/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_error.h" #include "xfs_log_priv.h" #include "xfs_buf_item.h" #include "xfs_bmap_btree.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_log_recover.h" #include "xfs_trans_priv.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_rw.h" #include "xfs_trace.h" kmem_zone_t *xfs_log_ticket_zone; /* Local miscellaneous function prototypes */ STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket, xlog_in_core_t **, xfs_lsn_t *); STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp, xfs_buftarg_t *log_target, xfs_daddr_t blk_offset, int num_bblks); STATIC int xlog_space_left(struct log *log, atomic64_t *head); STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog); STATIC void xlog_dealloc_log(xlog_t *log); /* local state machine functions */ STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int); STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog); STATIC int xlog_state_get_iclog_space(xlog_t *log, int len, xlog_in_core_t **iclog, xlog_ticket_t *ticket, int *continued_write, int *logoffsetp); STATIC int xlog_state_release_iclog(xlog_t *log, xlog_in_core_t *iclog); STATIC void xlog_state_switch_iclogs(xlog_t *log, xlog_in_core_t *iclog, int eventual_size); STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog); /* local functions to manipulate grant head */ STATIC int xlog_grant_log_space(xlog_t *log, xlog_ticket_t *xtic); STATIC void xlog_grant_push_ail(struct log *log, int need_bytes); STATIC void xlog_regrant_reserve_log_space(xlog_t *log, xlog_ticket_t *ticket); STATIC int xlog_regrant_write_log_space(xlog_t *log, xlog_ticket_t *ticket); STATIC void xlog_ungrant_log_space(xlog_t *log, xlog_ticket_t *ticket); #if defined(DEBUG) STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr); STATIC void xlog_verify_grant_tail(struct log *log); STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog, int count, boolean_t syncing); STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog, xfs_lsn_t tail_lsn); #else #define xlog_verify_dest_ptr(a,b) #define xlog_verify_grant_tail(a) #define xlog_verify_iclog(a,b,c,d) #define xlog_verify_tail_lsn(a,b,c) #endif STATIC int xlog_iclogs_empty(xlog_t *log); static void xlog_grant_sub_space( struct log *log, atomic64_t *head, int bytes) { int64_t head_val = atomic64_read(head); int64_t new, old; do { int cycle, space; xlog_crack_grant_head_val(head_val, &cycle, &space); space -= bytes; if (space < 0) { space += log->l_logsize; cycle--; } old = head_val; new = xlog_assign_grant_head_val(cycle, space); head_val = atomic64_cmpxchg(head, old, new); } while (head_val != old); } static void xlog_grant_add_space( struct log *log, atomic64_t *head, int bytes) { int64_t head_val = atomic64_read(head); int64_t new, old; do { int tmp; int cycle, space; xlog_crack_grant_head_val(head_val, &cycle, &space); tmp = log->l_logsize - space; if (tmp > bytes) space += bytes; else { space = bytes - tmp; cycle++; } old = head_val; new = xlog_assign_grant_head_val(cycle, space); head_val = atomic64_cmpxchg(head, old, new); } while (head_val != old); } static void xlog_tic_reset_res(xlog_ticket_t *tic) { tic->t_res_num = 0; tic->t_res_arr_sum = 0; tic->t_res_num_ophdrs = 0; } static void xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) { if (tic->t_res_num == XLOG_TIC_LEN_MAX) { /* add to overflow and start again */ tic->t_res_o_flow += tic->t_res_arr_sum; tic->t_res_num = 0; tic->t_res_arr_sum = 0; } tic->t_res_arr[tic->t_res_num].r_len = len; tic->t_res_arr[tic->t_res_num].r_type = type; tic->t_res_arr_sum += len; tic->t_res_num++; } /* * NOTES: * * 1. currblock field gets updated at startup and after in-core logs * marked as with WANT_SYNC. */ /* * This routine is called when a user of a log manager ticket is done with * the reservation. If the ticket was ever used, then a commit record for * the associated transaction is written out as a log operation header with * no data. The flag XLOG_TIC_INITED is set when the first write occurs with * a given ticket. If the ticket was one with a permanent reservation, then * a few operations are done differently. Permanent reservation tickets by * default don't release the reservation. They just commit the current * transaction with the belief that the reservation is still needed. A flag * must be passed in before permanent reservations are actually released. * When these type of tickets are not released, they need to be set into * the inited state again. By doing this, a start record will be written * out when the next write occurs. */ xfs_lsn_t xfs_log_done( struct xfs_mount *mp, struct xlog_ticket *ticket, struct xlog_in_core **iclog, uint flags) { struct log *log = mp->m_log; xfs_lsn_t lsn = 0; if (XLOG_FORCED_SHUTDOWN(log) || /* * If nothing was ever written, don't write out commit record. * If we get an error, just continue and give back the log ticket. */ (((ticket->t_flags & XLOG_TIC_INITED) == 0) && (xlog_commit_record(log, ticket, iclog, &lsn)))) { lsn = (xfs_lsn_t) -1; if (ticket->t_flags & XLOG_TIC_PERM_RESERV) { flags |= XFS_LOG_REL_PERM_RESERV; } } if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 || (flags & XFS_LOG_REL_PERM_RESERV)) { trace_xfs_log_done_nonperm(log, ticket); /* * Release ticket if not permanent reservation or a specific * request has been made to release a permanent reservation. */ xlog_ungrant_log_space(log, ticket); xfs_log_ticket_put(ticket); } else { trace_xfs_log_done_perm(log, ticket); xlog_regrant_reserve_log_space(log, ticket); /* If this ticket was a permanent reservation and we aren't * trying to release it, reset the inited flags; so next time * we write, a start record will be written out. */ ticket->t_flags |= XLOG_TIC_INITED; } return lsn; } /* * Attaches a new iclog I/O completion callback routine during * transaction commit. If the log is in error state, a non-zero * return code is handed back and the caller is responsible for * executing the callback at an appropriate time. */ int xfs_log_notify( struct xfs_mount *mp, struct xlog_in_core *iclog, xfs_log_callback_t *cb) { int abortflg; spin_lock(&iclog->ic_callback_lock); abortflg = (iclog->ic_state & XLOG_STATE_IOERROR); if (!abortflg) { ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) || (iclog->ic_state == XLOG_STATE_WANT_SYNC)); cb->cb_next = NULL; *(iclog->ic_callback_tail) = cb; iclog->ic_callback_tail = &(cb->cb_next); } spin_unlock(&iclog->ic_callback_lock); return abortflg; } int xfs_log_release_iclog( struct xfs_mount *mp, struct xlog_in_core *iclog) { if (xlog_state_release_iclog(mp->m_log, iclog)) { xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); return EIO; } return 0; } /* * 1. Reserve an amount of on-disk log space and return a ticket corresponding * to the reservation. * 2. Potentially, push buffers at tail of log to disk. * * Each reservation is going to reserve extra space for a log record header. * When writes happen to the on-disk log, we don't subtract the length of the * log record header from any reservation. By wasting space in each * reservation, we prevent over allocation problems. */ int xfs_log_reserve( struct xfs_mount *mp, int unit_bytes, int cnt, struct xlog_ticket **ticket, __uint8_t client, uint flags, uint t_type) { struct log *log = mp->m_log; struct xlog_ticket *internal_ticket; int retval = 0; ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); if (XLOG_FORCED_SHUTDOWN(log)) return XFS_ERROR(EIO); XFS_STATS_INC(xs_try_logspace); if (*ticket != NULL) { ASSERT(flags & XFS_LOG_PERM_RESERV); internal_ticket = *ticket; /* * this is a new transaction on the ticket, so we need to * change the transaction ID so that the next transaction has a * different TID in the log. Just add one to the existing tid * so that we can see chains of rolling transactions in the log * easily. */ internal_ticket->t_tid++; trace_xfs_log_reserve(log, internal_ticket); xlog_grant_push_ail(log, internal_ticket->t_unit_res); retval = xlog_regrant_write_log_space(log, internal_ticket); } else { /* may sleep if need to allocate more tickets */ internal_ticket = xlog_ticket_alloc(log, unit_bytes, cnt, client, flags, KM_SLEEP|KM_MAYFAIL); if (!internal_ticket) return XFS_ERROR(ENOMEM); internal_ticket->t_trans_type = t_type; *ticket = internal_ticket; trace_xfs_log_reserve(log, internal_ticket); xlog_grant_push_ail(log, (internal_ticket->t_unit_res * internal_ticket->t_cnt)); retval = xlog_grant_log_space(log, internal_ticket); } return retval; } /* xfs_log_reserve */ /* * Mount a log filesystem * * mp - ubiquitous xfs mount point structure * log_target - buftarg of on-disk log device * blk_offset - Start block # where block size is 512 bytes (BBSIZE) * num_bblocks - Number of BBSIZE blocks in on-disk log * * Return error or zero. */ int xfs_log_mount( xfs_mount_t *mp, xfs_buftarg_t *log_target, xfs_daddr_t blk_offset, int num_bblks) { int error; if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) xfs_notice(mp, "Mounting Filesystem"); else { xfs_notice(mp, "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent."); ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); } mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); if (IS_ERR(mp->m_log)) { error = -PTR_ERR(mp->m_log); goto out; } /* * Initialize the AIL now we have a log. */ error = xfs_trans_ail_init(mp); if (error) { xfs_warn(mp, "AIL initialisation failed: error %d", error); goto out_free_log; } mp->m_log->l_ailp = mp->m_ail; /* * skip log recovery on a norecovery mount. pretend it all * just worked. */ if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); if (readonly) mp->m_flags &= ~XFS_MOUNT_RDONLY; error = xlog_recover(mp->m_log); if (readonly) mp->m_flags |= XFS_MOUNT_RDONLY; if (error) { xfs_warn(mp, "log mount/recovery failed: error %d", error); goto out_destroy_ail; } } /* Normal transactions can now occur */ mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; /* * Now the log has been fully initialised and we know were our * space grant counters are, we can initialise the permanent ticket * needed for delayed logging to work. */ xlog_cil_init_post_recovery(mp->m_log); return 0; out_destroy_ail: xfs_trans_ail_destroy(mp); out_free_log: xlog_dealloc_log(mp->m_log); out: return error; } /* * Finish the recovery of the file system. This is separate from * the xfs_log_mount() call, because it depends on the code in * xfs_mountfs() to read in the root and real-time bitmap inodes * between calling xfs_log_mount() and here. * * mp - ubiquitous xfs mount point structure */ int xfs_log_mount_finish(xfs_mount_t *mp) { int error; if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) error = xlog_recover_finish(mp->m_log); else { error = 0; ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); } return error; } /* * Final log writes as part of unmount. * * Mark the filesystem clean as unmount happens. Note that during relocation * this routine needs to be executed as part of source-bag while the * deallocation must not be done until source-end. */ /* * Unmount record used to have a string "Unmount filesystem--" in the * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). * We just write the magic number now since that particular field isn't * currently architecture converted and "nUmount" is a bit foo. * As far as I know, there weren't any dependencies on the old behaviour. */ int xfs_log_unmount_write(xfs_mount_t *mp) { xlog_t *log = mp->m_log; xlog_in_core_t *iclog; #ifdef DEBUG xlog_in_core_t *first_iclog; #endif xlog_ticket_t *tic = NULL; xfs_lsn_t lsn; int error; /* * Don't write out unmount record on read-only mounts. * Or, if we are doing a forced umount (typically because of IO errors). */ if (mp->m_flags & XFS_MOUNT_RDONLY) return 0; error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL); ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log))); #ifdef DEBUG first_iclog = iclog = log->l_iclog; do { if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE); ASSERT(iclog->ic_offset == 0); } iclog = iclog->ic_next; } while (iclog != first_iclog); #endif if (! (XLOG_FORCED_SHUTDOWN(log))) { error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE); if (!error) { /* the data section must be 32 bit size aligned */ struct { __uint16_t magic; __uint16_t pad1; __uint32_t pad2; /* may as well make it 64 bits */ } magic = { .magic = XLOG_UNMOUNT_TYPE, }; struct xfs_log_iovec reg = { .i_addr = &magic, .i_len = sizeof(magic), .i_type = XLOG_REG_TYPE_UNMOUNT, }; struct xfs_log_vec vec = { .lv_niovecs = 1, .lv_iovecp = ®, }; /* remove inited flag */ tic->t_flags = 0; error = xlog_write(log, &vec, tic, &lsn, NULL, XLOG_UNMOUNT_TRANS); /* * At this point, we're umounting anyway, * so there's no point in transitioning log state * to IOERROR. Just continue... */ } if (error) xfs_alert(mp, "%s: unmount record failed", __func__); spin_lock(&log->l_icloglock); iclog = log->l_iclog; atomic_inc(&iclog->ic_refcnt); xlog_state_want_sync(log, iclog); spin_unlock(&log->l_icloglock); error = xlog_state_release_iclog(log, iclog); spin_lock(&log->l_icloglock); if (!(iclog->ic_state == XLOG_STATE_ACTIVE || iclog->ic_state == XLOG_STATE_DIRTY)) { if (!XLOG_FORCED_SHUTDOWN(log)) { xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); } else { spin_unlock(&log->l_icloglock); } } else { spin_unlock(&log->l_icloglock); } if (tic) { trace_xfs_log_umount_write(log, tic); xlog_ungrant_log_space(log, tic); xfs_log_ticket_put(tic); } } else { /* * We're already in forced_shutdown mode, couldn't * even attempt to write out the unmount transaction. * * Go through the motions of sync'ing and releasing * the iclog, even though no I/O will actually happen, * we need to wait for other log I/Os that may already * be in progress. Do this as a separate section of * code so we'll know if we ever get stuck here that * we're in this odd situation of trying to unmount * a file system that went into forced_shutdown as * the result of an unmount.. */ spin_lock(&log->l_icloglock); iclog = log->l_iclog; atomic_inc(&iclog->ic_refcnt); xlog_state_want_sync(log, iclog); spin_unlock(&log->l_icloglock); error = xlog_state_release_iclog(log, iclog); spin_lock(&log->l_icloglock); if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE || iclog->ic_state == XLOG_STATE_DIRTY || iclog->ic_state == XLOG_STATE_IOERROR) ) { xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); } else { spin_unlock(&log->l_icloglock); } } return error; } /* xfs_log_unmount_write */ /* * Deallocate log structures for unmount/relocation. * * We need to stop the aild from running before we destroy * and deallocate the log as the aild references the log. */ void xfs_log_unmount(xfs_mount_t *mp) { xfs_trans_ail_destroy(mp); xlog_dealloc_log(mp->m_log); } void xfs_log_item_init( struct xfs_mount *mp, struct xfs_log_item *item, int type, struct xfs_item_ops *ops) { item->li_mountp = mp; item->li_ailp = mp->m_ail; item->li_type = type; item->li_ops = ops; item->li_lv = NULL; INIT_LIST_HEAD(&item->li_ail); INIT_LIST_HEAD(&item->li_cil); } /* * Write region vectors to log. The write happens using the space reservation * of the ticket (tic). It is not a requirement that all writes for a given * transaction occur with one call to xfs_log_write(). However, it is