } } /* find Chipcommon address */ if (bustype == PCI_BUS) { pci_read_config_dword(sii->pbus, PCI_BAR0_WIN, &savewin); if (!GOODCOREADDR(savewin, SI_ENUM_BASE)) savewin = SI_ENUM_BASE; pci_write_config_dword(sii->pbus, PCI_BAR0_WIN, SI_ENUM_BASE); cc = (chipcregs_t *) regs; } else { cc = (chipcregs_t *) REG_MAP(SI_ENUM_BASE, SI_CORE_SIZE); } sih->bustype = bustype; /* bus/core/clk setup for register access */ if (!ai_buscore_prep(sii, bustype, devid, pbus)) { SI_ERROR(("si_doattach: si_core_clk_prep failed %d\n", bustype)); return NULL; } /* * ChipID recognition. * We assume we can read chipid at offset 0 from the regs arg. * If we add other chiptypes (or if we need to support old sdio * hosts w/o chipcommon), some way of recognizing them needs to * be added here. */ w = R_REG(&cc->chipid); socitype = (w & CID_TYPE_MASK) >> CID_TYPE_SHIFT; /* Might as wll fill in chip id rev & pkg */ sih->chip = w & CID_ID_MASK; sih->chiprev = (w & CID_REV_MASK) >> CID_REV_SHIFT; sih->chippkg = (w & CID_PKG_MASK) >> CID_PKG_SHIFT; sih->issim = IS_SIM(sih->chippkg); /* scan for cores */ if (socitype == SOCI_AI) { SI_MSG(("Found chip type AI (0x%08x)\n", w)); /* pass chipc address instead of original core base */ ai_scan(&sii->pub, (void *)cc, devid); } else { SI_ERROR(("Found chip of unknown type (0x%08x)\n", w)); return NULL; } /* no cores found, bail out */ if (sii->numcores == 0) { SI_ERROR(("si_doattach: could not find any cores\n")); return NULL; } /* bus/core/clk setup */ origidx = SI_CC_IDX; if (!ai_buscore_setup(sii, cc, bustype, savewin, &origidx, regs)) { SI_ERROR(("si_doattach: si_buscore_setup failed\n")); goto exit; } /* assume current core is CC */ if ((sii->pub.ccrev == 0x25) && ((sih->chip == BCM43236_CHIP_ID || sih->chip == BCM43235_CHIP_ID || sih->chip == BCM43238_CHIP_ID) && (sii->pub.chiprev <= 2))) { if ((cc->chipstatus & CST43236_BP_CLK) != 0) { uint clkdiv; clkdiv = R_REG(&cc->clkdiv); /* otp_clk_div is even number, 120/14 < 9mhz */ clkdiv = (clkdiv & ~CLKD_OTP) | (14 << CLKD_OTP_SHIFT); W_REG(&cc->clkdiv, clkdiv); SI_ERROR(("%s: set clkdiv to %x\n", __func__, clkdiv)); } udelay(10); } /* Init nvram from flash if it exists */ nvram_init(); /* Init nvram from sprom/otp if they exist */ if (srom_var_init (&sii->pub, bustype, regs, vars, varsz)) { SI_ERROR(("si_doattach: srom_var_init failed: bad srom\n")); goto exit; } pvars = vars ? *vars : NULL; ai_nvram_process(sii, pvars); /* === NVRAM, clock is ready === */ cc = (chipcregs_t *) ai_setcore(sih, CC_CORE_ID, 0); W_REG(&cc->gpiopullup, 0); W_REG(&cc->gpiopulldown, 0); ai_setcoreidx(sih, origidx); /* PMU specific initializations */ if (PMUCTL_ENAB(sih)) { u32 xtalfreq; si_pmu_init(sih); si_pmu_chip_init(sih); xtalfreq = getintvar(pvars, "xtalfreq"); /* If xtalfreq var not available, try to measure it */ if (xtalfreq == 0) xtalfreq = si_pmu_measure_alpclk(sih); si_pmu_pll_init(sih, xtalfreq); si_pmu_res_init(sih); si_pmu_swreg_init(sih); } /* setup the GPIO based LED powersave register */ w = getintvar(pvars, "leddc"); if (w == 0) w = DEFAULT_GPIOTIMERVAL; ai_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, gpiotimerval), ~0, w); if (PCIE(sii)) { pcicore_attach(sii->pch, pvars, SI_DOATTACH); } if ((sih->chip == BCM43224_CHIP_ID) || (sih->chip == BCM43421_CHIP_ID)) { /* * enable 12 mA drive strenth for 43224 and * set chipControl register bit 15 */ if (sih->chiprev == 0) { SI_MSG(("Applying 