/* * * sep_driver.c - Security Processor Driver main group of functions * * Copyright(c) 2009,2010 Intel Corporation. All rights reserved. * Contributions(c) 2009,2010 Discretix. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * CONTACTS: * * Mark Allyn mark.a.allyn@intel.com * Jayant Mangalampalli jayant.mangalampalli@intel.com * * CHANGES: * * 2009.06.26 Initial publish * 2010.09.14 Upgrade to Medfield * */ #include <linux/init.h> #include <linux/module.h> #include <linux/miscdevice.h> #include <linux/fs.h> #include <linux/cdev.h> #include <linux/kdev_t.h> #include <linux/mutex.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/poll.h> #include <linux/wait.h> #include <linux/pci.h> #include <linux/firmware.h> #include <linux/slab.h> #include <linux/ioctl.h> #include <asm/current.h> #include <linux/ioport.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/pagemap.h> #include <asm/cacheflush.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/rar_register.h> #include "sep_driver_hw_defs.h" #include "sep_driver_config.h" #include "sep_driver_api.h" #include "sep_dev.h" /*---------------------------------------- DEFINES -----------------------------------------*/ #define SEP_RAR_IO_MEM_REGION_SIZE 0x40000 /*-------------------------------------------- GLOBAL variables --------------------------------------------*/ /* Keep this a single static object for now to keep the conversion easy */ static struct sep_device *sep_dev; /** * sep_dump_message - dump the message that is pending * @sep: SEP device */ static void sep_dump_message(struct sep_device *sep) { int count; u32 *p = sep->shared_addr; for (count = 0; count < 12 * 4; count += 4) dev_dbg(&sep->pdev->dev, "Word %d of the message is %x\n", count, *p++); } /** * sep_map_and_alloc_shared_area - allocate shared block * @sep: security processor * @size: size of shared area */ static int sep_map_and_alloc_shared_area(struct sep_device *sep) { sep->shared_addr = dma_alloc_coherent(&sep->pdev->dev, sep->shared_size, &sep->shared_bus, GFP_KERNEL); if (!sep->shared_addr) { dev_warn(&sep->pdev->dev, "shared memory dma_alloc_coherent failed\n"); return -ENOMEM; } dev_dbg(&sep->pdev->dev, "shared_addr %zx bytes @%p (bus %llx)\n", sep->shared_size, sep->shared_addr, (unsigned long long)sep->shared_bus); return 0; } /** * sep_unmap_and_free_shared_area - free shared block * @sep: security processor */ static void sep_unmap_and_free_shared_area(struct sep_device *sep) { dma_free_coherent(&sep->pdev->dev, sep->shared_size, sep->shared_addr, sep->shared_bus); } /** * sep_shared_bus_to_virt - convert bus/virt addresses * @sep: pointer to struct sep_device * @bus_address: address to convert * * Returns virtual address inside the shared area according * to the bus address. */ static void *sep_shared_bus_to_virt(struct sep_device *sep, dma_addr_t bus_address) { return sep->shared_addr + (bus_address - sep->shared_bus); } /** * open function for the singleton driver * @inode_ptr struct inode * * @file_ptr struct file * * * Called when the user opens the singleton device interface */ static int sep_singleton_open(struct inode *inode_ptr, struct file *file_ptr) { struct sep_device *sep; /* * Get the SEP device structure and use it for the * private_data field in filp for other methods */ sep = sep_dev; file_ptr->private_data = sep; if (test_and_set_bit(0, &sep->singleton_access_flag)) return -EBUSY; return 0; } /** * sep_open - device open method * @inode: inode of SEP device * @filp: file handle to SEP device * * Open method for the SEP device. Called when userspace opens * the SEP device node. * * Returns zero on success otherwise an error code. */ static int sep_open(struct inode *inode, struct file *filp) { struct sep_device *sep; /* * Get the SEP device structure and use it for the * private_data field in filp for other methods */ sep = sep_dev; filp->private_data = sep; /* Anyone can open; locking takes place at transaction level */ return 0; } /** * sep_singleton_release - close a SEP singleton device * @inode: inode of SEP device * @filp: file handle being closed * * Called on the final close of a SEP device. As the open protects against * multiple simultaenous opens that means this method is called when the * final reference to the open handle is dropped. */ static int sep_singleton_release(struct inode *inode, struct file *filp) { struct sep_device *sep = filp->private_data; clear_bit(0, &sep->singleton_access_flag); return 0; } /** * sep_request_daemonopen - request daemon open method * @inode: inode of SEP device * @filp: file handle to SEP device * * Open method for the SEP request daemon. Called when * request daemon in userspace opens the SEP device node. * * Returns zero on success otherwise an error code. */ static int sep_request_daemon_open(struct inode *inode, struct file *filp) { struct sep_device *sep = sep_dev; int error = 0; filp->private_data = sep; /* There is supposed to be only one request daemon */ if (test_and_set_bit(0, &sep->request_daemon_open)) error = -EBUSY; return error; } /** * sep_request_daemon_release - close a SEP daemon * @inode: inode of SEP device * @filp: file handle being closed * * Called on the final close of a SEP daemon. */ static int sep_request_daemon_release(struct inode *inode, struct file *filp) { struct sep_device *sep = filp->private_data; dev_dbg(&sep->pdev->dev, "Request daemon release for pid %d\n", current->pid); /* Clear the request_daemon_open flag */ clear_bit(0, &sep->request_daemon_open); return 0; } /** * sep_req_daemon_send_reply_command_handler - poke the SEP * @sep: struct sep_device * * * This function raises interrupt to SEPm that signals that is has a * new command from HOST */ static int sep_req_daemon_send_reply_command_handler(struct sep_device *sep) { unsigned long lck_flags; sep_dump_message(sep); /* Counters are lockable region */ spin_lock_irqsave(&sep->snd_rply_lck, lck_flags); sep->send_ct++; sep->reply_ct++; /* Send the interrupt to SEP */ sep_write_reg(sep, HW_HOST_HOST_SEP_GPR2_REG_ADDR, sep->send_ct); sep->send_ct++; spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags); dev_dbg(&sep->pdev->dev, "sep_req_daemon_send_reply send_ct %lx reply_ct %lx\n", sep->send_ct, sep->reply_ct); return 0; } /** * sep_free_dma_table_data_handler - free DMA table * @sep: pointere to struct sep_device * * Handles the request to free DMA table for synchronic actions */ static int sep_free_dma_table_data_handler(struct sep_device *sep) { int count; int dcb_counter; /* Pointer to the current dma_resource struct */ struct sep_dma_resource *dma; for (dcb_counter = 0; dcb_counter < sep->nr_dcb_creat; dcb_counter++) { dma = &sep->dma_res_arr[dcb_counter]; /* Unmap and free input map array */ if (dma->in_map_array) { for (count = 0; count < dma->in_num_pages; count++) { dma_unmap_page(&sep->pdev->dev, dma->in_map_array[count].dma_addr, dma->in_map_array[count].size, DMA_TO_DEVICE); } kfree(dma->in_map_array); } /* Unmap output map array, DON'T free it yet */ if (dma->out_map_array) { for (count = 0; count < dma->out_num_pages; count++) { dma_unmap_page(&sep->pdev->dev, dma->out_map_array[count].dma_addr, dma->out_map_array[count].size, DMA_FROM_DEVICE); } kfree(dma->out_map_array); } /* Free page cache for output */ if (dma->in_page_array) { for (count = 0; count < dma->in_num_pages; count++) { flush_dcache_page(dma->in_page_array[count]); page_cache_release(dma->in_page_array[count]); } kfree(dma->in_page_array); } if (dma->out_page_array) { for (count = 0; count < dma->out_num_pages; count++) { if (!PageReserved(dma->out_page_array[count])) SetPageDirty(dma->out_page_array[count]); flush_dcache_page(dma->out_page_array[count]); page_cache_release(dma->out_page_array[count]); } kfree(dma->out_page_array); } /* Reset all the values */ dma->in_page_array = NULL; dma->out_page_array = NULL; dma->in_num_pages = 0; dma->out_num_pages = 0; dma->in_map_array = NULL; dma->out_map_array = NULL; dma->in_map_num_entries = 0; dma->out_map_num_entries = 0; } sep->nr_dcb_creat = 0; sep->num_lli_tables_created = 0; return 0; } /** * sep_request_daemon_mmap - maps the shared area to user space * @filp: pointer to struct file * @vma: pointer to vm_area_struct * * Called by the kernel when the daemon attempts an mmap() syscall * using our handle. */ static int sep_request_daemon_mmap(struct file *filp, struct vm_area_struct *vma) { struct sep_device *sep = filp->private_data; dma_addr_t bus_address; int error = 0; if ((vma->vm_end - vma->vm_start) > SEP_DRIVER_MMMAP_AREA_SIZE) { error = -EINVAL; goto end_function; } /* Get physical address */ bus_address = sep->shared_bus; if (remap_pfn_range(vma, vma->vm_start, bus_address >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot)) { dev_warn(&sep->pdev->dev, "remap_page_range failed\n"); error = -EAGAIN; goto end_function; } end_function: return error; } /** * sep_request_daemon_poll - poll implementation * @sep: struct sep_device * for current SEP device * @filp: struct file * for open file * @wait: poll_table * for poll * * Called when our device is part of a poll() or select() syscall */ static unsigned int sep_request_daemon_poll(struct file *filp, poll_table *wait) { u32 mask = 0; /* GPR2 register */ u32 retval2; unsigned long lck_flags; struct sep_device *sep = filp->private_data; poll_wait(filp, &sep->event_request_daemon, wait); dev_dbg(&sep->pdev->dev, "daemon poll: send_ct is %lx reply ct is %lx\n", sep->send_ct, sep->reply_ct); spin_lock_irqsave(&sep->snd_rply_lck, lck_flags); /* Check if the data is ready */ if (sep->send_ct == sep->reply_ct) { spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags); retval2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR); dev_dbg(&sep->pdev->dev, "daemon poll: data check (GPR2) is %x\n", retval2); /* Check if PRINT request */ if ((retval2 >> 30) & 