important * to note that the transaction reservation code makes an assumption about the * number of log headers a transaction requires that may be violated if you * don't pass all the transaction vectors in one call.... */ int xfs_log_write( struct xfs_mount *mp, struct xfs_log_iovec reg[], int nentries, struct xlog_ticket *tic, xfs_lsn_t *start_lsn) { struct log *log = mp->m_log; int error; struct xfs_log_vec vec = { .lv_niovecs = nentries, .lv_iovecp = reg, }; if (XLOG_FORCED_SHUTDOWN(log)) return XFS_ERROR(EIO); error = xlog_write(log, &vec, tic, start_lsn, NULL, 0); if (error) xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); return error; } void xfs_log_move_tail(xfs_mount_t *mp, xfs_lsn_t tail_lsn) { xlog_ticket_t *tic; xlog_t *log = mp->m_log; int need_bytes, free_bytes; if (XLOG_FORCED_SHUTDOWN(log)) return; if (tail_lsn == 0) tail_lsn = atomic64_read(&log->l_last_sync_lsn); /* tail_lsn == 1 implies that we weren't passed a valid value. */ if (tail_lsn != 1) atomic64_set(&log->l_tail_lsn, tail_lsn); if (!list_empty_careful(&log->l_writeq)) { #ifdef DEBUG if (log->l_flags & XLOG_ACTIVE_RECOVERY) panic("Recovery problem"); #endif spin_lock(&log->l_grant_write_lock); free_bytes = xlog_space_left(log, &log->l_grant_write_head); list_for_each_entry(tic, &log->l_writeq, t_queue) { ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); if (free_bytes < tic->t_unit_res && tail_lsn != 1) break; tail_lsn = 0; free_bytes -= tic->t_unit_res; trace_xfs_log_regrant_write_wake_up(log, tic); wake_up(&tic->t_wait); } spin_unlock(&log->l_grant_write_lock); } if (!list_empty_careful(&log->l_reserveq)) { #ifdef DEBUG if (log->l_flags & XLOG_ACTIVE_RECOVERY) panic("Recovery problem"); #endif spin_lock(&log->l_grant_reserve_lock); free_bytes = xlog_space_left(log, &log->l_grant_reserve_head); list_for_each_entry(tic, &log->l_reserveq, t_queue) { if (tic->t_flags & XLOG_TIC_PERM_RESERV) need_bytes = tic->t_unit_res*tic->t_cnt; else need_bytes = tic->t_unit_res; if (free_bytes < need_bytes && tail_lsn != 1) break; tail_lsn = 0; free_bytes -= need_bytes; trace_xfs_log_grant_wake_up(log, tic); wake_up(&tic->t_wait); } spin_unlock(&log->l_grant_reserve_lock); } } /* * Determine if we have a transaction that has gone to disk * that needs to be covered. To begin the transition to the idle state * firstly the log needs to be idle (no AIL and nothing in the iclogs). * If we are then in a state where covering is needed, the caller is informed * that dummy transactions are required to move the log into the idle state. * * Because this is called as part of the sync process, we should also indicate * that dummy transactions should be issued in anything but the covered or * idle states. This ensures that the log tail is accurately reflected in * the log at the end of the sync, hence if a crash occurrs avoids replay * of transactions where the metadata is already on disk. */ int xfs_log_need_covered(xfs_mount_t *mp) { int needed = 0; xlog_t *log = mp->m_log; if (!xfs_fs_writable(mp)) return 0; spin_lock(&log->l_icloglock); switch (log->l_covered_state) { case XLOG_STATE_COVER_DONE: case XLOG_STATE_COVER_DONE2: case XLOG_STATE_COVER_IDLE: break; case XLOG_STATE_COVER_NEED: case XLOG_STATE_COVER_NEED2: if (!xfs_ail_min_lsn(log->l_ailp) && xlog_iclogs_empty(log)) { if (log->l_covered_state == XLOG_STATE_COVER_NEED) log->l_covered_state = XLOG_STATE_COVER_DONE; else log->l_covered_state = XLOG_STATE_COVER_DONE2; } /* FALLTHRU */ default: needed = 1; break; } spin_unlock(&log->l_icloglock); return needed; } /****************************************************************************** * * local routines * ****************************************************************************** */ /* xfs_trans_tail_ail returns 0 when there is nothing in the list. * The log manager must keep track of the last LR which was committed * to disk. The lsn of this LR will become the new tail_lsn whenever * xfs_trans_tail_ail returns 0. If we don't do this, we run into * the situation where stuff could be written into the log but nothing * was ever in the AIL when asked. Eventually, we panic since the * tail hits the head. * * We may be holding the log iclog lock upon entering this routine. */ xfs_lsn_t xlog_assign_tail_lsn( struct xfs_mount *mp) { xfs_lsn_t tail_lsn; struct log *log = mp->m_log; tail_lsn = xfs_ail_min_lsn(mp->m_ail); if (!tail_lsn) tail_lsn = atomic64_read(&log->l_last_sync_lsn); atomic64_set(&log->l_tail_lsn, tail_lsn); return tail_lsn; } /* * Return the space in the log between the tail and the head. The head * is passed in the cycle/bytes formal parms. In the special case where * the reserve head has wrapped passed the tail, this calculation is no * longer valid. In this case, just return 0 which means there is no space * in the log. This works for all places where this function is called * with the reserve head. Of course, if the write head were to ever * wrap the tail, we should blow up. Rather than catch this case here, * we depend on other ASSERTions in other parts of the code. XXXmiken * * This code also