43224A0 WARs\n")); ai_corereg(sih, SI_CC_IDX, offsetof(chipcregs_t, chipcontrol), CCTRL43224_GPIO_TOGGLE, CCTRL43224_GPIO_TOGGLE); si_pmu_chipcontrol(sih, 0, CCTRL_43224A0_12MA_LED_DRIVE, CCTRL_43224A0_12MA_LED_DRIVE); } if (sih->chiprev >= 1) { SI_MSG(("Applying 43224B0+ WARs\n")); si_pmu_chipcontrol(sih, 0, CCTRL_43224B0_12MA_LED_DRIVE, CCTRL_43224B0_12MA_LED_DRIVE); } } if (sih->chip == BCM4313_CHIP_ID) { /* * enable 12 mA drive strenth for 4313 and * set chipControl register bit 1 */ SI_MSG(("Applying 4313 WARs\n")); si_pmu_chipcontrol(sih, 0, CCTRL_4313_12MA_LED_DRIVE, CCTRL_4313_12MA_LED_DRIVE); } if (sih->chip == BCM4331_CHIP_ID) { /* Enable Ext PA lines depending on chip package option */ ai_chipcontrl_epa4331(sih, true); } return sii; exit: if (sih->bustype == PCI_BUS) { if (sii->pch) pcicore_deinit(sii->pch); sii->pch = NULL; } return NULL; } /* may be called with core in reset */ void ai_detach(si_t *sih) { si_info_t *sii; uint idx; struct si_pub *si_local = NULL; bcopy(&sih, &si_local, sizeof(si_t **)); sii = SI_INFO(sih); if (sii == NULL) return; if (sih->bustype == SI_BUS) for (idx = 0; idx < SI_MAXCORES; idx++) if (sii->regs[idx]) { iounmap(sii->regs[idx]); sii->regs[idx] = NULL; } nvram_exit(); /* free up nvram buffers */ if (sih->bustype == PCI_BUS) { if (sii->pch) pcicore_deinit(sii->pch); sii->pch = NULL; } if (sii != &ksii) kfree(sii); } /* register driver interrupt disabling and restoring callback functions */ void ai_register_intr_callback(si_t *sih, void *intrsoff_fn, void *intrsrestore_fn, void *intrsenabled_fn, void *intr_arg) { si_info_t *sii; sii = SI_INFO(sih); sii->intr_arg = intr_arg; sii->intrsoff_fn = (si_intrsoff_t) intrsoff_fn; sii->intrsrestore_fn = (si_intrsrestore_t) intrsrestore_fn; sii->intrsenabled_fn = (si_intrsenabled_t) intrsenabled_fn; /* save current core id. when this function called, the current core * must be the core which provides driver functions(il, et, wl, etc.) */ sii->dev_coreid = sii->coreid[sii->curidx]; } void ai_deregister_intr_callback(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); sii->intrsoff_fn = NULL; } uint ai_coreid(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); return sii->coreid[sii->curidx]; } uint ai_coreidx(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); return sii->curidx; } bool ai_backplane64(si_t *sih) { return (sih->cccaps & CC_CAP_BKPLN64) != 0; } /* return index of coreid or BADIDX if not found */ uint ai_findcoreidx(si_t *sih, uint coreid, uint coreunit) { si_info_t *sii; uint found; uint i; sii = SI_INFO(sih); found = 0; for (i = 0; i < sii->numcores; i++) if (sii->coreid[i] == coreid) { if (found == coreunit) return i; found++; } return BADIDX; } /* * This function changes logical "focus" to the indicated core; * must be called with interrupts off. * Moreover, callers should keep interrupts off during switching * out of and back to d11 core. */ void *ai_setcore(si_t *sih, uint coreid, uint coreunit) { uint idx; idx = ai_findcoreidx(sih, coreid, coreunit); if (!GOODIDX(idx)) return NULL; return ai_setcoreidx(sih, idx); } /* Turn off interrupt as required by ai_setcore, before switch core */ void *ai_switch_core(si_t *sih, uint coreid, uint *origidx, uint *intr_val) { void *cc; si_info_t *sii; sii = SI_INFO(sih); if (SI_FAST(sii)) { /* Overloading the origidx variable to remember the coreid, * this works because the core ids