0x1) { dev_dbg(&sep->pdev->dev, "daemon poll: PRINTF request in\n"); mask |= POLLIN; goto end_function; } /* Check if NVS request */ if (retval2 >> 31) { dev_dbg(&sep->pdev->dev, "daemon poll: NVS request in\n"); mask |= POLLPRI | POLLWRNORM; } } else { spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags); dev_dbg(&sep->pdev->dev, "daemon poll: no reply received; returning 0\n"); mask = 0; } end_function: return mask; } /** * sep_release - close a SEP device * @inode: inode of SEP device * @filp: file handle being closed * * Called on the final close of a SEP device. */ static int sep_release(struct inode *inode, struct file *filp) { struct sep_device *sep = filp->private_data; dev_dbg(&sep->pdev->dev, "Release for pid %d\n", current->pid); mutex_lock(&sep->sep_mutex); /* Is this the process that has a transaction open? * If so, lets reset pid_doing_transaction to 0 and * clear the in use flags, and then wake up sep_event * so that other processes can do transactions */ if (sep->pid_doing_transaction == current->pid) { clear_bit(SEP_MMAP_LOCK_BIT, &sep->in_use_flags); clear_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags); sep_free_dma_table_data_handler(sep); wake_up(&sep->event); sep->pid_doing_transaction = 0; } mutex_unlock(&sep->sep_mutex); return 0; } /** * sep_mmap - maps the shared area to user space * @filp: pointer to struct file * @vma: pointer to vm_area_struct * * Called on an mmap of our space via the normal SEP device */ static int sep_mmap(struct file *filp, struct vm_area_struct *vma) { dma_addr_t bus_addr; struct sep_device *sep = filp->private_data; unsigned long error = 0; /* Set the transaction busy (own the device) */ wait_event_interruptible(sep->event, test_and_set_bit(SEP_MMAP_LOCK_BIT, &sep->in_use_flags) == 0); if (signal_pending(current)) { error = -EINTR; goto end_function_with_error; } /* * The pid_doing_transaction indicates that this process * now owns the facilities to performa a transaction with * the SEP. While this process is performing a transaction, * no other process who has the SEP device open can perform * any transactions. This method allows more than one process * to have the device open at any given time, which provides * finer granularity for device utilization by multiple * processes. */ mutex_lock(&sep->sep_mutex); sep->pid_doing_transaction = current->pid; mutex_unlock(&sep->sep_mutex); /* Zero the pools and the number of data pool alocation pointers */ sep->data_pool_bytes_allocated = 0; sep->num_of_data_allocations = 0; /* * Check that the size of the mapped range is as the size of the message * shared area */ if ((vma->vm_end - vma->vm_start) > SEP_DRIVER_MMMAP_AREA_SIZE) { error = -EINVAL; goto end_function_with_error; } dev_dbg(&sep->pdev->dev, "shared_addr is %p\n", sep->shared_addr); /* Get bus address */ bus_addr = sep->shared_bus; if (remap_pfn_range(vma, vma->vm_start, bus_addr >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot)) { dev_warn(&sep->pdev->dev, "remap_page_range failed\n"); error = -EAGAIN; goto end_function_with_error; } goto end_function; end_function_with_error: /* Clear the bit */ clear_bit(SEP_MMAP_LOCK_BIT, &sep->in_use_flags); mutex_lock(&sep->sep_mutex); sep->pid_doing_transaction = 0; mutex_unlock(&sep->sep_mutex); /* Raise event for stuck contextes */ wake_up(&sep->event); end_function: return error; } /** * sep_poll - poll handler * @filp: pointer to struct file * @wait: pointer to poll_table * * Called by the OS when the kernel is asked to do a poll on * a SEP file handle. */ static unsigned int sep_poll(struct file *filp, poll_table *wait) { u32 mask = 0; u32 retval = 0; u32 retval2 = 0; unsigned long lck_flags; struct sep_device *sep = filp->private_data; /* Am I the process that owns the transaction? */ mutex_lock(&sep->sep_mutex); if (current->pid != sep->pid_doing_transaction) { dev_dbg(&sep->pdev->dev, "poll; wrong pid\n"); mask = POLLERR; mutex_unlock(&sep->sep_mutex); goto end_function; } mutex_unlock(&sep->sep_mutex); /* Check if send command or send_reply were activated previously */ if (!test_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags)) { mask = POLLERR; goto end_function; } /* Add the event to the polling wait table */ dev_dbg(&sep->pdev->dev, "poll: calling wait sep_event\n"); poll_wait(filp, &sep->event, wait); dev_dbg(&sep->pdev->dev, "poll: send_ct is %lx reply ct is %lx\n", sep->send_ct, sep->reply_ct); /* Check if error occurred during poll */ retval2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR); if (retval2 != 0x0) { dev_warn(&sep->pdev->dev, "poll; poll error %x\n", retval2); mask |= POLLERR; goto end_function; } spin_lock_irqsave(&sep->snd_rply_lck, lck_flags); if (sep->send_ct == sep->reply_ct) { spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags); retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR); dev_dbg(&sep->pdev->dev, "poll: data ready check (GPR2) %x\n", retval); /* Check if printf request */ if ((retval >> 30) & 0x1) { dev_dbg(&sep->pdev->dev, "poll: SEP printf request\n"); wake_up(&sep->event_request_daemon); goto end_function; } /* Check if the this is SEP reply or request */ if (retval >> 31) { dev_dbg(&sep->pdev->dev, "poll: SEP request\n"); wake_up(&sep->event_request_daemon); } else { dev_dbg(&sep->pdev->dev, "poll: normal return\n"); /* In case it is again by send_reply_comand */ clear_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags); sep_dump_message(sep); dev_dbg(&sep->pdev->dev, "poll; SEP reply POLLIN | POLLRDNORM\n"); mask |= POLLIN | POLLRDNORM; } } else { spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags); dev_dbg(&sep->pdev->dev, "poll; no reply received; returning mask of 0\n"); mask = 0; } end_function: return mask; } /** * sep_time_address - address in SEP memory of time * @sep: SEP device we want the address from * * Return the address of the two dwords in memory used for time * setting. */ static u32 *sep_time_address(struct sep_device *sep) { return sep->shared_addr + SEP_DRIVER_SYSTEM_TIME_MEMORY_OFFSET_IN_BYTES; } /** * sep_set_time - set the SEP time * @sep: the SEP we are setting the time for * * Calculates time and sets it at the predefined address. * Called with the SEP mutex held. */ static unsigned long sep_set_time(struct sep_device *sep) { struct timeval time; u32 *time_addr; /* Address of time as seen by the kernel */ do_gettimeofday(&time); /* Set value in the SYSTEM MEMORY offset */ time_addr = sep_time_address(sep); time_addr[0] = SEP_TIME_VAL_TOKEN; time_addr[1] = time.tv_sec; dev_dbg(&sep->pdev->dev, "time.tv_sec is %lu\n", time.tv_sec); dev_dbg(&sep->pdev->dev, "time_addr is %p\n", time_addr); dev_dbg(&sep->pdev->dev, "sep->shared_addr is %p\n", sep->shared_addr); return time.tv_sec; } /** * sep_set_caller_id_handler - insert caller id entry * @sep: SEP device * @arg: pointer to struct caller_id_struct * * Inserts the data into the caller id table. Note that this function * falls under the ioctl lock */ static int sep_set_caller_id_handler(struct sep_device *sep, unsigned long arg) { void __user *hash; int error = 0; int i; struct caller_id_struct command_args; for (i = 0; i < SEP_CALLER_ID_TABLE_NUM_ENTRIES; i++) { if (sep->caller_id_table[i].pid == 0) break; } if (i == SEP_CALLER_ID_TABLE_NUM_ENTRIES) { dev_dbg(&sep->pdev->dev, "no more caller id entries left\n"); dev_dbg(&sep->pdev->dev, "maximum number is %d\n", SEP_CALLER_ID_TABLE_NUM_ENTRIES); error = -EUSERS; goto end_function; } /* Copy the data */ if (copy_from_user(&command_args, (void __user *)arg, sizeof(command_args))) { error = -EFAULT; goto end_function; } hash = (void __user *)(unsigned long)command_args.callerIdAddress; if (!command_args.pid || !command_args.callerIdSizeInBytes) { error = -EINVAL; goto end_function; } dev_dbg(&sep->pdev->dev, "pid is %x\n", command_args.pid); dev_dbg(&sep->pdev->dev, "callerIdSizeInBytes is %x\n", command_args.callerIdSizeInBytes); if (command_args.callerIdSizeInBytes > SEP_CALLER_ID_HASH_SIZE_IN_BYTES) { error = -EMSGSIZE; goto end_function; } sep->caller_id_table[i].pid = command_args.pid; if (copy_from_user(sep->caller_id_table[i].callerIdHash, hash, command_args.callerIdSizeInBytes)) error = -EFAULT; end_function: return error; } /** * sep_set_current_caller_id - set the caller id * @sep: pointer to struct_sep_device * * Set the caller ID (if it exists) to the SEP. Note that this * function falls under the ioctl lock */ static int sep_set_current_caller_id(struct sep_device *sep) { int i; u32 *hash_buf_ptr; /* Zero the previous value */ memset(sep->shared_addr + SEP_CALLER_ID_OFFSET_BYTES, 0, SEP_CALLER_ID_HASH_SIZE_IN_BYTES); for (i = 0; i < SEP_CALLER_ID_TABLE_NUM_ENTRIES; i++) { if (sep->caller_id_table[i].pid == current->pid) { dev_dbg(&sep->pdev->dev, "Caller Id found\n"); memcpy(sep->shared_addr + SEP_CALLER_ID_OFFSET_BYTES, (void *)(sep->caller_id_table[i].callerIdHash), SEP_CALLER_ID_HASH_SIZE_IN_BYTES); break; } } /* Ensure data is in little endian */ hash_buf_ptr = (u32 *)sep->shared_addr + SEP_CALLER_ID_OFFSET_BYTES; for (i = 0; i < SEP_CALLER_ID_HASH_SIZE_IN_WORDS; i++) hash_buf_ptr[i] = cpu_to_le32(hash_buf_ptr[i]); return 0; } /** * sep_send_command_handler - kick off a command * @sep: SEP being signalled * * This function raises interrupt to SEP that signals that is has a new * command from the host * * Note that this function does fall under the ioctl lock */ static int sep_send_command_handler(struct sep_device *sep) { unsigned long lck_flags; int error = 0; if (test_and_set_bit(SEP_SEND_MSG_LOCK_BIT, &sep->in_use_flags)) { error = -EPROTO; goto end_function; } sep_set_time(sep); sep_set_current_caller_id(sep); sep_dump_message(sep); /* Update counter */ spin_lock_irqsave(&sep->snd_rply_lck, lck_flags); sep->send_ct++; spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags); dev_dbg(&sep->pdev->dev, "sep_send_command_handler