handles the case where the reservation head is behind * the tail. The details of this case are described below, but the end * result is that we return the size of the log as the amount of space left. */ STATIC int xlog_space_left( struct log *log, atomic64_t *head) { int free_bytes; int tail_bytes; int tail_cycle; int head_cycle; int head_bytes; xlog_crack_grant_head(head, &head_cycle, &head_bytes); xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); tail_bytes = BBTOB(tail_bytes); if (tail_cycle == head_cycle && head_bytes >= tail_bytes) free_bytes = log->l_logsize - (head_bytes - tail_bytes); else if (tail_cycle + 1 < head_cycle) return 0; else if (tail_cycle < head_cycle) { ASSERT(tail_cycle == (head_cycle - 1)); free_bytes = tail_bytes - head_bytes; } else { /* * The reservation head is behind the tail. * In this case we just want to return the size of the * log as the amount of space left. */ xfs_alert(log->l_mp, "xlog_space_left: head behind tail\n" " tail_cycle = %d, tail_bytes = %d\n" " GH cycle = %d, GH bytes = %d", tail_cycle, tail_bytes, head_cycle, head_bytes); ASSERT(0); free_bytes = log->l_logsize; } return free_bytes; } /* * Log function which is called when an io completes. * * The log manager needs its own routine, in order to control what * happens with the buffer after the write completes. */ void xlog_iodone(xfs_buf_t *bp) { xlog_in_core_t *iclog; xlog_t *l; int aborted; iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *); ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long) 2); XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1); aborted = 0; l = iclog->ic_log; /* * Race to shutdown the filesystem if we see an error. */ if (XFS_TEST_ERROR((XFS_BUF_GETERROR(bp)), l->l_mp, XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) { xfs_ioerror_alert("xlog_iodone", l->l_mp, bp, XFS_BUF_ADDR(bp)); XFS_BUF_STALE(bp); xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR); /* * This flag will be propagated to the trans-committed * callback routines to let them know that the log-commit * didn't succeed. */ aborted = XFS_LI_ABORTED; } else if (iclog->ic_state & XLOG_STATE_IOERROR) { aborted = XFS_LI_ABORTED; } /* log I/O is always issued ASYNC */ ASSERT(XFS_BUF_ISASYNC(bp)); xlog_state_done_syncing(iclog, aborted); /* * do not reference the buffer (bp) here as we could race * with it being freed after writing the unmount record to the * log. */ } /* xlog_iodone */ /* * Return size of each in-core log record buffer. * * All machines get 8 x 32kB buffers by default, unless tuned otherwise. * * If the filesystem blocksize is too large, we may need to choose a * larger size since the directory code currently logs entire blocks. */ STATIC void xlog_get_iclog_buffer_size(xfs_mount_t *mp, xlog_t *log) { int size; int xhdrs; if (mp->m_logbufs <= 0) log->l_iclog_bufs = XLOG_MAX_ICLOGS; else log->l_iclog_bufs = mp->m_logbufs; /* * Buffer size passed in from mount system call. */ if (mp->m_logbsize > 0) { size = log->l_iclog_size = mp->m_logbsize; log->l_iclog_size_log = 0; while (size != 1) { log->l_iclog_size_log++; size >>= 1; } if (xfs_sb_version_haslogv2(&mp->m_sb)) { /* # headers = size / 32k * one header holds cycles from 32k of data */ xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE; if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE) xhdrs++; log->l_iclog_hsize = xhdrs << BBSHIFT; log->l_iclog_heads = xhdrs; } else { ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE); log->l_iclog_hsize = BBSIZE; log->l_iclog_heads = 1; } goto done; } /* All machines use 32kB buffers by default. */ log->l_iclog_size = XLOG_BIG_RECORD_BSIZE; log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT; /* the default log size is 16k or 32k which is one header sector */ log->l_iclog_hsize = BBSIZE; log->l_iclog_heads = 1; done: /* are we being asked to make the sizes selected above visible? */ if (mp->m_logbufs == 0) mp->m_logbufs = log->l_iclog_bufs; if (mp->m_logbsize == 0) mp->m_logbsize = log->l_iclog_size; } /* xlog_get_iclog_buffer_size */ /* * This routine initializes some of the log structure for a given mount point. * Its primary purpose is to fill in enough, so recovery can occur. However, * some other stuff may be filled in too. */ STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp, xfs_buftarg_t *log_target, xfs_daddr_t blk_offset, int num_bblks) { xlog_t *log; xlog_rec_header_t *head; xlog_in_core_t **iclogp; xlog_in_core_t *iclog, *prev_iclog=NULL; xfs_buf_t *bp; int i; int error = ENOMEM; uint log2_size = 0; log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL); if (!log) { xfs_warn(mp, "Log allocation failed: No memory!"); goto out; } log->l_mp = mp; log->l_targ = log_target; log->l_logsize = BBTOB(num_bblks); log->l_logBBstart = blk_offset; log->l_logBBsize = num_bblks; log->l_covered_state = XLOG_STATE_COVER_IDLE; log->l_flags |= XLOG_ACTIVE_RECOVERY; log->l_prev_block = -1; /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ xlog_assign_grant_head(&log->l_grant_reserve_head, 1, 0); xlog_assign_grant_head(&log->l_grant_write_head, 