/* * Copyright 2008 Pavel Machek <pavel@ucw.cz> * * Distribute under GPLv2. * * The original driver was written by: * Jeff Lee <YY_Lee@issc.com.tw> * * and was adapted to the 2.6 kernel by: * Costantino Leandro (Rxart Desktop) <le_costantino@pixartargentina.com.ar> */ #include <net/mac80211.h> #include <linux/usb.h> #include "core.h" #include "mds_f.h" #include "mto.h" #include "wbhal.h" #include "wb35reg_f.h" #include "wb35tx_f.h" #include "wb35rx_f.h" MODULE_DESCRIPTION("IS89C35 802.11bg WLAN USB Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION("0.1"); static const struct usb_device_id wb35_table[] = { { USB_DEVICE(0x0416, 0x0035) }, { USB_DEVICE(0x18E8, 0x6201) }, { USB_DEVICE(0x18E8, 0x6206) }, { USB_DEVICE(0x18E8, 0x6217) }, { USB_DEVICE(0x18E8, 0x6230) }, { USB_DEVICE(0x18E8, 0x6233) }, { USB_DEVICE(0x1131, 0x2035) }, { 0, } }; MODULE_DEVICE_TABLE(usb, wb35_table); static struct ieee80211_rate wbsoft_rates[] = { { .bitrate = 10, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, }; static struct ieee80211_channel wbsoft_channels[] = { { .center_freq = 2412 }, }; static struct ieee80211_supported_band wbsoft_band_2GHz = { .channels = wbsoft_channels, .n_channels = ARRAY_SIZE(wbsoft_channels), .bitrates = wbsoft_rates, .n_bitrates = ARRAY_SIZE(wbsoft_rates), }; static void hal_set_beacon_period(struct hw_data *pHwData, u16 beacon_period) { u32 tmp; if (pHwData->SurpriseRemove) return; pHwData->BeaconPeriod = beacon_period; tmp = pHwData->BeaconPeriod << 16; tmp |= pHwData->ProbeDelay; Wb35Reg_Write(pHwData, 0x0848, tmp); } static int wbsoft_add_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { struct wbsoft_priv *priv = dev->priv; hal_set_beacon_period(&priv->sHwData, vif->bss_conf.beacon_int); return 0; } static void wbsoft_remove_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { printk("wbsoft_remove interface called\n"); } static void wbsoft_stop(struct ieee80211_hw *hw) { printk(KERN_INFO "%s called\n", __func__); } static int wbsoft_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { printk(KERN_INFO "%s called\n", __func__); return 0; } static u64 wbsoft_prepare_multicast(struct ieee80211_hw *hw, struct netdev_hw_addr_list *mc_list) { return netdev_hw_addr_list_count(mc_list); } static void wbsoft_configure_filter(struct ieee80211_hw *dev, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { unsigned int new_flags; new_flags = 0; if (*total_flags & FIF_PROMISC_IN_BSS) new_flags |= FIF_PROMISC_IN_BSS; else if ((*total_flags & FIF_ALLMULTI) || (multicast > 32)) new_flags |= FIF_ALLMULTI; dev->flags &= ~IEEE80211_HW_RX_INCLUDES_FCS; *total_flags = new_flags; } static void wbsoft_tx(struct ieee80211_hw *dev, struct sk_buff *skb) { struct wbsoft_priv *priv = dev->priv; if (priv->sMlmeFrame.IsInUsed != PACKET_FREE_TO_USE) { priv->sMlmeFrame.wNumTxMMPDUDiscarded++; kfree_skb(skb); return; } priv->sMlmeFrame.IsInUsed = PACKET_COME_FROM_MLME; priv->sMlmeFrame.pMMPDU = skb->data; priv->sMlmeFrame.DataType = FRAME_TYPE_802_11_MANAGEMENT; priv->sMlmeFrame.len = skb->len; priv->sMlmeFrame.wNumTxMMPDU++; /* * H/W