cannot be confused with * core indices. */ *origidx = coreid; if (coreid == CC_CORE_ID) return (void *)CCREGS_FAST(sii); else if (coreid == sih->buscoretype) return (void *)PCIEREGS(sii); } INTR_OFF(sii, *intr_val); *origidx = sii->curidx; cc = ai_setcore(sih, coreid, 0); return cc; } /* restore coreidx and restore interrupt */ void ai_restore_core(si_t *sih, uint coreid, uint intr_val) { si_info_t *sii; sii = SI_INFO(sih); if (SI_FAST(sii) && ((coreid == CC_CORE_ID) || (coreid == sih->buscoretype))) return; ai_setcoreidx(sih, coreid); INTR_RESTORE(sii, intr_val); } void ai_write_wrapperreg(si_t *sih, u32 offset, u32 val) { si_info_t *sii = SI_INFO(sih); u32 *w = (u32 *) sii->curwrap; W_REG(w + (offset / 4), val); return; } /* * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set * operation, switch back to the original core, and return the new value. * * When using the silicon backplane, no fiddling with interrupts or core * switches is needed. * * Also, when using pci/pcie, we can optimize away the core switching for pci * registers and (on newer pci cores) chipcommon registers. */ uint ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) { uint origidx = 0; u32 *r = NULL; uint w; uint intr_val = 0; bool fast = false; si_info_t *sii; sii = SI_INFO(sih); if (coreidx >= SI_MAXCORES) return 0; if (sih->bustype == SI_BUS) { /* If internal bus, we can always get at everything */ fast = true; /* map if does not exist */ if (!sii->regs[coreidx]) { sii->regs[coreidx] = REG_MAP(sii->coresba[coreidx], SI_CORE_SIZE); } r = (u32 *) ((unsigned char *) sii->regs[coreidx] + regoff); } else if (sih->bustype == PCI_BUS) { /* * If pci/pcie, we can get at pci/pcie regs * and on newer cores to chipc */ if ((sii->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { /* Chipc registers are mapped at 12KB */ fast = true; r = (u32 *) ((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); } else if (sii->pub.buscoreidx == coreidx) { /* * pci registers are at either in the last 2KB of * an 8KB window or, in pcie and pci rev 13 at 8KB */ fast = true; if (SI_FAST(sii)) r = (u32 *) ((char *)sii->curmap + PCI_16KB0_PCIREGS_OFFSET + regoff); else r = (u32 *) ((char *)sii->curmap + ((regoff >= SBCONFIGOFF) ? PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + regoff); } } if (!fast) { INTR_OFF(sii, intr_val); /* save current core index */ origidx = ai_coreidx(&sii->pub); /* switch core */ r = (u32 *) ((unsigned char *) ai_setcoreidx(&sii->pub, coreidx) + regoff); } /* mask and set */ if (mask || val) { w = (R_REG(r) & ~mask) | val; W_REG(r, w); } /* readback */ w = R_REG(r); if (!fast) { /* restore core index */ if (origidx != coreidx) ai_setcoreidx(&sii->pub, origidx); INTR_RESTORE(sii, intr_val); } return w; } void ai_core_disable(si_t *sih, u32 bits) { si_info_t *sii; u32 dummy; aidmp_t *ai; sii = SI_INFO(sih); ai = sii->curwrap; /* if core is already in reset, just return */ if (R_REG(&ai->resetctrl) & AIRC_RESET) return; W_REG(&ai->ioctrl, bits); dummy = R_REG(&ai->ioctrl); udelay(10); W_REG(&ai->resetctrl, AIRC_RESET); udelay(1); } /* reset and re-enable a core * inputs: * bits - core specific bits that are set during and after reset sequence * resetbits - core specific bits that are set only during reset sequence */ void ai_core_reset(si_t *sih, u32 bits, u32 resetbits) { si_info_t *sii; aidmp_t *ai; u32 dummy; sii = SI_INFO(sih); ai = sii->curwrap; /* * Must