send_ct %lx reply_ct %lx\n", sep->send_ct, sep->reply_ct); /* Send interrupt to SEP */ sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x2); end_function: return error; } /** * sep_allocate_data_pool_memory_handler -allocate pool memory * @sep: pointer to struct sep_device * @arg: pointer to struct alloc_struct * * This function handles the allocate data pool memory request * This function returns calculates the bus address of the * allocated memory, and the offset of this area from the mapped address. * Therefore, the FVOs in user space can calculate the exact virtual * address of this allocated memory */ static int sep_allocate_data_pool_memory_handler(struct sep_device *sep, unsigned long arg) { int error = 0; struct alloc_struct command_args; /* Holds the allocated buffer address in the system memory pool */ u32 *token_addr; if (copy_from_user(&command_args, (void __user *)arg, sizeof(struct alloc_struct))) { error = -EFAULT; goto end_function; } /* Allocate memory */ if ((sep->data_pool_bytes_allocated + command_args.num_bytes) > SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES) { error = -ENOMEM; goto end_function; } dev_dbg(&sep->pdev->dev, "data pool bytes_allocated: %x\n", (int)sep->data_pool_bytes_allocated); dev_dbg(&sep->pdev->dev, "offset: %x\n", SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES); /* Set the virtual and bus address */ command_args.offset = SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + sep->data_pool_bytes_allocated; /* Place in the shared area that is known by the SEP */ token_addr = (u32 *)(sep->shared_addr + SEP_DRIVER_DATA_POOL_ALLOCATION_OFFSET_IN_BYTES + (sep->num_of_data_allocations)*2*sizeof(u32)); token_addr[0] = SEP_DATA_POOL_POINTERS_VAL_TOKEN; token_addr[1] = (u32)sep->shared_bus + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + sep->data_pool_bytes_allocated; /* Write the memory back to the user space */ error = copy_to_user((void *)arg, (void *)&command_args, sizeof(struct alloc_struct)); if (error) { error = -EFAULT; goto end_function; } /* Update the allocation */ sep->data_pool_bytes_allocated += command_args.num_bytes; sep->num_of_data_allocations += 1; end_function: return error; } /** * sep_lock_kernel_pages - map kernel pages for DMA * @sep: pointer to struct sep_device * @kernel_virt_addr: address of data buffer in kernel * @data_size: size of data * @lli_array_ptr: lli array * @in_out_flag: input into device or output from device * * This function locks all the physical pages of the kernel virtual buffer * and construct a basic lli array, where each entry holds the physical * page address and the size that application data holds in this page * This function is used only during kernel crypto mod calls from within * the kernel (when ioctl is not used) */ static int sep_lock_kernel_pages(struct sep_device *sep, unsigned long kernel_virt_addr, u32 data_size, struct sep_lli_entry **lli_array_ptr, int in_out_flag) { int error = 0; /* Array of lli */ struct sep_lli_entry *lli_array; /* Map array */ struct sep_dma_map *map_array; dev_dbg(&sep->pdev->dev, "lock kernel pages kernel_virt_addr is %08lx\n", (unsigned long)kernel_virt_addr); dev_dbg(&sep->pdev->dev, "data_size is %x\n", data_size); lli_array = kmalloc(sizeof(struct sep_lli_entry), GFP_ATOMIC); if (!lli_array) { error = -ENOMEM; goto end_function; } map_array = kmalloc(sizeof(struct sep_dma_map), GFP_ATOMIC); if (!map_array) { error = -ENOMEM; goto end_function_with_error; } map_array[0].dma_addr = dma_map_single(&sep->pdev->dev, (void *)kernel_virt_addr, data_size, DMA_BIDIRECTIONAL); map_array[0].size = data_size; /* * Set the start address of the first page - app data may start not at * the beginning of the page */ lli_array[0].bus_address = (u32)map_array[0].dma_addr; lli_array[0].block_size = map_array[0].size; dev_dbg(&sep->pdev->dev, "lli_array[0].bus_address is %08lx, lli_array[0].block_size is %x\n", (unsigned long)lli_array[0].bus_address, lli_array[0].block_size); /* Set the output parameters */ if (in_out_flag == SEP_DRIVER_IN_FLAG) { *lli_array_ptr = lli_array; sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages = 1; sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = NULL; sep->dma_res_arr[sep->nr_dcb_creat].in_map_array = map_array; sep->dma_res_arr[sep->nr_dcb_creat].in_map_num_entries = 1; } else { *lli_array_ptr = lli_array; sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages = 1; sep->dma_res_arr[sep->nr_dcb_creat].out_page_array = NULL; sep->dma_res_arr[sep->nr_dcb_creat].out_map_array = map_array; sep->dma_res_arr[sep->nr_dcb_creat].out_map_num_entries = 1; } goto end_function; end_function_with_error: kfree(lli_array); end_function: return error; } /** * sep_lock_user_pages - lock and map user pages for DMA * @sep: pointer to struct sep_device * @app_virt_addr: user memory data buffer * @data_size: size of data buffer * @lli_array_ptr: lli array * @in_out_flag: input or output to device * * This function locks all the physical pages of the application * virtual buffer and construct a basic lli array, where each entry * holds the physical page address and the size that application * data holds in this physical pages */ static int sep_lock_user_pages(struct sep_device *sep, u32 app_virt_addr, u32 data_size, struct sep_lli_entry **lli_array_ptr, int in_out_flag) { int error = 0; u32 count; int result; /* The the page of the end address of the user space buffer */ u32 end_page; /* The page of the start address of the user space buffer */ u32 start_page; /* The range in pages */ u32 num_pages; /* Array of pointers to page */ struct page **page_array; /* Array of lli */ struct sep_lli_entry *lli_array; /* Map array */ struct sep_dma_map *map_array; /* Direction of the DMA mapping for locked pages */ enum dma_data_direction dir; /* Set start and end pages and num pages */ end_page = (app_virt_addr + data_size - 1) >> PAGE_SHIFT; start_page = app_virt_addr >> PAGE_SHIFT; num_pages = end_page - start_page + 1; dev_dbg(&sep->pdev->dev, "lock user pages app_virt_addr is %x\n", app_virt_addr); dev_dbg(&sep->pdev->dev, "data_size is %x\n", data_size); dev_dbg(&sep->pdev->dev, "start_page is %x\n", start_page); dev_dbg(&sep->pdev->dev, "end_page is %x\n", end_page); dev_dbg(&sep->pdev->dev, "num_pages is %x\n", num_pages); /* Allocate array of pages structure pointers */ page_array = kmalloc(sizeof(struct page *) * num_pages, GFP_ATOMIC); if (!page_array) { error = -ENOMEM; goto end_function; } map_array = kmalloc(sizeof(struct sep_dma_map) * num_pages, GFP_ATOMIC); if (!map_array) { dev_warn(&sep->pdev->dev, "kmalloc for map_array failed\n"); error = -ENOMEM; goto end_function_with_error1; } lli_array = kmalloc(sizeof(struct sep_lli_entry) * num_pages, GFP_ATOMIC); if (!lli_array) { dev_warn(&sep->pdev->dev, "kmalloc for lli_array failed\n"); error = -ENOMEM; goto end_function_with_error2; } /* Convert the application virtual address into a set of physical */ down_read(¤t->mm->mmap_sem); result = get_user_pages(current, current->mm, app_virt_addr, num_pages, ((in_out_flag == SEP_DRIVER_IN_FLAG) ? 0 : 1), 0, page_array, NULL); up_read(¤t->mm->mmap_sem); /* Check the number of pages locked - if not all then exit with error */ if (result != num_pages) { dev_warn(&sep->pdev->dev, "not all pages locked by get_user_pages\n"); error = -ENOMEM; goto end_function_with_error3; } dev_dbg(&sep->pdev->dev, "get_user_pages succeeded\n"); /* Set direction */ if (in_out_flag == SEP_DRIVER_IN_FLAG) dir = DMA_TO_DEVICE; else dir = DMA_FROM_DEVICE; /* * Fill the array using page array data and * map the pages - this action will also flush the cache as needed */ for (count = 0; count < num_pages; count++) { /* Fill the map array */ map_array[count].dma_addr = dma_map_page(&sep->pdev->dev, page_array[count], 0, PAGE_SIZE, /*dir*/DMA_BIDIRECTIONAL); map_array[count].size = PAGE_SIZE; /* Fill the lli array entry */ lli_array[count].bus_address = (u32)map_array[count].dma_addr; lli_array[count].block_size = PAGE_SIZE; dev_warn(&sep->pdev->dev, "lli_array[%x].bus_address is %08lx, lli_array[%x].block_size is %x\n", count, (unsigned long)lli_array[count].bus_address, count, lli_array[count].block_size); } /* Check the offset for the first page */ lli_array[0].bus_address = lli_array[0].bus_address + (app_virt_addr & (~PAGE_MASK)); /* Check that not all the data is in the first page only */ if ((PAGE_SIZE - (app_virt_addr & (~PAGE_MASK))) >= data_size) lli_array[0].block_size = data_size; else lli_array[0].block_size = PAGE_SIZE - (app_virt_addr & (~PAGE_MASK)); dev_dbg(&sep->pdev->dev, "lli_array[0].bus_address is %08lx, lli_array[0].block_size is %x\n", (unsigned long)lli_array[count].bus_address, lli_array[count].block_size); /* Check the size of the last page */ if (num_pages > 1) { lli_array[num_pages - 1].block_size = (app_virt_addr + data_size) & (~PAGE_MASK); if (lli_array[num_pages - 1].block_size == 0) lli_array[num_pages - 1].block_size = PAGE_SIZE; dev_warn(&sep->pdev->dev, "lli_array[%x].bus_address is " "%08lx, lli_array[%x].block_size is %x\n", num_pages - 1, (unsigned long)lli_array[num_pages -1].bus_address, num_pages - 1, lli_array[num_pages -1].block_size); } /* Set output params according to the in_out flag */ if (in_out_flag == SEP_DRIVER_IN_FLAG) { *lli_array_ptr = lli_array; sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages = num_pages; sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = page_array; sep->dma_res_arr[sep->nr_dcb_creat].in_map_array = map_array; sep->dma_res_arr[sep->nr_dcb_creat].in_map_num_entries = num_pages; } else { *lli_array_ptr = lli_array; sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages = num_pages; sep->dma_res_arr[sep->nr_dcb_creat].out_page_array = page_array; sep->dma_res_arr[sep->nr_dcb_creat].out_map_array = map_array; sep->dma_res_arr[sep->nr_dcb_creat].out_map_num_entries = num_pages; } goto end_function; end_function_with_error3: /* Free lli array */ kfree(lli_array); end_function_with_error2: kfree(map_array); end_function_with_error1: /* Free page array */ kfree(page_array); end_function: return error; } /** * u32 sep_calculate_lli_table_max_size - size the LLI table * @sep: pointer to struct sep_device * @lli_in_array_ptr * @num_array_entries * @last_table_flag * * This function calculates the size of data that can be inserted into * the lli table from this array, such that either the table is full * (all entries are entered), or there are no more entries in the * lli array */ static u32 sep_calculate_lli_table_max_size(struct sep_device *sep, struct sep_lli_entry *lli_in_array_ptr, u32 num_array_entries, u32 *last_table_flag) { u32 counter; /* Table data size */ u32 table_data_size = 0; /* Data size for the next table */ u32 next_table_data_size; *last_table_flag = 0; /* * Calculate the data in the out lli table till we fill the whole * table or till the data has ended */ for (counter = 0; (counter < (SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP - 1)) && (counter < num_array_entries); counter++) table_data_size += lli_in_array_ptr[counter].block_size; /* * Check if we reached the last entry, * meaning this ia the last table to build, * and no need to check the block alignment */ if (counter == num_array_entries) { /* Set the last table flag */ *last_table_flag = 1; goto end_function; } /* * Calculate the data size of the next table. * Stop if no entries left or if data size is more the DMA restriction */ next_table_data_size = 0; for (; counter < num_array_entries; counter++) { next_table_data_size += lli_in_array_ptr[counter].block_size; if (next_table_data_size >= SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE) break; } /* * Check if the next table data size is less then DMA rstriction. * if it is - recalculate the current table size, so that the next * table data size will be adaquete for DMA */ if (next_table_data_size && next_table_data_size < SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE) table_data_size -= (SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE - next_table_data_size); end_function: return table_data_size; } /** * sep_build_lli_table - build an lli array for the given table * @sep: pointer to struct sep_device * @lli_array_ptr: pointer to lli array * @lli_table_ptr: pointer to lli table * @num_processed_entries_ptr: pointer to number of entries * @num_table_entries_ptr: pointer to number of tables * @table_data_size: total data size * * Builds ant lli table from the lli_array according to * the given size of data */ static void sep_build_lli_table(struct sep_device *sep, struct sep_lli_entry *lli_array_ptr, struct sep_lli_entry *lli_table_ptr, u32 *num_processed_entries_ptr, u32 *num_table_entries_ptr, u32 table_data_size) { /* Current table data size */ u32 curr_table_data_size; /* Counter of lli array entry */ u32 array_counter; /* Init currrent table data size and lli array entry counter */ curr_table_data_size = 0; array_counter = 0; *num_table_entries_ptr = 1; dev_dbg(&sep->pdev->dev, "build lli table table_data_size is %x\n", table_data_size); /* Fill the table till table size reaches the needed amount */ while (curr_table_data_size < table_data_size) { /* Update the number of entries in table */ (*num_table_entries_ptr)++; lli_table_ptr->bus_address = cpu_to_le32(lli_array_ptr[array_counter].bus_address); lli_table_ptr->block_size = cpu_to_le32(lli_array_ptr[array_counter].block_size); curr_table_data_size += lli_array_ptr[array_counter].block_size; dev_dbg(&sep->pdev->dev, "lli_table_ptr is %p\n", lli_table_ptr); dev_dbg(&sep->pdev->dev, "lli_table_ptr->bus_address is %08lx\n", (unsigned long)lli_table_ptr->bus_address); dev_dbg(&sep->pdev->dev, "lli_table_ptr->block_size is %x\n", lli_table_ptr->block_size); /* Check for overflow of the table data */ if (curr_table_data_size > table_data_size) { dev_dbg(&sep->pdev->dev, "curr_table_data_size too large\n"); /* Update the size of block in the table */ lli_table_ptr->block_size -= cpu_to_le32((curr_table_data_size - table_data_size)); /* Update the physical address in the lli array */ lli_array_ptr[array_counter].bus_address += cpu_to_le32(lli_table_ptr->block_size); /* Update the block size left in the lli array */ lli_array_ptr[array_counter].block_size = (curr_table_data_size - table_data_size); } else /* Advance to the next entry in the lli_array */ array_counter++; dev_dbg(&sep->pdev->dev, "lli_table_ptr->bus_address is %08lx\n", (unsigned long)lli_table_ptr->bus_address); dev_dbg(&sep->pdev->dev, "lli_table_ptr->block_size is %x\n", lli_table_ptr->block_size); /* Move to the next entry in table */ lli_table_ptr++; } /* Set the info entry to default */ lli_table_ptr->bus_address = 0xffffffff; lli_table_ptr->block_size = 0; /* Set the output parameter */ *num_processed_entries_ptr += array_counter; } /** * sep_shared_area_virt_to_bus - map shared area to bus address * @sep: pointer to struct sep_device * @virt_address: virtual address to convert * * This functions returns the physical address inside shared area according * to the virtual address. It can be either on the externa RAM device * (ioremapped), or on the system RAM * This implementation is for the external RAM */ static dma_addr_t sep_shared_area_virt_to_bus(struct sep_device *sep, void *virt_address) { dev_dbg(&sep->pdev->dev, "sh virt to phys v %p\n", virt_address); dev_dbg(&sep->pdev->dev, "sh virt to phys p %08lx\n", (unsigned long) sep->shared_bus + (virt_address - sep->shared_addr)); return sep->shared_bus + (size_t)(virt_address - sep->shared_addr); } /** * sep_shared_area_bus_to_virt - map shared area bus address to kernel * @sep: pointer to struct sep_device * @bus_address: bus address to convert * * This functions returns the virtual address inside shared area * according to the physical address. It can be either on the * externa RAM device (ioremapped), or on the system RAM * This implementation is for the external RAM */ static void *sep_shared_area_bus_to_virt(struct sep_device *sep, dma_addr_t bus_address) { dev_dbg(&sep->pdev->dev, "shared bus to virt b=%lx v=%lx\n", (unsigned long)bus_address, (unsigned long)(sep->shared_addr + (size_t)(bus_address - sep->shared_bus))); return sep->shared_addr + (size_t)(bus_address - sep->shared_bus); } /** * sep_debug_print_lli_tables - dump LLI table * @sep: pointer to struct sep_device * @lli_table_ptr: pointer to sep_lli_entry * @num_table_entries: number of entries * @table_data_size: total data size * * Walk the the list of the print created tables and print all the data */ static void sep_debug_print_lli_tables(struct sep_device *sep, struct sep_lli_entry *lli_table_ptr, unsigned long num_table_entries, unsigned long table_data_size) { unsigned long table_count = 1; unsigned long entries_count = 0; dev_dbg(&sep->pdev->dev, "sep_debug_print_lli_tables start\n"); while ((unsigned long) lli_table_ptr->bus_address != 0xffffffff) { dev_dbg(&sep->pdev->dev, "lli table %08lx, table_data_size is %lu\n", table_count, table_data_size); dev_dbg(&sep->pdev->dev, "num_table_entries is %lu\n", num_table_entries); /* Print entries of the table (without info entry) */ for (entries_count = 0; entries_count < num_table_entries; entries_count++, lli_table_ptr++) { dev_dbg(&sep->pdev->dev, "lli_table_ptr address is %08lx\n", (unsigned long) lli_table_ptr); dev_dbg(&sep->pdev->dev, "phys address is %08lx block size is %x\n", (unsigned long)lli_table_ptr->bus_address, lli_table_ptr->block_size); } /* Point to the info entry */ lli_table_ptr--; dev_dbg(&sep->pdev->dev, "phys lli_table_ptr->block_size is %x\n", lli_table_ptr->block_size); dev_dbg(&sep->pdev->dev, "phys lli_table_ptr->physical_address is %08lu\n", (unsigned long)lli_table_ptr->bus_address); table_data_size = lli_table_ptr->block_size & 0xffffff; num_table_entries = (lli_table_ptr->block_size >> 24) & 0xff; dev_dbg(&sep->pdev->dev, "phys table_data_size is %lu num_table_entries is" " %lu bus_address is%lu\n", table_data_size, num_table_entries, (unsigned long)lli_table_ptr->bus_address); if ((unsigned long)lli_table_ptr->bus_address != 0xffffffff) lli_table_ptr = (struct sep_lli_entry *) sep_shared_bus_to_virt(sep, (unsigned long)lli_table_ptr->bus_address); table_count++; } dev_dbg(&sep->pdev->dev, "sep_debug_print_lli_tables end\n"); } /** * sep_prepare_empty_lli_table - create a blank LLI table * @sep: pointer to struct sep_device * @lli_table_addr_ptr: pointer to lli table * @num_entries_ptr: pointer to number of entries * @table_data_size_ptr: point to table data size * * This function creates empty lli tables when there is no data */ static void sep_prepare_empty_lli_table(struct sep_device *sep, dma_addr_t *lli_table_addr_ptr, u32 *num_entries_ptr, u32 *table_data_size_ptr) { struct sep_lli_entry *lli_table_ptr; /* Find the area for new table */ lli_table_ptr = (struct sep_lli_entry *)(sep->shared_addr + SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES + sep->num_lli_tables_created * sizeof(struct sep_lli_entry) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP); lli_table_ptr->bus_address = 0; lli_table_ptr->block_size = 0; lli_table_ptr++; lli_table_ptr->bus_address = 0xFFFFFFFF; lli_table_ptr->block_size = 0; /* Set the output parameter value */ *lli_table_addr_ptr = sep->shared_bus + SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES + sep->num_lli_tables_created * sizeof(struct sep_lli_entry) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP; /* Set the num of entries and table data size for empty table */ *num_entries_ptr = 2; *table_data_size_ptr = 0; /* Update the number of created tables */ sep->num_lli_tables_created++; } /** * sep_prepare_input_dma_table - prepare input DMA mappings * @sep: pointer to struct sep_device * @data_size: * @block_size: * @lli_table_ptr: * @num_entries_ptr: * @table_data_size_ptr: * @is_kva: set for kernel data (kernel cryptio call) * * This function prepares only input DMA table for synhronic symmetric * operations (HASH) * Note that all bus addresses that are passed to the SEP * are in 32 bit format; the SEP is a 32 bit device */ static int sep_prepare_input_dma_table(struct sep_device *sep, unsigned long app_virt_addr, u32 data_size, u32 block_size, dma_addr_t *lli_table_ptr, u32 *num_entries_ptr, u32 *table_data_size_ptr, bool is_kva) { int error = 0; /* Pointer to the info entry of the table - the last entry */ struct sep_lli_entry *info_entry_ptr; /* Array of pointers to page */ struct sep_lli_entry *lli_array_ptr; /* Points to the first entry to be processed in the lli_in_array */ u32 current_entry = 0; /* Num entries in the virtual buffer */ u32 sep_lli_entries = 0; /* Lli table pointer */ struct sep_lli_entry *in_lli_table_ptr; /* The total data in one table */ u32 table_data_size = 0; /* Flag for last table */ u32 last_table_flag = 0; /* Number of entries in lli table */ u32 num_entries_in_table = 0; /* Next table address */ void *lli_table_alloc_addr = 0; dev_dbg(&sep->pdev->dev, "prepare intput dma table data_size is %x\n", data_size); dev_dbg(&sep->pdev->dev, "block_size is %x\n", block_size); /* Initialize the pages pointers */ sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = NULL; sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages = 0; /* Set the kernel address for first table to be allocated */ lli_table_alloc_addr = (void *)(sep->shared_addr + SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES + sep->num_lli_tables_created * sizeof(struct sep_lli_entry) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP); if (data_size == 0) { /* Special case - create meptu table - 2 entries, zero data */ sep_prepare_empty_lli_table(sep, lli_table_ptr, num_entries_ptr, table_data_size_ptr); goto update_dcb_counter; } /* Check if the pages are in Kernel Virtual Address layout */ if (is_kva == true) /* Lock the pages in the kernel */ error = sep_lock_kernel_pages(sep, app_virt_addr, data_size, &lli_array_ptr, SEP_DRIVER_IN_FLAG); else /* * Lock the pages of the user buffer * and translate them to pages */ error = sep_lock_user_pages(sep, app_virt_addr, data_size, &lli_array_ptr, SEP_DRIVER_IN_FLAG); if (error) goto end_function; dev_dbg(&sep->pdev->dev, "output sep_in_num_pages is %x\n", sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages); current_entry = 0; info_entry_ptr = NULL; sep_lli_entries = sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages; /* Loop till all the entries in in array are not processed */ while (current_entry < sep_lli_entries) { /* Set the new input and output tables */ in_lli_table_ptr = (struct sep_lli_entry *)lli_table_alloc_addr; lli_table_alloc_addr += sizeof(struct sep_lli_entry) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP; if (lli_table_alloc_addr > ((void *)sep->shared_addr + SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES + SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES)) { error = -ENOMEM; goto end_function_error; } /* Update the number of created tables */ sep->num_lli_tables_created++; /* Calculate the maximum size of data for input table */ table_data_size = sep_calculate_lli_table_max_size(sep, &lli_array_ptr[current_entry], (sep_lli_entries - current_entry), &last_table_flag); /* * If this is not the last table - * then align it to the block size */ if (!last_table_flag) table_data_size = (table_data_size / block_size) * block_size; dev_dbg(&sep->pdev->dev, "output table_data_size is %x\n", table_data_size); /* Construct input lli table */ sep_build_lli_table(sep, &lli_array_ptr[current_entry], in_lli_table_ptr, ¤t_entry, &num_entries_in_table, table_data_size); if (info_entry_ptr == NULL) { /* Set the output parameters to physical addresses */ *lli_table_ptr = sep_shared_area_virt_to_bus(sep, in_lli_table_ptr); *num_entries_ptr = num_entries_in_table; *table_data_size_ptr = table_data_size; dev_dbg(&sep->pdev->dev, "output lli_table_in_ptr is %08lx\n", (unsigned long)*lli_table_ptr); } else { /* Update the info entry of the previous in table */ info_entry_ptr->bus_address = sep_shared_area_virt_to_bus(sep, in_lli_table_ptr); info_entry_ptr->block_size = ((num_entries_in_table) << 24) | (table_data_size); } /* Save the pointer to the info entry of the current tables */ info_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1; } /* Print input tables */ sep_debug_print_lli_tables(sep, (struct sep_lli_entry *) sep_shared_area_bus_to_virt(sep, *lli_table_ptr), *num_entries_ptr, *table_data_size_ptr); /* The array of the pages */ kfree(lli_array_ptr); update_dcb_counter: /* Update DCB counter */ sep->nr_dcb_creat++; goto end_function; end_function_error: /* Free all the allocated resources */ kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_map_array); kfree(lli_array_ptr); kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_page_array); end_function: return error; } /** * sep_construct_dma_tables_from_lli - prepare AES/DES mappings * @sep: pointer to struct sep_device * @lli_in_array: * @sep_in_lli_entries: * @lli_out_array: * @sep_out_lli_entries * @block_size * @lli_table_in_ptr * @lli_table_out_ptr * @in_num_entries_ptr * @out_num_entries_ptr * @table_data_size_ptr * * This function creates the input and output DMA tables for * symmetric operations (AES/DES) according to the block * size from LLI arays * Note that all bus addresses that are passed to the SEP * are in 32 bit format; the SEP is a 32 bit device */ static int sep_construct_dma_tables_from_lli( struct sep_device *sep, struct sep_lli_entry *lli_in_array, u32 sep_in_lli_entries, struct sep_lli_entry *lli_out_array, u32 sep_out_lli_entries, u32 block_size, dma_addr_t *lli_table_in_ptr, dma_addr_t *lli_table_out_ptr, u32 *in_num_entries_ptr, u32 *out_num_entries_ptr, u32 *table_data_size_ptr) { /* Points to the area where next lli table can be allocated */ void *lli_table_alloc_addr = 0; /* Input lli table */ struct sep_lli_entry *in_lli_table_ptr = NULL; /* Output lli table */ struct sep_lli_entry *out_lli_table_ptr = NULL; /* Pointer to the info entry of the table - the last entry */ struct sep_lli_entry *info_in_entry_ptr = NULL; /* Pointer to the info entry of the table - the last entry */ struct sep_lli_entry *info_out_entry_ptr = NULL; /* Points to the first entry to be processed in the lli_in_array */ u32 current_in_entry = 0; /* Points to the first entry to be processed in the lli_out_array */ u32 current_out_entry = 0; /* Max size of the input table */ u32 in_table_data_size = 0; /* Max size of the output table */ u32 out_table_data_size = 0; /* Flag te signifies if this is the last tables build */ u32 last_table_flag = 0; /* The data size that should be in table */ u32 table_data_size = 0; /* Number of etnries in the input table */ u32 num_entries_in_table = 0; /* Number of etnries in the output table */ u32 num_entries_out_table = 0; /* Initiate to point after the message area */ lli_table_alloc_addr = (void *)(sep->shared_addr + SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES + (sep->num_lli_tables_created * (sizeof(struct sep_lli_entry) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP))); /* Loop till all the entries in in array are not processed */ while (current_in_entry < sep_in_lli_entries) { /* Set the new input and output tables */ in_lli_table_ptr = (struct sep_lli_entry *)lli_table_alloc_addr; lli_table_alloc_addr += sizeof(struct sep_lli_entry) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP; /* Set the first output tables */ out_lli_table_ptr = (struct sep_lli_entry *)lli_table_alloc_addr; /* Check if the DMA table area limit was overrun */ if ((lli_table_alloc_addr + sizeof(struct sep_lli_entry) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP) > ((void *)sep->shared_addr + SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES + SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES)) { dev_warn(&sep->pdev->dev, "dma table limit overrun\n"); return -ENOMEM; } /* Update the number of the lli tables created */ sep->num_lli_tables_created += 2; lli_table_alloc_addr += sizeof(struct sep_lli_entry) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP; /* Calculate the maximum size of data for input table */ in_table_data_size = sep_calculate_lli_table_max_size(sep, &lli_in_array[current_in_entry], (sep_in_lli_entries - current_in_entry), &last_table_flag); /* Calculate the maximum size of data for output table */ out_table_data_size = sep_calculate_lli_table_max_size(sep, &lli_out_array[current_out_entry], (sep_out_lli_entries - current_out_entry), &last_table_flag); dev_dbg(&sep->pdev->dev, "construct tables from lli in_table_data_size is %x\n", in_table_data_size); dev_dbg(&sep->pdev->dev, "construct tables from lli out_table_data_size is %x\n", out_table_data_size); table_data_size = in_table_data_size; if (!last_table_flag) { /* * If this is not the last table, * then must check where the data is smallest * and then align it to the block size */ if (table_data_size > out_table_data_size) table_data_size = out_table_data_size; /* * Now calculate the table size so that * it will be module block size */ table_data_size = (table_data_size / block_size) * block_size; } /* Construct input lli table */ sep_build_lli_table(sep, &lli_in_array[current_in_entry], in_lli_table_ptr, ¤t_in_entry, &num_entries_in_table, table_data_size); /* Construct output lli table */ sep_build_lli_table(sep, &lli_out_array[current_out_entry], out_lli_table_ptr, ¤t_out_entry, &num_entries_out_table, table_data_size); /* If info entry is null - this is the first table