1, 0); INIT_LIST_HEAD(&log->l_reserveq); INIT_LIST_HEAD(&log->l_writeq); spin_lock_init(&log->l_grant_reserve_lock); spin_lock_init(&log->l_grant_write_lock); error = EFSCORRUPTED; if (xfs_sb_version_hassector(&mp->m_sb)) { log2_size = mp->m_sb.sb_logsectlog; if (log2_size < BBSHIFT) { xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", log2_size, BBSHIFT); goto out_free_log; } log2_size -= BBSHIFT; if (log2_size > mp->m_sectbb_log) { xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", log2_size, mp->m_sectbb_log); goto out_free_log; } /* for larger sector sizes, must have v2 or external log */ if (log2_size && log->l_logBBstart > 0 && !xfs_sb_version_haslogv2(&mp->m_sb)) { xfs_warn(mp, "log sector size (0x%x) invalid for configuration.", log2_size); goto out_free_log; } } log->l_sectBBsize = 1 << log2_size; xlog_get_iclog_buffer_size(mp, log); error = ENOMEM; bp = xfs_buf_get_empty(log->l_iclog_size, mp->m_logdev_targp); if (!bp) goto out_free_log; XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone); XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1); ASSERT(XFS_BUF_ISBUSY(bp)); ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); log->l_xbuf = bp; spin_lock_init(&log->l_icloglock); init_waitqueue_head(&log->l_flush_wait); /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */ ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0); iclogp = &log->l_iclog; /* * The amount of memory to allocate for the iclog structure is * rather funky due to the way the structure is defined. It is * done this way so that we can use different sizes for machines * with different amounts of memory. See the definition of * xlog_in_core_t in xfs_log_priv.h for details. */ ASSERT(log->l_iclog_size >= 4096); for (i=0; i < log->l_iclog_bufs; i++) { *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL); if (!*iclogp) goto out_free_iclog; iclog = *iclogp; iclog->ic_prev = prev_iclog; prev_iclog = iclog; bp = xfs_buf_get_uncached(mp->m_logdev_targp, log->l_iclog_size, 0); if (!bp) goto out_free_iclog; if (!XFS_BUF_CPSEMA(bp)) ASSERT(0); XFS_BUF_SET_IODONE_FUNC(bp, xlog_iodone); XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)1); iclog->ic_bp = bp; iclog->ic_data = bp->b_addr; #ifdef DEBUG log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header); #endif head = &iclog->ic_header; memset(head, 0, sizeof(xlog_rec_header_t)); head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); head->h_version = cpu_to_be32( xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); head->h_size = cpu_to_be32(log->l_iclog_size); /* new fields */ head->h_fmt = cpu_to_be32(XLOG_FMT); memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize; iclog->ic_state = XLOG_STATE_ACTIVE; iclog->ic_log = log; atomic_set(&iclog->ic_refcnt, 0); spin_lock_init(&iclog->ic_callback_lock); iclog->ic_callback_tail = &(iclog->ic_callback); iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; ASSERT(XFS_BUF_ISBUSY(iclog->ic_bp)); ASSERT(XFS_BUF_VALUSEMA(iclog->ic_bp) <= 0); init_waitqueue_head(&iclog->ic_force_wait); init_waitqueue_head(&iclog->ic_write_wait); iclogp = &iclog->ic_next; } *iclogp = log->l_iclog; /* complete ring */ log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ error = xlog_cil_init(log); if (error) goto out_free_iclog; return log; out_free_iclog: for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { prev_iclog = iclog->ic_next; if (iclog->ic_bp) xfs_buf_free(iclog->ic_bp); kmem_free(iclog); } spinlock_destroy(&log->l_icloglock); xfs_buf_free(log->l_xbuf); out_free_log: kmem_free(log); out: return ERR_PTR(-error); } /* xlog_alloc_log */ /* * Write out the commit record of a transaction associated with the given * ticket. Return the lsn of the commit record. */ STATIC int xlog_commit_record( struct log *log, struct xlog_ticket *ticket, struct xlog_in_core **iclog, xfs_lsn_t *commitlsnp) { struct xfs_mount *mp = log->l_mp; int error; struct xfs_log_iovec reg = { .i_addr = NULL, .i_len = 0, .i_type = XLOG_REG_TYPE_COMMIT, }; struct xfs_log_vec vec = { .lv_niovecs = 1, .lv_iovecp = ®, }; ASSERT_ALWAYS(iclog); error = xlog_write(log, &vec, ticket, commitlsnp, iclog, XLOG_COMMIT_TRANS); if (error) xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); return error; } /* * Push on the buffer cache code if we ever use more than 75% of the on-disk * log space. This code pushes on the lsn which would supposedly free up * the 25% which we want to leave free. We may need to adopt a policy which * pushes on an lsn which is further along in the log once we reach the high * water mark. In this manner, we would be creating a low water mark. */ STATIC void xlog_grant_push_ail( struct log *log, int need_bytes) { xfs_lsn_t threshold_lsn = 0; xfs_lsn_t last_sync_lsn; int free_blocks; int free_bytes; int threshold_block; int threshold_cycle; int free_threshold; ASSERT(BTOBB(need_bytes) < log->l_logBBsize); free_bytes = xlog_space_left(log, &log->l_grant_reserve_head); free_blocks = BTOBBT(free_bytes); /* * Set the threshold for the minimum number of free blocks in the * log to the maximum