do the disable sequence first to work * for arbitrary current core state. */ ai_core_disable(sih, (bits | resetbits)); /* * Now do the initialization sequence. */ W_REG(&ai->ioctrl, (bits | SICF_FGC | SICF_CLOCK_EN)); dummy = R_REG(&ai->ioctrl); W_REG(&ai->resetctrl, 0); udelay(1); W_REG(&ai->ioctrl, (bits | SICF_CLOCK_EN)); dummy = R_REG(&ai->ioctrl); udelay(1); } /* return the slow clock source - LPO, XTAL, or PCI */ static uint ai_slowclk_src(si_info_t *sii) { chipcregs_t *cc; u32 val; if (sii->pub.ccrev < 6) { if (sii->pub.bustype == PCI_BUS) { pci_read_config_dword(sii->pbus, PCI_GPIO_OUT, &val); if (val & PCI_CFG_GPIO_SCS) return SCC_SS_PCI; } return SCC_SS_XTAL; } else if (sii->pub.ccrev < 10) { cc = (chipcregs_t *) ai_setcoreidx(&sii->pub, sii->curidx); return R_REG(&cc->slow_clk_ctl) & SCC_SS_MASK; } else /* Insta-clock */ return SCC_SS_XTAL; } /* * return the ILP (slowclock) min or max frequency * precondition: we've established the chip has dynamic clk control */ static uint ai_slowclk_freq(si_info_t *sii, bool max_freq, chipcregs_t *cc) { u32 slowclk; uint div; slowclk = ai_slowclk_src(sii); if (sii->pub.ccrev < 6) { if (slowclk == SCC_SS_PCI) return max_freq ? (PCIMAXFREQ / 64) : (PCIMINFREQ / 64); else return max_freq ? (XTALMAXFREQ / 32) : (XTALMINFREQ / 32); } else if (sii->pub.ccrev < 10) { div = 4 * (((R_REG(&cc->slow_clk_ctl) & SCC_CD_MASK) >> SCC_CD_SHIFT) + 1); if (slowclk == SCC_SS_LPO) return max_freq ? LPOMAXFREQ : LPOMINFREQ; else if (slowclk == SCC_SS_XTAL) return max_freq ? (XTALMAXFREQ / div) : (XTALMINFREQ / div); else if (slowclk == SCC_SS_PCI) return max_freq ? (PCIMAXFREQ / div) : (PCIMINFREQ / div); } else { /* Chipc rev 10 is InstaClock */ div = R_REG(&cc->system_clk_ctl) >> SYCC_CD_SHIFT; div = 4 * (div + 1); return max_freq ? XTALMAXFREQ : (XTALMINFREQ / div); } return 0; } static void ai_clkctl_setdelay(si_info_t *sii, void *chipcregs) { chipcregs_t *cc = (chipcregs_t *) chipcregs; uint slowmaxfreq, pll_delay, slowclk; uint pll_on_delay, fref_sel_delay; pll_delay = PLL_DELAY; /* * If the slow clock is not sourced by the xtal then * add the xtal_on_delay since the xtal will also be * powered down by dynamic clk control logic. */ slowclk = ai_slowclk_src(sii); if (slowclk != SCC_SS_XTAL) pll_delay += XTAL_ON_DELAY; /* Starting with 4318 it is ILP that is used for the delays */ slowmaxfreq = ai_slowclk_freq(sii, (sii->pub.ccrev >= 10) ? false : true, cc); pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000; fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000; W_REG(&cc->pll_on_delay, pll_on_delay); W_REG(&cc->fref_sel_delay, fref_sel_delay); } /* initialize power control delay registers */ void ai_clkctl_init(si_t *sih) { si_info_t *sii; uint origidx = 0; chipcregs_t *cc; bool fast; if (!CCCTL_ENAB(sih)) return; sii = SI_INFO(sih); fast = SI_FAST(sii); if (!fast) { origidx = sii->curidx; cc = (chipcregs_t *) ai_setcore(sih, CC_CORE_ID, 0); if (cc == NULL) return; } else { cc = (chipcregs_t *) CCREGS_FAST(sii); if (cc == NULL) return; } /* set all Instaclk chip ILP to 1 MHz */ if (sih->ccrev >= 10) SET_REG(&cc->system_clk_ctl, SYCC_CD_MASK, (ILP_DIV_1MHZ << SYCC_CD_SHIFT)); ai_clkctl_setdelay(sii, (void *)cc); if (!fast) ai_setcoreidx(sih, origidx); } /* * return the value suitable for writing to the * dot11 core FAST_PWRUP_DELAY register */ u16 ai_clkctl_fast_pwrup_delay(si_t *sih) { si_info_t *sii; uint origidx = 0; chipcregs_t *cc; uint slowminfreq; u16 fpdelay; uint intr_val = 0; bool fast; sii = SI_INFO(sih); if (PMUCTL_ENAB(sih)) { INTR_OFF(sii, intr_val); fpdelay = si_pmu_fast_pwrup_delay(sih); INTR_RESTORE(sii, intr_val); return fpdelay; } if (!CCCTL_ENAB(sih)) return 0; fast = SI_FAST(sii); fpdelay = 0; if (!fast) { origidx = sii->curidx; INTR_OFF(sii, intr_val); cc = (chipcregs_t *) ai_setcore(sih, CC_CORE_ID, 0); if (cc == NULL) goto done; } else { cc = (chipcregs_t *) CCREGS_FAST(sii); if (cc == NULL) goto done; } slowminfreq = ai_slowclk_freq(sii, false, cc); fpdelay = (((R_REG(&cc->pll_on_delay) + 2) * 1000000) + (slowminfreq - 1)) / slowminfreq; done: if (!fast) { ai_setcoreidx(sih, origidx); INTR_RESTORE(sii, intr_val); } return fpdelay; } /* turn primary xtal and/or pll off/on */ int ai_clkctl_xtal(si_t *sih, uint what, bool on) { si_info_t *sii; u32 in, out, outen; sii = SI_INFO(sih); switch (sih->bustype) { case PCI_BUS: /* pcie core doesn't have any mapping to control the xtal pu */ if (PCIE(sii)) return -1; pci_read_config_dword(sii->pbus, PCI_GPIO_IN, &in); pci_read_config_dword(sii->pbus, PCI_GPIO_OUT, &out); pci_read_config_dword(sii->pbus, PCI_GPIO_OUTEN, &outen); /* * Avoid glitching the clock if GPRS is already using it. * We can't actually read the state of the PLLPD so we infer it * by the value of XTAL_PU which *is* readable via gpioin. */ if (on && (in & PCI_CFG_GPIO_XTAL)) return 0; if (what & XTAL) outen |= PCI_CFG_GPIO_XTAL; if (what & PLL) outen |= PCI_CFG_GPIO_PLL; if (on) { /* turn primary xtal on */ if (what & XTAL) { out |= PCI_CFG_GPIO_XTAL; if (what & PLL) out |= PCI_CFG_GPIO_PLL; pci_write_config_dword(sii->pbus, PCI_GPIO_OUT, out); pci_write_config_dword(sii->pbus, PCI_GPIO_OUTEN, outen); udelay(XTAL_ON_DELAY); } /* turn pll on */ if (what & PLL) { out &= ~PCI_CFG_GPIO_PLL; pci_write_config_dword(sii->pbus, PCI_GPIO_OUT, out); mdelay(2); } } else { if (what & XTAL) out &= ~PCI_CFG_GPIO_XTAL; if (what & PLL) out |= PCI_CFG_GPIO_PLL; pci_write_config_dword(sii->pbus, PCI_GPIO_OUT, out); pci_write_config_dword(sii->pbus, PCI_GPIO_OUTEN, outen); } default: return -1; } return 0; } /* * clock control policy function throught chipcommon * * set dynamic clk control mode (forceslow, forcefast, dynamic) * returns true if we are forcing fast clock * this is a wrapper over the next internal function * to allow flexible policy settings for outside caller */ bool ai_clkctl_cc(si_t *sih, uint mode) { si_info_t *sii; sii = SI_INFO(sih); /* chipcommon cores prior to rev6 don't support dynamic clock control */ if (sih->ccrev < 6) return false; if (PCI_FORCEHT(sii)) return mode == CLK_FAST; return _ai_clkctl_cc(sii, mode); } /* clk control mechanism through chipcommon, no policy checking */ static bool _ai_clkctl_cc(si_info_t *sii, uint mode) { uint origidx = 0; chipcregs_t *cc; u32 scc; uint intr_val = 0; bool fast = SI_FAST(sii); /* chipcommon cores prior to rev6 don't support dynamic clock control */ if (sii->pub.ccrev < 6) return false; if (!fast) { INTR_OFF(sii, intr_val); origidx = sii->curidx; if ((sii->pub.bustype == SI_BUS) && ai_setcore(&sii->pub, MIPS33_CORE_ID, 0) && (ai_corerev(&sii->pub) <= 7) && (sii->pub.ccrev >= 10)) goto done; cc = (chipcregs_t *) ai_setcore(&sii->pub, CC_CORE_ID, 0); } else { cc = (chipcregs_t *) CCREGS_FAST(sii); if (cc == NULL) goto done; } if (!CCCTL_ENAB(&sii->pub) && (sii->pub.ccrev < 20)) goto done; switch (mode) { case CLK_FAST: /* FORCEHT, fast (pll) clock */ if (sii->pub.ccrev < 10) { /* * don't forget to force xtal back * on before we clear SCC_DYN_XTAL.. */ ai_clkctl_xtal(&sii->pub, XTAL, ON); SET_REG(&cc->slow_clk_ctl, (SCC_XC | SCC_FS | SCC_IP), SCC_IP); } else if (sii->pub.ccrev < 20) { OR_REG(&cc->system_clk_ctl, SYCC_HR); } else { OR_REG(&cc->clk_ctl_st, CCS_FORCEHT); } /* wait for the PLL */ if (PMUCTL_ENAB(&sii->pub)) { u32 htavail = CCS_HTAVAIL; SPINWAIT(((R_REG(&cc->clk_ctl_st) & htavail) == 0), PMU_MAX_TRANSITION_DLY); } else { udelay(PLL_DELAY); } break; case CLK_DYNAMIC: /* enable dynamic clock control */ if (sii->pub.ccrev < 10) { scc = R_REG(&cc->slow_clk_ctl); scc &= ~(SCC_FS | SCC_IP | SCC_XC); if ((scc & SCC_SS_MASK) != SCC_SS_XTAL) scc |= SCC_XC; W_REG(&cc->slow_clk_ctl, scc); /* * for dynamic control, we have to * release our xtal_pu "force on" */ if (scc & SCC_XC) ai_clkctl_xtal(&sii->pub, XTAL, OFF); } else if (sii->pub.ccrev < 20) { /* Instaclock */ AND_REG(&cc->system_clk_ctl, ~SYCC_HR); } else { AND_REG(&cc->clk_ctl_st, ~CCS_FORCEHT); } break; default: break; } done: if (!fast) { ai_setcoreidx(&sii->pub, origidx); INTR_RESTORE(sii, intr_val); } return mode == CLK_FAST; } /* Build device path. Support SI, PCI, and JTAG for now. */ int ai_devpath(si_t *sih, char *path, int size) { int slen; if (!path || size <= 0) return -1; switch (sih->bustype) { case SI_BUS: case JTAG_BUS: slen = snprintf(path, (size_t) size, "sb/%u/", ai_coreidx(sih)); break; case PCI_BUS: slen = snprintf(path, (size_t) size, "pci/%u/%u/", ((struct pci_dev *)((SI_INFO(sih))->pbus))->bus->number, PCI_SLOT( ((struct pci_dev *)((SI_INFO(sih))->pbus))->devfn)); break; default: slen = -1; break; } if (slen < 0 || slen >= size) { path[0] = '\0'; return -1; } return 0; } /* Get a variable, but only if it has a devpath prefix */ char *ai_getdevpathvar(si_t *sih, const char *name) { char varname[SI_DEVPATH_BUFSZ + 32]; ai_devpathvar(sih, varname, sizeof(varname), name); return getvar(NULL, varname); } /* Get a variable, but only if it has a devpath prefix */ int ai_getdevpathintvar(si_t *sih, const char *name) { #if defined(BCMBUSTYPE) && (BCMBUSTYPE == SI_BUS) return getintvar(NULL, name); #else char varname[SI_DEVPATH_BUFSZ + 32]; ai_devpathvar(sih, varname, sizeof(varname), name); return getintvar(NULL, varname); #endif } char *ai_getnvramflvar(si_t *sih, const char *name) { return getvar(NULL, name); } /* Concatenate the dev path with a varname into the given 'var' buffer * and return the 'var' pointer. Nothing is done to the arguments if * len == 0 or var is NULL, var is still returned. On overflow, the * first char will be set to '\0'. */ static char *ai_devpathvar(si_t *sih, char *var, int len, const char *name) { uint path_len; if (!var || len <= 0) return var; if (ai_devpath(sih, var, len) == 0) { path_len = strlen(var); if (strlen(name) + 1 > (uint) (len - path_len)) var[0] = '\0'; else strncpy(var + path_len, name, len - path_len - 1); } return var; } /* return true if PCIE capability exists in the pci config space */ static __used bool ai_ispcie(si_info_t *sii) { u8 cap_ptr; if (sii->pub.bustype != PCI_BUS) return false; cap_ptr = pcicore_find_pci_capability(sii->pbus, PCI_CAP_ID_EXP, NULL, NULL); if (!cap_ptr) return false; return true; } bool ai_pci_war16165(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); return