built */ if (info_in_entry_ptr == NULL) { /* Set the output parameters to physical addresses */ *lli_table_in_ptr = sep_shared_area_virt_to_bus(sep, in_lli_table_ptr); *in_num_entries_ptr = num_entries_in_table; *lli_table_out_ptr = sep_shared_area_virt_to_bus(sep, out_lli_table_ptr); *out_num_entries_ptr = num_entries_out_table; *table_data_size_ptr = table_data_size; dev_dbg(&sep->pdev->dev, "output lli_table_in_ptr is %08lx\n", (unsigned long)*lli_table_in_ptr); dev_dbg(&sep->pdev->dev, "output lli_table_out_ptr is %08lx\n", (unsigned long)*lli_table_out_ptr); } else { /* Update the info entry of the previous in table */ info_in_entry_ptr->bus_address = sep_shared_area_virt_to_bus(sep, in_lli_table_ptr); info_in_entry_ptr->block_size = ((num_entries_in_table) << 24) | (table_data_size); /* Update the info entry of the previous in table */ info_out_entry_ptr->bus_address = sep_shared_area_virt_to_bus(sep, out_lli_table_ptr); info_out_entry_ptr->block_size = ((num_entries_out_table) << 24) | (table_data_size); dev_dbg(&sep->pdev->dev, "output lli_table_in_ptr:%08lx %08x\n", (unsigned long)info_in_entry_ptr->bus_address, info_in_entry_ptr->block_size); dev_dbg(&sep->pdev->dev, "output lli_table_out_ptr:%08lx %08x\n", (unsigned long)info_out_entry_ptr->bus_address, info_out_entry_ptr->block_size); } /* Save the pointer to the info entry of the current tables */ info_in_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1; info_out_entry_ptr = out_lli_table_ptr + num_entries_out_table - 1; dev_dbg(&sep->pdev->dev, "output num_entries_out_table is %x\n", (u32)num_entries_out_table); dev_dbg(&sep->pdev->dev, "output info_in_entry_ptr is %lx\n", (unsigned long)info_in_entry_ptr); dev_dbg(&sep->pdev->dev, "output info_out_entry_ptr is %lx\n", (unsigned long)info_out_entry_ptr); } /* Print input tables */ sep_debug_print_lli_tables(sep, (struct sep_lli_entry *) sep_shared_area_bus_to_virt(sep, *lli_table_in_ptr), *in_num_entries_ptr, *table_data_size_ptr); /* Print output tables */ sep_debug_print_lli_tables(sep, (struct sep_lli_entry *) sep_shared_area_bus_to_virt(sep, *lli_table_out_ptr), *out_num_entries_ptr, *table_data_size_ptr); return 0; } /** * sep_prepare_input_output_dma_table - prepare DMA I/O table * @app_virt_in_addr: * @app_virt_out_addr: * @data_size: * @block_size: * @lli_table_in_ptr: * @lli_table_out_ptr: * @in_num_entries_ptr: * @out_num_entries_ptr: * @table_data_size_ptr: * @is_kva: set for kernel data; used only for kernel crypto module * * This function builds input and output DMA tables for synhronic * symmetric operations (AES, DES, HASH). It also checks that each table * is of the modular block size * Note that all bus addresses that are passed to the SEP * are in 32 bit format; the SEP is a 32 bit device */ static int sep_prepare_input_output_dma_table(struct sep_device *sep, unsigned long app_virt_in_addr, unsigned long app_virt_out_addr, u32 data_size, u32 block_size, dma_addr_t *lli_table_in_ptr, dma_addr_t *lli_table_out_ptr, u32 *in_num_entries_ptr, u32 *out_num_entries_ptr, u32 *table_data_size_ptr, bool is_kva) { int error = 0; /* Array of pointers of page */ struct sep_lli_entry *lli_in_array; /* Array of pointers of page */ struct sep_lli_entry *lli_out_array; if (data_size == 0) { /* Prepare empty table for input and output */ sep_prepare_empty_lli_table(sep, lli_table_in_ptr, in_num_entries_ptr, table_data_size_ptr); sep_prepare_empty_lli_table(sep, lli_table_out_ptr, out_num_entries_ptr, table_data_size_ptr); goto update_dcb_counter; } /* Initialize the pages pointers */ sep->dma_res_arr[sep->nr_dcb_creat].in_page_array = NULL; sep->dma_res_arr[sep->nr_dcb_creat].out_page_array = NULL; /* Lock the pages of the buffer and translate them to pages */ if (is_kva == true) { error = sep_lock_kernel_pages(sep, app_virt_in_addr, data_size, &lli_in_array, SEP_DRIVER_IN_FLAG); if (error) { dev_warn(&sep->pdev->dev, "lock kernel for in failed\n"); goto end_function; } error = sep_lock_kernel_pages(sep, app_virt_out_addr, data_size, &lli_out_array, SEP_DRIVER_OUT_FLAG); if (error) { dev_warn(&sep->pdev->dev, "lock kernel for out failed\n"); goto end_function; } } else { error = sep_lock_user_pages(sep, app_virt_in_addr, data_size, &lli_in_array, SEP_DRIVER_IN_FLAG); if (error) { dev_warn(&sep->pdev->dev, "sep_lock_user_pages for input virtual buffer failed\n"); goto end_function; } error = sep_lock_user_pages(sep, app_virt_out_addr, data_size, &lli_out_array, SEP_DRIVER_OUT_FLAG); if (error) { dev_warn(&sep->pdev->dev, "sep_lock_user_pages for output virtual buffer failed\n"); goto end_function_free_lli_in; } } dev_dbg(&sep->pdev->dev, "prep input output dma table sep_in_num_pages is %x\n", sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages); dev_dbg(&sep->pdev->dev, "sep_out_num_pages is %x\n", sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages); dev_dbg(&sep->pdev->dev, "SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP is %x\n", SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP); /* Call the function that creates table from the lli arrays */ error = sep_construct_dma_tables_from_lli(sep, lli_in_array, sep->dma_res_arr[sep->nr_dcb_creat].in_num_pages, lli_out_array, sep->dma_res_arr[sep->nr_dcb_creat].out_num_pages, block_size, lli_table_in_ptr, lli_table_out_ptr, in_num_entries_ptr, out_num_entries_ptr, table_data_size_ptr); if (error) { dev_warn(&sep->pdev->dev, "sep_construct_dma_tables_from_lli failed\n"); goto end_function_with_error; } kfree(lli_out_array); kfree(lli_in_array); update_dcb_counter: /* Update DCB counter */ sep->nr_dcb_creat++; goto end_function; end_function_with_error: kfree(sep->dma_res_arr[sep->nr_dcb_creat].out_map_array); kfree(sep->dma_res_arr[sep->nr_dcb_creat].out_page_array); kfree(lli_out_array); end_function_free_lli_in: kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_map_array); kfree(sep->dma_res_arr[sep->nr_dcb_creat].in_page_array); kfree(lli_in_array); end_function: return error; } /** * sep_prepare_input_output_dma_table_in_dcb - prepare control blocks * @app_in_address: unsigned long; for data buffer in (user space) * @app_out_address: unsigned long; for data buffer out (user space) * @data_in_size: u32; for size of data * @block_size: u32; for block size * @tail_block_size: u32; for size of tail block * @isapplet: bool; to indicate external app * @is_kva: bool; kernel buffer; only used for kernel crypto module * * This function prepares the linked DMA tables and puts the * address for the linked list of tables inta a DCB (data control * block) the address of which is known by the SEP hardware * Note that all bus addresses that are passed to the SEP * are in 32 bit format; the SEP is a 32 bit device */ static int sep_prepare_input_output_dma_table_in_dcb(struct sep_device *sep, unsigned long app_in_address, unsigned long app_out_address, u32 data_in_size, u32 block_size, u32 tail_block_size, bool isapplet, bool is_kva) { int error = 0; /* Size of tail */ u32 tail_size = 0; /* Address of the created DCB table */ struct sep_dcblock *dcb_table_ptr = NULL; /* The physical address of the first input DMA table */ dma_addr_t in_first_mlli_address = 0; /* Number of entries in the first input DMA table */ u32 in_first_num_entries = 0; /* The physical address of the first output DMA table */ dma_addr_t out_first_mlli_address = 0; /* Number of entries in the first output DMA table */ u32 out_first_num_entries = 0; /* Data in the first input/output table */ u32 first_data_size = 0; if (sep->nr_dcb_creat == SEP_MAX_NUM_SYNC_DMA_OPS) { /* No more DCBs to allocate */ dev_warn(&sep->pdev->dev, "no more DCBs available\n"); error = -ENOSPC; goto end_function; } /* Allocate new DCB */ dcb_table_ptr = (struct sep_dcblock *)(sep->shared_addr + SEP_DRIVER_SYSTEM_DCB_MEMORY_OFFSET_IN_BYTES + (sep->nr_dcb_creat * sizeof(struct sep_dcblock))); /* Set the default values in the DCB */ dcb_table_ptr->input_mlli_address = 0; dcb_table_ptr->input_mlli_num_entries = 0; dcb_table_ptr->input_mlli_data_size = 0; dcb_table_ptr->output_mlli_address = 0; dcb_table_ptr->output_mlli_num_entries = 0; dcb_table_ptr->output_mlli_data_size = 0; dcb_table_ptr->tail_data_size = 0; dcb_table_ptr->out_vr_tail_pt = 0; if (isapplet == true) { /* Check if there is enough data for DMA operation */ if (data_in_size < SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE) { if (is_kva == true) { memcpy(dcb_table_ptr->tail_data, (void *)app_in_address, data_in_size); } else { if (copy_from_user(dcb_table_ptr->tail_data, (void __user *)app_in_address, data_in_size)) { error = -EFAULT; goto end_function; } } dcb_table_ptr->tail_data_size = data_in_size; /* Set the output user-space address for mem2mem op */ if (app_out_address) dcb_table_ptr->out_vr_tail_pt = (aligned_u64)app_out_address; /* * Update both data length parameters in order to avoid * second data copy and allow building of empty mlli * tables */ tail_size = 0x0; data_in_size = 0x0; } else { if (!app_out_address) { tail_size = data_in_size % block_size; if (!tail_size) { if (tail_block_size == block_size) tail_size = block_size; } } else { tail_size = 0; } } if (tail_size) { if (is_kva == true) { memcpy(dcb_table_ptr->tail_data, (void *)(app_in_address + data_in_size - tail_size), tail_size); } else { /* We have tail data - copy it to DCB */ if (copy_from_user(dcb_table_ptr->tail_data, (void *)(app_in_address + data_in_size - tail_size), tail_size)) { error = -EFAULT; goto end_function; } } if (app_out_address) /* * Calculate the output address * according to tail data size */ dcb_table_ptr->out_vr_tail_pt = (aligned_u64)app_out_address + data_in_size - tail_size; /* Save the real tail data size */ dcb_table_ptr->tail_data_size = tail_size; /* * Update the data size without the tail * data size AKA data for the dma */ data_in_size = (data_in_size - tail_size); } } /* Check if we need to build only input table or input/output */ if (app_out_address) { /* Prepare input/output tables */ error = sep_prepare_input_output_dma_table(sep, app_in_address, app_out_address, data_in_size, block_size, &in_first_mlli_address, &out_first_mlli_address, &in_first_num_entries, &out_first_num_entries, &first_data_size, is_kva); } else { /* Prepare input tables */ error = sep_prepare_input_dma_table(sep, app_in_address, data_in_size, block_size, &in_first_mlli_address, &in_first_num_entries, &first_data_size, is_kva); } if (error) { dev_warn(&sep->pdev->dev, "prepare DMA table call failed from prepare DCB call\n"); goto end_function; } /* Set the DCB values */ dcb_table_ptr->input_mlli_address = in_first_mlli_address; dcb_table_ptr->input_mlli_num_entries = in_first_num_entries; dcb_table_ptr->input_mlli_data_size = first_data_size; dcb_table_ptr->output_mlli_address = out_first_mlli_address; dcb_table_ptr->output_mlli_num_entries = out_first_num_entries; dcb_table_ptr->output_mlli_data_size = first_data_size; end_function: return error; } /** * sep_free_dma_tables_and_dcb - free DMA tables and DCBs * @sep: pointer to struct sep_device * @isapplet: indicates external application (used for kernel access) * @is_kva: indicates kernel addresses (only used for kernel crypto) * * This function frees the DMA tables and DCB */ static int sep_free_dma_tables_and_dcb(struct sep_device *sep, bool isapplet, bool is_kva) { int i = 0; int error = 0; int error_temp = 0; struct sep_dcblock *dcb_table_ptr; unsigned long pt_hold; void *tail_pt; if (isapplet == true) { /* Set pointer to first DCB table */ dcb_table_ptr = (struct sep_dcblock *) (sep->shared_addr + SEP_DRIVER_SYSTEM_DCB_MEMORY_OFFSET_IN_BYTES); /* Go over each DCB and see if tail pointer must be updated */ for (i = 0; i < sep->nr_dcb_creat; i++, dcb_table_ptr++) { if (dcb_table_ptr->out_vr_tail_pt) { pt_hold = (unsigned long)dcb_table_ptr->out_vr_tail_pt; tail_pt = (void *)pt_hold; if (is_kva == true) { memcpy(tail_pt, dcb_table_ptr->tail_data, dcb_table_ptr->tail_data_size); } else { error_temp = copy_to_user( tail_pt, dcb_table_ptr->tail_data, dcb_table_ptr->tail_data_size); } if (error_temp) { /* Release the DMA resource */ error = -EFAULT; break; } } } } /* Free the output pages, if any */ sep_free_dma_table_data_handler(sep); return error; } /** * sep_get_static_pool_addr_handler - get static pool address * @sep: pointer to struct sep_device * * This function sets the bus and virtual addresses of the static pool */ static int sep_get_static_pool_addr_handler(struct sep_device *sep) { u32 *static_pool_addr = NULL; static_pool_addr = (u32 *)(sep->shared_addr + SEP_DRIVER_SYSTEM_RAR_MEMORY_OFFSET_IN_BYTES); static_pool_addr[0] = SEP_STATIC_POOL_VAL_TOKEN; static_pool_addr[1] = (u32)sep->shared_bus + SEP_DRIVER_STATIC_AREA_OFFSET_IN_BYTES; dev_dbg(&sep->pdev->dev, "static pool segment: physical %x\n", (u32)static_pool_addr[1]); return 0; } /** * sep_end_transaction_handler - end transaction * @sep: pointer to struct sep_device * * This API handles the end transaction request */ static int sep_end_transaction_handler(struct sep_device *sep) { /* Clear the data pool pointers Token */ memset((void *)(sep->shared_addr + SEP_DRIVER_DATA_POOL_ALLOCATION_OFFSET_IN_BYTES), 0, sep->num_of_data_allocations*2*sizeof(u32)); /* Check that all the DMA resources were freed */ sep_free_dma_table_data_handler(sep); clear_bit(SEP_MMAP_LOCK_BIT, &sep->in_use_flags); /* * We are now through with the transaction. Let's * allow other processes who have the device open * to perform transactions */ mutex_lock(&sep->sep_mutex); sep->pid_doing_transaction = 0; mutex_unlock(&sep->sep_mutex); /* Raise event for stuck contextes */ wake_up(&sep->event); return 0; } /** * sep_prepare_dcb_handler - prepare a control block * @sep: pointer to struct sep_device * @arg: pointer to user parameters * * This function will retrieve the RAR buffer physical addresses, type * & size corresponding to the RAR handles provided in the buffers vector. */ static int sep_prepare_dcb_handler(struct sep_device *sep, unsigned long arg) { int error; /* Command arguments */ struct build_dcb_struct command_args; /* Get the command arguments */ if (copy_from_user(&command_args, (void __user *)arg, sizeof(struct build_dcb_struct))) { error = -EFAULT; goto end_function; } dev_dbg(&sep->pdev->dev, "prep dcb handler app_in_address is %08llx\n", command_args.app_in_address); dev_dbg(&sep->pdev->dev, "app_out_address is %08llx\n", command_args.app_out_address); dev_dbg(&sep->pdev->dev, "data_size is %x\n", command_args.data_in_size); dev_dbg(&sep->pdev->dev, "block_size is %x\n", command_args.block_size); dev_dbg(&sep->pdev->dev, "tail block_size is %x\n", command_args.tail_block_size); error = sep_prepare_input_output_dma_table_in_dcb(sep, (unsigned long)command_args.app_in_address, (unsigned long)command_args.app_out_address, command_args.data_in_size, command_args.block_size, command_args.tail_block_size, true, false); end_function: return error; } /** * sep_free_dcb_handler - free control block resources * @sep: pointer to struct sep_device * * This function frees the DCB resources and updates the needed * user-space buffers. */ static int sep_free_dcb_handler(struct sep_device *sep) { return sep_free_dma_tables_and_dcb(sep, false, false); } /** * sep_rar_prepare_output_msg_handler - prepare an output message * @sep: pointer to struct sep_device * @arg: pointer to user parameters * * This function will retrieve the RAR buffer physical addresses, type * & size corresponding to the RAR handles provided in the buffers vector. */ static int sep_rar_prepare_output_msg_handler(struct sep_device *sep, unsigned long arg) { int error = 0; /* Command args */ struct rar_hndl_to_bus_struct command_args; /* Bus address */ dma_addr_t rar_bus = 0; /* Holds the RAR address in the system memory offset */ u32 *rar_addr; /* Copy the data */ if (copy_from_user(&command_args, (void __user *)arg, sizeof(command_args))) { error = -EFAULT; goto end_function; } /* Call to translation function only if user handle is not NULL */ if (command_args.rar_handle) return -EOPNOTSUPP; dev_dbg(&sep->pdev->dev, "rar msg; rar_addr_bus = %x\n", (u32)rar_bus); /* Set value in the SYSTEM MEMORY offset */ rar_addr = (u32 *)(sep->shared_addr + SEP_DRIVER_SYSTEM_RAR_MEMORY_OFFSET_IN_BYTES); /* Copy the physical address to the System Area for the SEP */ rar_addr[0] = SEP_RAR_VAL_TOKEN; rar_addr[1] = rar_bus; end_function: return error; } /** * sep_ioctl - ioctl api * @filp: pointer to struct file * @cmd: command * @arg: pointer to argument structure * * Implement the ioctl methods available on the SEP device. */ static long sep_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int error = 0; struct sep_device *sep = filp->private_data; /* Make sure we own this device */ mutex_lock(&sep->sep_mutex); if ((current->pid != sep->pid_doing_transaction) && (sep->pid_doing_transaction != 0)) { dev_dbg(&sep->pdev->dev, "ioctl pid is not owner\n"); error = -EACCES; goto end_function; } mutex_unlock(&sep->sep_mutex); if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER) return -ENOTTY; /* Lock to prevent the daemon to interfere with operation */ mutex_lock(&sep->ioctl_mutex); switch (cmd) { case SEP_IOCSENDSEPCOMMAND: /* Send command to SEP */ error = sep_send_command_handler(sep); break; case SEP_IOCALLOCDATAPOLL: /* Allocate data pool */ error = sep_allocate_data_pool_memory_handler(sep, arg); break; case SEP_IOCGETSTATICPOOLADDR: /* Inform the SEP the bus address of the static pool */ error = sep_get_static_pool_addr_handler(sep); break; case SEP_IOCENDTRANSACTION: error = sep_end_transaction_handler(sep); break; case SEP_IOCRARPREPAREMESSAGE: error = sep_rar_prepare_output_msg_handler(sep, arg); break; case SEP_IOCPREPAREDCB: error = sep_prepare_dcb_handler(sep, arg); break; case SEP_IOCFREEDCB: error = sep_free_dcb_handler(sep); break; default: error = -ENOTTY; break; } end_function: mutex_unlock(&sep->ioctl_mutex); return error; } /** * sep_singleton_ioctl - ioctl api for singleton interface * @filp: pointer to struct file * @cmd: command * @arg: pointer to argument structure * * Implement the additional ioctls for the singleton device */ static long sep_singleton_ioctl(struct file *filp, u32 cmd, unsigned long arg) { long error = 0; struct sep_device *sep = filp->private_data; /* Check that the command is for the SEP device */ if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER) return -ENOTTY; /* Make sure we own this device */ mutex_lock(&sep->sep_mutex); if ((current->pid != sep->pid_doing_transaction) && (sep->pid_doing_transaction != 0)) { dev_dbg(&sep->pdev->dev, "singleton ioctl pid is not owner\n"); mutex_unlock(&sep->sep_mutex); return -EACCES; } mutex_unlock(&sep->sep_mutex); switch (cmd) { case SEP_IOCTLSETCALLERID: mutex_lock(&sep->ioctl_mutex); error = sep_set_caller_id_handler(sep, arg); mutex_unlock(&sep->ioctl_mutex); break; default: error = sep_ioctl(filp, cmd, arg); break; } return error; } /** * sep_request_daemon_ioctl - ioctl for daemon * @filp: pointer to struct file * @cmd: command * @arg: pointer to argument structure * * Called by the request daemon to perform ioctls on the daemon device */ static long sep_request_daemon_ioctl(struct file *filp, u32 cmd, unsigned long arg) { long error; struct sep_device *sep = filp->private_data; /* Check that the command is for SEP device */ if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER) return -ENOTTY; /* Only one process can access ioctl at any given time */ mutex_lock(&sep->ioctl_mutex); switch (cmd) { case SEP_IOCSENDSEPRPLYCOMMAND: /* Send reply command to SEP */ error = sep_req_daemon_send_reply_command_handler(sep); break; case SEP_IOCENDTRANSACTION: /* * End req daemon transaction, do