will enter power save by set the register. S/W don't send null * frame with PWRMgt bit enbled to enter power save now. */ Mds_Tx(priv); } static int wbsoft_start(struct ieee80211_hw *dev) { struct wbsoft_priv *priv = dev->priv; priv->enabled = true; return 0; } static void hal_set_radio_mode(struct hw_data *pHwData, unsigned char radio_off) { struct wb35_reg *reg = &pHwData->reg; if (pHwData->SurpriseRemove) return; if (radio_off) { /* disable Baseband receive off */ pHwData->CurrentRadioSw = 1; /* off */ reg->M24_MacControl &= 0xffffffbf; } else { pHwData->CurrentRadioSw = 0; /* on */ reg->M24_MacControl |= 0x00000040; } Wb35Reg_Write(pHwData, 0x0824, reg->M24_MacControl); } static void hal_set_current_channel_ex(struct hw_data *pHwData, struct chan_info channel) { struct wb35_reg *reg = &pHwData->reg; if (pHwData->SurpriseRemove) return; printk("Going to channel: %d/%d\n", channel.band, channel.ChanNo); RFSynthesizer_SwitchingChannel(pHwData, channel); /* Switch channel */ pHwData->Channel = channel.ChanNo; pHwData->band = channel.band; pr_debug("Set channel is %d, band =%d\n", pHwData->Channel, pHwData->band); reg->M28_MacControl &= ~0xff; /* Clean channel information field */ reg->M28_MacControl |= channel.ChanNo; Wb35Reg_WriteWithCallbackValue(pHwData, 0x0828, reg->M28_MacControl, (s8 *) &channel, sizeof(struct chan_info)); } static void hal_set_current_channel(struct hw_data *pHwData, struct chan_info channel) { hal_set_current_channel_ex(pHwData, channel); } static void hal_set_accept_broadcast(struct hw_data *pHwData, u8 enable) { struct wb35_reg *reg = &pHwData->reg; if (pHwData->SurpriseRemove) return; reg->M00_MacControl &= ~0x02000000; /* The HW value */ if (enable) reg->M00_MacControl |= 0x02000000; /* The HW value */ Wb35Reg_Write(pHwData, 0x0800, reg->M00_MacControl); } /* For wep key error detection, we need to accept broadcast packets to be received temporary. */ static void hal_set_accept_promiscuous(struct hw_data *pHwData, u8 enable) { struct wb35_reg *reg = &pHwData->reg; if (pHwData->SurpriseRemove) return; if (enable) { reg->M00_MacControl |= 0x00400000; Wb35Reg_Write(pHwData, 0x0800, reg->M00_MacControl); } else { reg->M00_MacControl &= ~0x00400000; Wb35Reg_Write(pHwData, 0x0800, reg->M00_MacControl); } } static void hal_set_accept_multicast(struct hw_data *pHwData, u8 enable) { struct wb35_reg *reg = &pHwData->reg; if (pHwData->SurpriseRemove) return; reg->M00_MacControl &= ~0x01000000; /* The HW value */ if (enable) reg->M00_MacControl |= 0x01000000; /* The HW value */ Wb35Reg_Write(pHwData, 0x0800, reg->M00_MacControl); } static void hal_set_accept_beacon(struct hw_data *pHwData, u8 enable) { struct wb35_reg *reg = &pHwData->reg; if (pHwData->SurpriseRemove) return; if (!enable) /* Due to SME and MLME are not suitable for 35 */ return; reg->M00_MacControl &= ~0x04000000; /* The HW value */ if (enable) reg->M00_MacControl |= 0x04000000; /* The HW value */ Wb35Reg_Write(pHwData, 0x0800, reg->M00_MacControl); } static int wbsoft_config(struct ieee80211_hw *dev, u32 changed) { struct