PCI(sii) && (sih->buscorerev <= 10); } void ai_pci_up(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); /* if not pci bus, we're done */ if (sih->bustype != PCI_BUS) return; if (PCI_FORCEHT(sii)) _ai_clkctl_cc(sii, CLK_FAST); if (PCIE(sii)) pcicore_up(sii->pch, SI_PCIUP); } /* Unconfigure and/or apply various WARs when system is going to sleep mode */ void ai_pci_sleep(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); pcicore_sleep(sii->pch); } /* Unconfigure and/or apply various WARs when going down */ void ai_pci_down(si_t *sih) { si_info_t *sii; sii = SI_INFO(sih); /* if not pci bus, we're done */ if (sih->bustype != PCI_BUS) return; /* release FORCEHT since chip is going to "down" state */ if (PCI_FORCEHT(sii)) _ai_clkctl_cc(sii, CLK_DYNAMIC); pcicore_down(sii->pch, SI_PCIDOWN); } /* * Configure the pci core for pci client (NIC) action * coremask is the bitvec of cores by index to be enabled. */ void ai_pci_setup(si_t *sih, uint coremask) { si_info_t *sii; struct sbpciregs *pciregs = NULL; u32 siflag = 0, w; uint idx = 0; sii = SI_INFO(sih); if (sii->pub.bustype != PCI_BUS) return; if (PCI(sii)) { /* get current core index */ idx = sii->curidx; /* we interrupt on this backplane flag number */ siflag = ai_flag(sih); /* switch over to pci core */ pciregs = ai_setcoreidx(sih, sii->pub.buscoreidx); } /* * Enable sb->pci interrupts. Assume * PCI rev 2.3 support was added in pci core rev 6 and things changed.. */ if (PCIE(sii) || (PCI(sii) && ((sii->pub.buscorerev) >= 6))) { /* pci config write to set this core bit in PCIIntMask */ pci_read_config_dword(sii->pbus, PCI_INT_MASK, &w); w |= (coremask << PCI_SBIM_SHIFT); pci_write_config_dword(sii->pbus, PCI_INT_MASK, w); } else { /* set sbintvec bit for our flag number */ ai_setint(sih, siflag); } if (PCI(sii)) { OR_REG(&pciregs->sbtopci2, (SBTOPCI_PREF | SBTOPCI_BURST)); if (sii->pub.buscorerev >= 11) { OR_REG(&pciregs->sbtopci2, SBTOPCI_RC_READMULTI); w = R_REG(&pciregs->clkrun); W_REG(&pciregs->clkrun, (w | PCI_CLKRUN_DSBL)); w = R_REG(&pciregs->clkrun); } /* switch back to previous core */ ai_setcoreidx(sih, idx); } } /* * Fixup SROMless PCI device's configuration. * The current core may be changed upon return. */ int ai_pci_fixcfg(si_t *sih) { uint origidx, pciidx; struct sbpciregs *pciregs = NULL; sbpcieregs_t *pcieregs = NULL; void *regs = NULL; u16 val16, *reg16 = NULL; si_info_t *sii = SI_INFO(sih); /* Fixup PI in SROM shadow area to enable the correct PCI core access */ /* save the current index */ origidx = ai_coreidx(&sii->pub); /* check 'pi' is correct and fix it if not */ if (sii->pub.buscoretype == PCIE_CORE_ID) { pcieregs = ai_setcore(&sii->pub, PCIE_CORE_ID, 0); regs = pcieregs; reg16 = &pcieregs->sprom[SRSH_PI_OFFSET]; } else if (sii->pub.buscoretype == PCI_CORE_ID) { pciregs = ai_setcore(&sii->pub, PCI_CORE_ID, 0); regs = pciregs; reg16 = &pciregs->sprom[SRSH_PI_OFFSET]; } pciidx = ai_coreidx(&sii->pub); val16 = R_REG(reg16); if (((val16 & SRSH_PI_MASK) >> SRSH_PI_SHIFT) != (u16) pciidx) { val16 = (u16) (pciidx << SRSH_PI_SHIFT) | (val16 & ~SRSH_PI_MASK); W_REG(reg16, val16); } /* restore the original index */ ai_setcoreidx(&sii->pub, origidx); pcicore_hwup(sii->pch); return 0; } /* mask&set gpiocontrol bits */ u32 ai_gpiocontrol(si_t *sih, u32 mask, u32 val, u8 priority) { uint regoff; regoff = 0; /* gpios could be shared on router