nothing * will be removed upon update in middleware * API library */ error = 0; break; default: error = -ENOTTY; } mutex_unlock(&sep->ioctl_mutex); return error; } /** * sep_inthandler - interrupt handler * @irq: interrupt * @dev_id: device id */ static irqreturn_t sep_inthandler(int irq, void *dev_id) { irqreturn_t int_error = IRQ_HANDLED; unsigned long lck_flags; u32 reg_val, reg_val2 = 0; struct sep_device *sep = dev_id; /* Read the IRR register to check if this is SEP interrupt */ reg_val = sep_read_reg(sep, HW_HOST_IRR_REG_ADDR); if (reg_val & (0x1 << 13)) { /* Lock and update the counter of reply messages */ spin_lock_irqsave(&sep->snd_rply_lck, lck_flags); sep->reply_ct++; spin_unlock_irqrestore(&sep->snd_rply_lck, lck_flags); dev_dbg(&sep->pdev->dev, "sep int: send_ct %lx reply_ct %lx\n", sep->send_ct, sep->reply_ct); /* Is this printf or daemon request? */ reg_val2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR); dev_dbg(&sep->pdev->dev, "SEP Interrupt - reg2 is %08x\n", reg_val2); if ((reg_val2 >> 30) & 0x1) { dev_dbg(&sep->pdev->dev, "int: printf request\n"); wake_up(&sep->event_request_daemon); } else if (reg_val2 >> 31) { dev_dbg(&sep->pdev->dev, "int: daemon request\n"); wake_up(&sep->event_request_daemon); } else { dev_dbg(&sep->pdev->dev, "int: SEP reply\n"); wake_up(&sep->event); } } else { dev_dbg(&sep->pdev->dev, "int: not SEP interrupt\n"); int_error = IRQ_NONE; } if (int_error == IRQ_HANDLED) sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, reg_val); return int_error; } /** * sep_reconfig_shared_area - reconfigure shared area * @sep: pointer to struct sep_device * * Reconfig the shared area between HOST and SEP - needed in case * the DX_CC_Init function was called before OS loading. */ static int sep_reconfig_shared_area(struct sep_device *sep) { int ret_val; /* use to limit waiting for SEP */ unsigned long end_time; /* Send the new SHARED MESSAGE AREA to the SEP */ dev_dbg(&sep->pdev->dev, "reconfig shared; sending %08llx to sep\n", (unsigned long long)sep->shared_bus); sep_write_reg(sep, HW_HOST_HOST_SEP_GPR1_REG_ADDR, sep->shared_bus); /* Poll for SEP response */ ret_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR); end_time = jiffies + (WAIT_TIME * HZ); while ((time_before(jiffies, end_time)) && (ret_val != 0xffffffff) && (ret_val != sep->shared_bus)) ret_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR); /* Check the return value (register) */ if (ret_val != sep->shared_bus) { dev_warn(&sep->pdev->dev, "could not reconfig shared area\n"); dev_warn(&sep->pdev->dev, "result was %x\n", ret_val); ret_val = -ENOMEM; } else ret_val = 0; dev_dbg(&sep->pdev->dev, "reconfig shared area end\n"); return ret_val; } /* File operation for singleton SEP operations */ static const struct file_operations singleton_file_operations = { .owner = THIS_MODULE, .unlocked_ioctl = sep_singleton_ioctl, .poll = sep_poll, .open = sep_singleton_open, .release = sep_singleton_release, .mmap = sep_mmap, }; /* File operation for daemon operations */ static const struct file_operations daemon_file_operations = { .owner = THIS_MODULE, .unlocked_ioctl = sep_request_daemon_ioctl, .poll = sep_request_daemon_poll, .open = sep_request_daemon_open, .release = sep_request_daemon_release, .mmap = sep_request_daemon_mmap, }; /* The files operations structure of the driver */ static const struct file_operations sep_file_operations = { .owner = THIS_MODULE, .unlocked_ioctl = sep_ioctl, .poll = sep_poll, .open = sep_open, .release = sep_release, .mmap = sep_mmap, }; /** * sep_register_driver_with_fs - register misc devices * @sep: pointer to struct sep_device * * This function registers the driver with the file system */ static int sep_register_driver_with_fs(struct sep_device *sep) { int ret_val; sep->miscdev_sep.minor = MISC_DYNAMIC_MINOR; sep->miscdev_sep.name = SEP_DEV_NAME; sep->miscdev_sep.fops = &sep_file_operations; sep->miscdev_singleton.minor = MISC_DYNAMIC_MINOR; sep->miscdev_singleton.name = SEP_DEV_SINGLETON; sep->miscdev_singleton.fops = &singleton_file_operations; sep->miscdev_daemon.minor = MISC_DYNAMIC_MINOR; sep->miscdev_daemon.name = SEP_DEV_DAEMON; sep->miscdev_daemon.fops = &daemon_file_operations; ret_val = misc_register(&sep->miscdev_sep); if (ret_val) { dev_warn(&sep->pdev->dev, "misc reg fails for SEP %x\n", ret_val); return ret_val; } ret_val = misc_register(&sep->miscdev_singleton); if (ret_val) { dev_warn(&sep->pdev->dev, "misc reg fails for sing %x\n", ret_val); misc_deregister(&sep->miscdev_sep); return ret_val; } ret_val = misc_register(&sep->miscdev_daemon); if (ret_val) { dev_warn(&sep->pdev->dev, "misc reg fails for dmn %x\n", ret_val); misc_deregister(&sep->miscdev_sep); misc_deregister(&sep->miscdev_singleton); return ret_val; } return ret_val; } /** * sep_probe - probe a matching PCI device * @pdev: pci_device * @end: pci_device_id * * Attempt to set up and configure a SEP device that has been * discovered by the PCI layer. */ static int __devinit sep_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int error = 0; struct sep_device *sep; if (sep_dev != NULL) { dev_warn(&pdev->dev, "only one SEP supported.\n"); return -EBUSY; } /* Enable the device */ error = pci_enable_device(pdev); if (error) { dev_warn(&pdev->dev, "error enabling pci device\n"); goto end_function; } /* Allocate the sep_device structure for this device */ sep_dev = kzalloc(sizeof(struct sep_device), GFP_ATOMIC); if (sep_dev == NULL) { dev_warn(&pdev->dev, "can't kmalloc the sep_device structure\n"); error = -ENOMEM; goto end_function_disable_device; } /* * We're going to use another variable for actually * working with the device; this way, if we have * multiple devices in the future, it would be easier * to make appropriate changes */ sep = sep_dev; sep->pdev = pci_dev_get(pdev); init_waitqueue_head(&sep->event); init_waitqueue_head(&sep->event_request_daemon); spin_lock_init(&sep->snd_rply_lck); mutex_init(&sep->sep_mutex); mutex_init(&sep->ioctl_mutex); dev_dbg(&sep->pdev->dev, "sep probe: PCI obtained, device being prepared\n"); dev_dbg(&sep->pdev->dev, "revision is %d\n", sep->pdev->revision); /* Set up our register area */ sep->reg_physical_addr = pci_resource_start(sep->pdev, 0); if (!sep->reg_physical_addr) { dev_warn(&sep->pdev->dev, "Error getting register start\n"); error = -ENODEV; goto end_function_free_sep_dev; } sep->reg_physical_end = pci_resource_end(sep->pdev, 0); if (!sep->reg_physical_end) { dev_warn(&sep->pdev->dev, "Error getting register end\n"); error = -ENODEV; goto end_function_free_sep_dev; } sep->reg_addr = ioremap_nocache(sep->reg_physical_addr, (size_t)(sep->reg_physical_end - sep->reg_physical_addr + 1)); if (!sep->reg_addr) { dev_warn(&sep->pdev->dev, "Error getting register virtual\n"); error = -ENODEV; goto end_function_free_sep_dev; } dev_dbg(&sep->pdev->dev, "Register area start %llx end %llx virtual %p\n", (unsigned long long)sep->reg_physical_addr, (unsigned long long)sep->reg_physical_end, sep->reg_addr); /* Allocate the shared area */ sep->shared_size = SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES + SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES + SEP_DRIVER_STATIC_AREA_SIZE_IN_BYTES + SEP_DRIVER_SYSTEM_DATA_MEMORY_SIZE_IN_BYTES; if (sep_map_and_alloc_shared_area(sep)) { error = -ENOMEM; /* Allocation failed */ goto end_function_error; } /* Clear ICR register */ sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, 0xFFFFFFFF); /* Set the IMR register - open only GPR 2 */ sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, (~(0x1 << 13))); /* Read send/receive counters from SEP */ sep->reply_ct = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR); sep->reply_ct &= 0x3FFFFFFF; sep->send_ct = sep->reply_ct; /* Get the interrupt line */ error = request_irq(pdev->irq, sep_inthandler, IRQF_SHARED, "sep_driver", sep); if (error) goto end_function_deallocate_sep_shared_area; /* The new chip requires a shared area reconfigure */ if (sep->pdev->revision == 4) { /* Only for new chip */ error = sep_reconfig_shared_area(sep); if (error) goto end_function_free_irq; } /* Finally magic up the device nodes */ /* Register driver with the fs */ error = sep_register_driver_with_fs(sep); if (error == 0) /* Success */ return 0; end_function_free_irq: free_irq(pdev->irq, sep); end_function_deallocate_sep_shared_area: /* De-allocate shared area */ sep_unmap_and_free_shared_area(sep); end_function_error: iounmap(sep->reg_addr); end_function_free_sep_dev: pci_dev_put(sep_dev->pdev); kfree(sep_dev); sep_dev = NULL; end_function_disable_device: pci_disable_device(pdev); end_function: return error; } static void sep_remove(struct pci_dev *pdev) { struct sep_device *sep = sep_dev; /* Unregister from fs */ misc_deregister(&sep->miscdev_sep); misc_deregister(&sep->miscdev_singleton); misc_deregister(&sep->miscdev_daemon); /* Free the irq */ free_irq(sep->pdev->irq, sep); /* Free the shared area */ sep_unmap_and_free_shared_area(sep_dev); iounmap((void *) sep_dev->reg_addr); } static DEFINE_PCI_DEVICE_TABLE(sep_pci_id_tbl) = { {PCI_DEVICE(PCI_VENDOR_ID_INTEL, MFLD_PCI_DEVICE_ID)}, {0} }; MODULE_DEVICE_TABLE(pci, sep_pci_id_tbl); /* Field for registering driver to PCI device */ static struct pci_driver sep_pci_driver = { .name = "sep_sec_driver", .id_table = sep_pci_id_tbl, .probe = sep_probe, .remove = sep_remove }; /** * sep_init - init function * * Module load time. Register the PCI device driver. */ static int __init sep_init(void) { return pci_register_driver(&sep_pci_driver); } /** * sep_exit - called to unload driver * * Drop the misc devices then remove and unmap the various resources * that are not released by the driver remove method. */ static void __exit sep_exit(void) { pci_unregister_driver(&sep_pci_driver); } module_init(sep_init); module_exit(sep_exit); MODULE_LICENSE("GPL");