wbsoft_priv *priv = dev->priv; struct chan_info ch; printk("wbsoft_config called\n"); /* Should use channel_num, or something, as that is already pre-translated */ ch.band = 1; ch.ChanNo = 1; hal_set_current_channel(&priv->sHwData, ch); hal_set_accept_broadcast(&priv->sHwData, 1); hal_set_accept_promiscuous(&priv->sHwData, 1); hal_set_accept_multicast(&priv->sHwData, 1); hal_set_accept_beacon(&priv->sHwData, 1); hal_set_radio_mode(&priv->sHwData, 0); return 0; } static u64 wbsoft_get_tsf(struct ieee80211_hw *dev) { printk("wbsoft_get_tsf called\n"); return 0; } static const struct ieee80211_ops wbsoft_ops = { .tx = wbsoft_tx, .start = wbsoft_start, .stop = wbsoft_stop, .add_interface = wbsoft_add_interface, .remove_interface = wbsoft_remove_interface, .config = wbsoft_config, .prepare_multicast = wbsoft_prepare_multicast, .configure_filter = wbsoft_configure_filter, .get_stats = wbsoft_get_stats, .get_tsf = wbsoft_get_tsf, }; static void hal_set_ethernet_address(struct hw_data *pHwData, u8 *current_address) { u32 ltmp[2]; if (pHwData->SurpriseRemove) return; memcpy(pHwData->CurrentMacAddress, current_address, ETH_ALEN); ltmp[0] = cpu_to_le32(*(u32 *) pHwData->CurrentMacAddress); ltmp[1] = cpu_to_le32(*(u32 *) (pHwData->CurrentMacAddress + 4)) & 0xffff; Wb35Reg_BurstWrite(pHwData, 0x03e8, ltmp, 2, AUTO_INCREMENT); } static void hal_get_permanent_address(struct hw_data *pHwData, u8 *pethernet_address) { if (pHwData->SurpriseRemove) return; memcpy(pethernet_address, pHwData->PermanentMacAddress, 6); } static void hal_stop(struct hw_data *pHwData) { struct wb35_reg *reg = &pHwData->reg; pHwData->Wb35Rx.rx_halt = 1; Wb35Rx_stop(pHwData); pHwData->Wb35Tx.tx_halt = 1; Wb35Tx_stop(pHwData); reg->D00_DmaControl &= ~0xc0000000; /* Tx Off, Rx Off */ Wb35Reg_Write(pHwData, 0x0400, reg->D00_DmaControl); } static unsigned char hal_idle(struct hw_data *pHwData) { struct wb35_reg *reg = &pHwData->reg; if (!pHwData->SurpriseRemove && reg->EP0vm_state != VM_STOP) return false; return true; } u8 hal_get_antenna_number(struct hw_data *pHwData) { struct wb35_reg *reg = &pHwData->reg; if ((reg->BB2C & BIT(11)) == 0) return 0; else return 1; } /* 0 : radio on; 1: radio off */ static u8 hal_get_hw_radio_off(struct hw_data *pHwData) { struct wb35_reg *reg = &pHwData->reg; if (pHwData->SurpriseRemove) return 1; /* read the bit16 of register U1B0 */ Wb35Reg_Read(pHwData, 0x3b0, ®->U1B0); if ((reg->U1B0 & 0x00010000)) { pHwData->CurrentRadioHw = 1; return 1; } else { pHwData->CurrentRadioHw = 0; return 0; } } static u8 LED_GRAY[20] = { 0, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 8, 6, 4, 2 }; static u8 LED_GRAY2[30] = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 14, 13, 12, 11, 10, 9, 8 }; static void hal_led_control(unsigned long data) { struct wbsoft_priv *adapter = (struct wbsoft_priv *)data; struct hw_data *pHwData = &adapter->sHwData; struct wb35_reg *reg = &pHwData->reg; u32 LEDSet = (pHwData->SoftwareSet & HAL_LED_SET_MASK) >> HAL_LED_SET_SHIFT; u32 TimeInterval = 500, ltmp, ltmp2; ltmp = 0; if (pHwData->SurpriseRemove) return; if (pHwData->LED_control) { ltmp2 = pHwData->LED_control & 0xff; if (ltmp2 == 5) { /* 5 is WPS mode */ TimeInterval = 100; ltmp2 = (pHwData->LED_control >> 8) & 0xff; switch (ltmp2) { case 1: /* [0.2 On][0.1 Off]... */ pHwData->LED_Blinking %= 3; ltmp = 0x1010; /* Led 1 & 0 Green and Red */ if (pHwData->LED_Blinking == 2) /* Turn off */ ltmp = 0; break; case 2: /* [0.1 On][0.1 Off]... */ pHwData->LED_Blinking %= 2; ltmp = 0x0010; /* Led 0 red color */ if (pHwData->LED_Blinking) /* Turn off */ ltmp = 0; break; case 3: /* [0.1 On][0.1 Off][0.1 On][0.1 Off][0.1 On][0.1 Off][0.1 On][0.1 Off][0.1 On][0.1 Off][0.5 Off]... */ pHwData->LED_Blinking %= 15; ltmp = 0x0010; /* Led 0 red color */ if ((pHwData->LED_Blinking >= 9) || (pHwData->LED_Blinking % 2)) /* Turn off 0.6 sec */ ltmp = 0; break; case 4: /* [300 On][ off ] */ ltmp = 0x1000; /* Led 1 Green color */ if (pHwData->LED_Blinking >= 3000) ltmp = 0; /* led maybe on after 300sec * 32bit counter overlap. */ break; } pHwData->LED_Blinking++; reg->U1BC_LEDConfigure = ltmp; if (LEDSet != 7) { /* Only 111 mode has 2 LEDs on PCB. */ reg->U1BC_LEDConfigure |= (ltmp & 0xff) << 8; /* Copy LED result to each LED control register */ reg->U1BC_LEDConfigure |= (ltmp & 0xff00) >> 8; } Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); } } else if (pHwData->CurrentRadioSw || pHwData->CurrentRadioHw) { /* If radio off */ if (reg->U1BC_LEDConfigure & 0x1010) { reg->U1BC_LEDConfigure &= ~0x1010; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); } } else { switch (LEDSet) { case 4: /* [100] Only 1 Led be placed on PCB and use pin 21 of IC. Use LED_0 for showing */ if (!pHwData->LED_LinkOn) { /* Blink only if not Link On */ /* Blinking if scanning is on progress */ if (pHwData->LED_Scanning) { if (pHwData->LED_Blinking == 0) { reg->U1BC_LEDConfigure |= 0x10; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 On */ pHwData->LED_Blinking = 1; TimeInterval = 300; } else { reg->U1BC_LEDConfigure &= ~0x10; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */ pHwData->LED_Blinking = 0; TimeInterval = 300; } } else { /* Turn Off LED_0 */ if (reg->U1BC_LEDConfigure & 0x10) { reg->U1BC_LEDConfigure &= ~0x10; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */ } } } else { /* Turn On LED_0 */ if ((reg->U1BC_LEDConfigure & 0x10) == 0) { reg->U1BC_LEDConfigure |= 0x10; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */ } } break; case 6: /* [110] Only 1 Led be placed on PCB and use pin 21 of IC. Use LED_0 for showing */ if (!pHwData->LED_LinkOn) { /* Blink only if not Link On */ /* Blinking if scanning is on progress */ if (pHwData->LED_Scanning) { if (pHwData->LED_Blinking == 0) { reg->U1BC_LEDConfigure &= ~0xf; reg->U1BC_LEDConfigure |= 0x10; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 On */ pHwData->LED_Blinking = 1; TimeInterval = 300; } else { reg->U1BC_LEDConfigure &= ~0x1f; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */ pHwData->LED_Blinking = 0; TimeInterval = 300; } } else { /* Gray blinking if in disconnect state and not scanning */ ltmp = reg->U1BC_LEDConfigure; reg->U1BC_LEDConfigure &= ~0x1f; if (LED_GRAY2[(pHwData->LED_Blinking % 30)]) { reg->U1BC_LEDConfigure |= 0x10; reg->U1BC_LEDConfigure |= LED_GRAY2[(pHwData->LED_Blinking % 30)]; } pHwData->LED_Blinking++; if (reg->U1BC_LEDConfigure != ltmp) Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */ TimeInterval = 100; } } else { /* Turn On LED_0 */ if ((reg->U1BC_LEDConfigure & 0x10) == 0) { reg->U1BC_LEDConfigure |= 0x10; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_0 Off */ } } break; case 5: /* [101] Only 1 Led be placed on PCB and use LED_1 for showing */ if (!pHwData->LED_LinkOn) { /* Blink only if not Link On */ /* Blinking if scanning is on progress */ if (pHwData->LED_Scanning) { if (pHwData->LED_Blinking == 0) { reg->U1BC_LEDConfigure |= 0x1000; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_1 On */ pHwData->LED_Blinking = 1; TimeInterval = 300; } else { reg->U1BC_LEDConfigure &= ~0x1000; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_1 Off */ pHwData->LED_Blinking = 0; TimeInterval = 300; } } else { /* Turn Off LED_1 */ if (reg->U1BC_LEDConfigure & 0x1000) { reg->U1BC_LEDConfigure &= ~0x1000; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_1 Off */ } } } else { /* Is transmitting/receiving ?? */ if ((adapter->RxByteCount != pHwData->RxByteCountLast) || (adapter->TxByteCount != pHwData->TxByteCountLast)) { if ((reg->U1BC_LEDConfigure & 0x3000) != 0x3000) { reg->U1BC_LEDConfigure |= 0x3000; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_1 On */ } /* Update variable */ pHwData->RxByteCountLast = adapter->RxByteCount; pHwData->TxByteCountLast = adapter->TxByteCount; TimeInterval = 200; } else { /* Turn On LED_1 and blinking if transmitting/receiving */ if ((reg->U1BC_LEDConfigure & 0x3000) != 0x1000) { reg->U1BC_LEDConfigure &= ~0x3000; reg->U1BC_LEDConfigure |= 0x1000; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); /* LED_1 On */ } } } break; default: /* Default setting. 2 LED be placed on PCB. LED_0: Link On LED_1 Active */ if ((reg->U1BC_LEDConfigure & 0x3000) != 0x3000) { reg->U1BC_LEDConfigure |= 0x3000; /* LED_1 is always on and event enable */ Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); } if (pHwData->LED_Blinking) { /* Gray blinking */ reg->U1BC_LEDConfigure &= ~0x0f; reg->U1BC_LEDConfigure |= 0x10; reg->U1BC_LEDConfigure |= LED_GRAY[(pHwData->LED_Blinking - 1) % 20]; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); pHwData->LED_Blinking += 2; if (pHwData->LED_Blinking < 40) TimeInterval = 100; else { pHwData->LED_Blinking = 0; /* Stop blinking */ reg->U1BC_LEDConfigure &= ~0x0f; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); } break; } if (pHwData->LED_LinkOn) { if (!