platforms * ignore reservation if it's high priority (e.g., test apps) */ if ((priority != GPIO_HI_PRIORITY) && (sih->bustype == SI_BUS) && (val || mask)) { mask = priority ? (ai_gpioreservation & mask) : ((ai_gpioreservation | mask) & ~(ai_gpioreservation)); val &= mask; } regoff = offsetof(chipcregs_t, gpiocontrol); return ai_corereg(sih, SI_CC_IDX, regoff, mask, val); } void ai_chipcontrl_epa4331(si_t *sih, bool on) { si_info_t *sii; chipcregs_t *cc; uint origidx; u32 val; sii = SI_INFO(sih); origidx = ai_coreidx(sih); cc = (chipcregs_t *) ai_setcore(sih, CC_CORE_ID, 0); val = R_REG(&cc->chipcontrol); if (on) { if (sih->chippkg == 9 || sih->chippkg == 0xb) { /* Ext PA Controls for 4331 12x9 Package */ W_REG(&cc->chipcontrol, val | (CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5)); } else { /* Ext PA Controls for 4331 12x12 Package */ W_REG(&cc->chipcontrol, val | (CCTRL4331_EXTPA_EN)); } } else { val &= ~(CCTRL4331_EXTPA_EN | CCTRL4331_EXTPA_ON_GPIO2_5); W_REG(&cc->chipcontrol, val); } ai_setcoreidx(sih, origidx); } /* Enable BT-COEX & Ex-PA for 4313 */ void ai_epa_4313war(si_t *sih) { si_info_t *sii; chipcregs_t *cc; uint origidx; sii = SI_INFO(sih); origidx = ai_coreidx(sih); cc = (chipcregs_t *) ai_setcore(sih, CC_CORE_ID, 0); /* EPA Fix */ W_REG(&cc->gpiocontrol, R_REG(&cc->gpiocontrol) | GPIO_CTRL_EPA_EN_MASK); ai_setcoreidx(sih, origidx); } /* check if the device is removed */ bool ai_deviceremoved(si_t *sih) { u32 w; si_info_t *sii; sii = SI_INFO(sih); switch (sih->bustype) { case PCI_BUS: pci_read_config_dword(sii->pbus, PCI_VENDOR_ID, &w); if ((w & 0xFFFF) != PCI_VENDOR_ID_BROADCOM) return true; break; } return false; } bool ai_is_sprom_available(si_t *sih) { if (sih->ccrev >= 31) { si_info_t *sii; uint origidx; chipcregs_t *cc; u32 sromctrl; if ((sih->cccaps & CC_CAP_SROM) == 0) return false; sii = SI_INFO(sih); origidx = sii->curidx; cc = ai_setcoreidx(sih, SI_CC_IDX); sromctrl = R_REG(&cc->sromcontrol); ai_setcoreidx(sih, origidx); return sromctrl & SRC_PRESENT; } switch (sih->chip) { case BCM4329_CHIP_ID: return (sih->chipst & CST4329_SPROM_SEL) != 0; case BCM4319_CHIP_ID: return (sih->chipst & CST4319_SPROM_SEL) != 0; case BCM4336_CHIP_ID: return (sih->chipst & CST4336_SPROM_PRESENT) != 0; case BCM4330_CHIP_ID: return (sih->chipst & CST4330_SPROM_PRESENT) != 0; case BCM4313_CHIP_ID: return (sih->chipst & CST4313_SPROM_PRESENT) != 0; case BCM4331_CHIP_ID: return (sih->chipst & CST4331_SPROM_PRESENT) != 0; default: return true; } } bool ai_is_otp_disabled(si_t *sih) { switch (sih->chip) { case BCM4329_CHIP_ID: return (sih->chipst & CST4329_SPROM_OTP_SEL_MASK) == CST4329_OTP_PWRDN; case BCM4319_CHIP_ID: return (sih->chipst & CST4319_SPROM_OTP_SEL_MASK) == CST4319_OTP_PWRDN; case BCM4336_CHIP_ID: return (sih->chipst & CST4336_OTP_PRESENT) == 0; case BCM4330_CHIP_ID: return (sih->chipst & CST4330_OTP_PRESENT) == 0; case BCM4313_CHIP_ID: return (sih->chipst & CST4313_OTP_PRESENT) == 0; /* These chips always have their OTP on */ case BCM43224_CHIP_ID: case BCM43225_CHIP_ID: case BCM43421_CHIP_ID: case BCM43235_CHIP_ID: case BCM43236_CHIP_ID: case BCM43238_CHIP_ID: case BCM4331_CHIP_ID: default: return false; } } bool ai_is_otp_powered(si_t *sih) { if (PMUCTL_ENAB(sih)) return si_pmu_is_otp_powered(sih); return true; } void ai_otp_power(si_t *sih, bool on) { if (PMUCTL_ENAB(sih)) si_pmu_otp_power(sih, on); udelay(1000); }