(reg->U1BC_LEDConfigure & 0x10)) { /* Check the LED_0 */ /* Try to turn ON LED_0 after gray blinking */ reg->U1BC_LEDConfigure |= 0x10; pHwData->LED_Blinking = 1; /* Start blinking */ TimeInterval = 50; } } else { if (reg->U1BC_LEDConfigure & 0x10) { /* Check the LED_0 */ reg->U1BC_LEDConfigure &= ~0x10; Wb35Reg_Write(pHwData, 0x03bc, reg->U1BC_LEDConfigure); } } break; } } pHwData->time_count += TimeInterval; Wb35Tx_CurrentTime(adapter, pHwData->time_count); pHwData->LEDTimer.expires = jiffies + msecs_to_jiffies(TimeInterval); add_timer(&pHwData->LEDTimer); } static int hal_init_hardware(struct ieee80211_hw *hw) { struct wbsoft_priv *priv = hw->priv; struct hw_data *pHwData = &priv->sHwData; u16 SoftwareSet; pHwData->MaxReceiveLifeTime = DEFAULT_MSDU_LIFE_TIME; pHwData->FragmentThreshold = DEFAULT_FRAGMENT_THRESHOLD; if (!Wb35Reg_initial(pHwData)) goto error_reg_destroy; if (!Wb35Tx_initial(pHwData)) goto error_tx_destroy; if (!Wb35Rx_initial(pHwData)) goto error_rx_destroy; init_timer(&pHwData->LEDTimer); pHwData->LEDTimer.function = hal_led_control; pHwData->LEDTimer.data = (unsigned long)priv; pHwData->LEDTimer.expires = jiffies + msecs_to_jiffies(1000); add_timer(&pHwData->LEDTimer); SoftwareSet = hal_software_set(pHwData); Wb35Rx_start(hw); Wb35Tx_EP2VM_start(priv); return 0; error_rx_destroy: Wb35Rx_destroy(pHwData); error_tx_destroy: Wb35Tx_destroy(pHwData); error_reg_destroy: Wb35Reg_destroy(pHwData); pHwData->SurpriseRemove = 1; return -EINVAL; } static int wb35_hw_init(struct ieee80211_hw *hw) { struct wbsoft_priv *priv = hw->priv; struct hw_data *pHwData = &priv->sHwData; u8 EEPROM_region; u8 HwRadioOff; u8 *pMacAddr2; u8 *pMacAddr; int err; pHwData->phy_type = RF_DECIDE_BY_INF; priv->Mds.TxRTSThreshold = DEFAULT_RTSThreshold; priv->Mds.TxFragmentThreshold = DEFAULT_FRAGMENT_THRESHOLD; priv->sLocalPara.region_INF = REGION_AUTO; priv->sLocalPara.TxRateMode = RATE_AUTO; priv->sLocalPara.bMacOperationMode = MODE_802_11_BG; priv->sLocalPara.MTUsize = MAX_ETHERNET_PACKET_SIZE; priv->sLocalPara.bPreambleMode = AUTO_MODE; priv->sLocalPara.bWepKeyError = false; priv->sLocalPara.bToSelfPacketReceived = false; priv->sLocalPara.WepKeyDetectTimerCount = 2 * 100; /* 2 seconds */ priv->sLocalPara.RadioOffStatus.boSwRadioOff = false; err = hal_init_hardware(hw); if (err) goto error; EEPROM_region = hal_get_region_from_EEPROM(pHwData); if (EEPROM_region != REGION_AUTO) priv->sLocalPara.region = EEPROM_region; else { if (priv->sLocalPara.region_INF != REGION_AUTO) priv->sLocalPara.region = priv->sLocalPara.region_INF; else priv->sLocalPara.region = REGION_USA; /* default setting */ } Mds_initial(priv); /* * If no user-defined address in the registry, use the address * "burned" on the NIC instead. */ pMacAddr = priv->sLocalPara.ThisMacAddress; pMacAddr2 = priv->sLocalPara.PermanentAddress; /* Reading ethernet address from EEPROM */ hal_get_permanent_address(pHwData, priv->sLocalPara.PermanentAddress); if (memcmp(pMacAddr, "\x00\x00\x00\x00\x00\x00", MAC_ADDR_LENGTH) == 0) memcpy(pMacAddr, pMacAddr2, MAC_ADDR_LENGTH); else { /* Set the user define MAC address */ hal_set_ethernet_address(pHwData, priv->sLocalPara.ThisMacAddress); } priv->sLocalPara.bAntennaNo = hal_get_antenna_number(pHwData); pr_debug("Driver init, antenna no = %d\n", priv->sLocalPara.bAntennaNo); hal_get_hw_radio_off(pHwData); /* Waiting for HAL setting OK */ while (!hal_idle(pHwData)) msleep(10); MTO_Init(priv); HwRadioOff = hal_get_hw_radio_off(pHwData); priv->sLocalPara.RadioOffStatus.boHwRadioOff = !!HwRadioOff; hal_set_radio_mode(pHwData, (unsigned char)(priv->sLocalPara.RadioOffStatus. boSwRadioOff || priv->sLocalPara.RadioOffStatus. boHwRadioOff)); /* Notify hal that the driver is ready now. */ hal_driver_init_OK(pHwData) = 1; error: return err; } static int wb35_probe(struct usb_interface *intf, const struct usb_device_id *id_table) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_endpoint_descriptor *endpoint; struct usb_host_interface *interface; struct ieee80211_hw *dev; struct wbsoft_priv *priv; int nr, err; u32 ltmp; usb_get_dev(udev); /* Check the device if it already be opened */ nr = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 0x01, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, 0x0, 0x400, <mp, 4, HZ * 100); if (nr < 0) { err = nr; goto error; } /* Is already initialized? */ ltmp = cpu_to_le32(ltmp); if (ltmp) { err = -EBUSY; goto error; } dev = ieee80211_alloc_hw(sizeof(*priv), &wbsoft_ops); if (!dev) { err = -ENOMEM; goto error; } priv = dev->priv; priv->sHwData.udev = udev; interface = intf->cur_altsetting; endpoint = &interface->endpoint[0].desc; if (endpoint[2].wMaxPacketSize == 512) printk("[w35und] Working on USB 2.0\n"); err = wb35_hw_init(dev); if (err) goto error_free_hw; SET_IEEE80211_DEV(dev, &udev->dev); { struct hw_data *pHwData = &priv->sHwData; unsigned char dev_addr[MAX_ADDR_LEN]; hal_get_permanent_address(pHwData, dev_addr); SET_IEEE80211_PERM_ADDR(dev, dev_addr); } dev->extra_tx_headroom = 12; /* FIXME */ dev->flags = IEEE80211_HW_SIGNAL_UNSPEC; dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); dev->channel_change_time = 1000; dev->max_signal = 100; dev->queues = 1; dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &wbsoft_band_2GHz; err = ieee80211_register_hw(dev); if (err) goto error_free_hw; usb_set_intfdata(intf, dev); return 0; error_free_hw: ieee80211_free_hw(dev); error: usb_put_dev(udev); return err; } static void hal_halt(struct hw_data *pHwData) { del_timer_sync(&pHwData->LEDTimer); /* XXX: Wait for Timer DPC exit. */ msleep(100); Wb35Rx_destroy(pHwData); Wb35Tx_destroy(pHwData); Wb35Reg_destroy(pHwData); } static void wb35_hw_halt(struct wbsoft_priv *adapter) { /* Turn off Rx and Tx hardware ability */ hal_stop(&adapter->sHwData); pr_debug("[w35und] Hal_stop O.K.\n"); /* Waiting Irp completed */ msleep(100); hal_halt(&adapter->sHwData); } static void wb35_disconnect(struct usb_interface *intf) { struct ieee80211_hw *hw = usb_get_intfdata(intf); struct wbsoft_priv *priv = hw->priv; wb35_hw_halt(priv); ieee80211_stop_queues(hw); ieee80211_unregister_hw(hw); ieee80211_free_hw(hw); usb_set_intfdata(intf, NULL); usb_put_dev(interface_to_usbdev(intf)); } static struct usb_driver wb35_driver = { .name = "w35und", .id_table = wb35_table, .probe = wb35_probe, .disconnect = wb35_disconnect, }; static int __init wb35_init(void) { return usb_register(&wb35_driver); } static void __exit wb35_exit(void) { usb_deregister(&wb35_driver); } module_init(wb35_init); module_exit(wb35_exit);