of what the caller needs, one quarter of the * log, and 256 blocks. */ free_threshold = BTOBB(need_bytes); free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2)); free_threshold = MAX(free_threshold, 256); if (free_blocks >= free_threshold) return; xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, &threshold_block); threshold_block += free_threshold; if (threshold_block >= log->l_logBBsize) { threshold_block -= log->l_logBBsize; threshold_cycle += 1; } threshold_lsn = xlog_assign_lsn(threshold_cycle, threshold_block); /* * Don't pass in an lsn greater than the lsn of the last * log record known to be on disk. Use a snapshot of the last sync lsn * so that it doesn't change between the compare and the set. */ last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) threshold_lsn = last_sync_lsn; /* * Get the transaction layer to kick the dirty buffers out to * disk asynchronously. No point in trying to do this if * the filesystem is shutting down. */ if (!XLOG_FORCED_SHUTDOWN(log)) xfs_ail_push(log->l_ailp, threshold_lsn); } /* * The bdstrat callback function for log bufs. This gives us a central * place to trap bufs in case we get hit by a log I/O error and need to * shutdown. Actually, in practice, even when we didn't get a log error, * we transition the iclogs to IOERROR state *after* flushing all existing * iclogs to disk. This is because we don't want anymore new transactions to be * started or completed afterwards. */ STATIC int xlog_bdstrat( struct xfs_buf *bp) { struct xlog_in_core *iclog; iclog = XFS_BUF_FSPRIVATE(bp, xlog_in_core_t *); if (iclog->ic_state & XLOG_STATE_IOERROR) { XFS_BUF_ERROR(bp, EIO); XFS_BUF_STALE(bp); xfs_buf_ioend(bp, 0); /* * It would seem logical to return EIO here, but we rely on * the log state machine to propagate I/O errors instead of * doing it here. */ return 0; } bp->b_flags |= _XBF_RUN_QUEUES; xfs_buf_iorequest(bp); return 0; } /* * Flush out the in-core log (iclog) to the on-disk log in an asynchronous * fashion. Previously, we should have moved the current iclog * ptr in the log to point to the next available iclog. This allows further * write to continue while this code syncs out an iclog ready to go. * Before an in-core log can be written out, the data section must be scanned * to save away the 1st word of each BBSIZE block into the header. We replace * it with the current cycle count. Each BBSIZE block is tagged with the * cycle count because there in an implicit assumption that drives will * guarantee that entire 512 byte blocks get written at once. In other words, * we can't have part of a 512 byte block written and part not written. By * tagging each block, we will know which blocks are valid when recovering * after an unclean shutdown. * * This routine is single threaded on the iclog. No other thread can be in * this routine with the same iclog. Changing contents of iclog can there- * fore be done without grabbing the state machine lock. Updating the global * log will require grabbing the lock though. * * The entire log manager uses a logical block numbering scheme. Only * log_sync (and then only bwrite()) know about the fact that the log may * not start with block zero on a given device. The log block start offset * is added immediately before calling bwrite(). */ STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog) { xfs_caddr_t dptr; /* pointer to byte sized element */ xfs_buf_t *bp; int i; uint count; /* byte count of bwrite */ uint count_init; /* initial count before roundup */ int roundoff; /* roundoff to BB or stripe */ int split = 0; /* split write into two regions */ int error; int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb); XFS_STATS_INC(xs_log_writes); ASSERT(atomic_read(&iclog->ic_refcnt) == 0); /* Add for LR header */ count_init = log->l_iclog_hsize + iclog->ic_offset; /* Round out the log write size */ if (v2 && log->l_mp->m_sb.sb_logsunit > 1) { /* we have a v2 stripe unit to use */ count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); } else { count = BBTOB(BTOBB(count_init)); } roundoff = count - count_init; ASSERT(roundoff >= 0); ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && roundoff < log->l_mp->m_sb.sb_logsunit) || (log->l_mp->m_sb.sb_logsunit <= 1 && roundoff < BBTOB(1))); /* move grant heads by roundoff in sync */ xlog_grant_add_space(log, &log->l_grant_reserve_head, roundoff); xlog_grant_add_space(log, &log->l_grant_write_head, roundoff); /* put cycle number in every block */ xlog_pack_data(log, iclog, roundoff); /* real byte length */ if (v2) { iclog->ic_header.h_len = cpu_to_be32(iclog->ic_offset + roundoff); } else { iclog->ic_header.h_len = cpu_to_be32(iclog->ic_offset); } bp = iclog->ic_bp; ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1); XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2); XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn))); XFS_STATS_ADD(xs_log_blocks, BTOBB(count)); /* Do we need to split this write into 2 parts? */ if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) { split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp))); count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)); iclog->ic_bwritecnt = 2; /* split into 2 writes */ } else { iclog->ic_bwritecnt = 1; } XFS_BUF_SET_COUNT(bp, count); XFS_BUF_SET_FSPRIVATE(bp, iclog); /* save for later */ XFS_BUF_ZEROFLAGS(bp); XFS_BUF_BUSY(bp); XFS_BUF_ASYNC(bp); bp->b_flags |= XBF_LOG_BUFFER; if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) { /* * If we have an external log device, flush the data device * before flushing the log to make sure all meta data * written back from the AIL actually made it to disk * before writing out the new log tail LSN in the log buffer. */ if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp) xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); XFS_BUF_ORDERED(bp); } ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); xlog_verify_iclog(log, iclog, count, B_TRUE); /* account for log which doesn't start at block #0 */ XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); /* * Don't call xfs_bwrite here. We do log-syncs even when the filesystem * is shutting down. */ XFS_BUF_WRITE(bp); if ((error = xlog_bdstrat(bp))) { xfs_ioerror_alert("xlog_sync", log->l_mp, bp, XFS_BUF_ADDR(bp)); return error; } if (split) { bp = iclog->ic_log->l_xbuf; ASSERT(XFS_BUF_FSPRIVATE2(bp, unsigned long) == (unsigned long)1); XFS_BUF_SET_FSPRIVATE2(bp, (unsigned long)2); XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */ XFS_BUF_SET_PTR(bp, (xfs_caddr_t)((__psint_t)&(iclog->ic_header)+ (__psint_t)count), split); XFS_BUF_SET_FSPRIVATE(bp, iclog); XFS_BUF_ZEROFLAGS(bp); XFS_BUF_BUSY(bp); XFS_BUF_ASYNC(bp); bp->b_flags |= XBF_LOG_BUFFER; if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) XFS_BUF_ORDERED(bp); dptr = XFS_BUF_PTR(bp); /* * Bump the cycle numbers at the start of each block * since this part of the buffer is at the start of * a new cycle. Watch out for the header magic number * case, though. */ for (i = 0; i < split; i += BBSIZE) { be32_add_cpu((__be32 *)dptr, 1); if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM) be32_add_cpu((__be32 *)dptr, 1); dptr += BBSIZE; } ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1); ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize); /* account for internal log which doesn't start at block #0 */ XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart); XFS_BUF_WRITE(bp); if ((error = xlog_bdstrat(bp))) { xfs_ioerror_alert("xlog_sync (split)", log->l_mp, bp, XFS_BUF_ADDR(bp)); return error; } } return 0; } /* xlog_sync */ /* * Deallocate a log structure */ STATIC void xlog_dealloc_log(xlog_t *log) { xlog_in_core_t *iclog, *next_iclog; int i; xlog_cil_destroy(log); /* * always need to ensure that the extra buffer does not point to memory * owned by another log buffer before we free it. */ xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size); xfs_buf_free(log->l_xbuf); iclog = log->l_iclog; for (i=0; i<log->l_iclog_bufs; i++) { xfs_buf_free(iclog->ic_bp); next_iclog = iclog->ic_next; kmem_free(iclog); iclog = next_iclog; } spinlock_destroy(&log->l_icloglock); log->l_mp->m_log = NULL; kmem_free(log); } /* xlog_dealloc_log */ /* * Update counters atomically now that memcpy is done. */ /* ARGSUSED */ static inline void xlog_state_finish_copy(xlog_t *log, xlog_in_core_t *iclog, int record_cnt, int copy_bytes) { spin_lock(&log->l_icloglock); be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); iclog->ic_offset += copy_bytes; spin_unlock(&log->l_icloglock); } /* xlog_state_finish_copy */ /* * print out info relating to regions written which consume * the reservation */ void xlog_print_tic_res( struct xfs_mount *mp, struct xlog_ticket *ticket) { uint i; uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); /* match with XLOG_REG_TYPE_* in xfs_log.h */ static char *res_type_str[XLOG_REG_TYPE_MAX] = { "bformat", "bchunk", "efi_format", "efd_format", "iformat", "icore", "iext", "ibroot", "ilocal", "iattr_ext", "iattr_broot", "iattr_local", "qformat", "dquot", "quotaoff", "LR header", "unmount", "commit", "trans header" }; static char *trans_type_str[XFS_TRANS_TYPE_MAX] = { "SETATTR_NOT_SIZE", "SETATTR_SIZE", "INACTIVE", "CREATE", "CREATE_TRUNC", "TRUNCATE_FILE", "REMOVE", "LINK", "RENAME", "MKDIR", "RMDIR", "SYMLINK", "SET_DMATTRS", "GROWFS", "STRAT_WRITE", "DIOSTRAT", "WRITE_SYNC", "WRITEID", "ADDAFORK", "ATTRINVAL", "ATRUNCATE", "ATTR_SET", "ATTR_RM", "ATTR_FLAG", "CLEAR_AGI_BUCKET", "QM_SBCHANGE", "DUMMY1", "DUMMY2", "QM_QUOTAOFF", "QM_DQALLOC", "QM_SETQLIM", "QM_DQCLUSTER", "QM_QINOCREATE", "QM_QUOTAOFF_END", "SB_UNIT", "FSYNC_TS", "GROWFSRT_ALLOC", "GROWFSRT_ZERO", "GROWFSRT_FREE", "SWAPEXT" }; xfs_warn(mp, "xfs_log_write: reservation summary:\n" " trans type = %s (%u)\n" " unit res = %d bytes\n" " current res = %d bytes\n" " total reg = %u bytes (o/flow = %u bytes)\n" " ophdrs = %u (ophdr space = %u bytes)\n" " ophdr + reg = %u bytes\n" " num regions = %u\n", ((ticket->t_trans_type <= 0 || ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ? "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]), ticket->t_trans_type, ticket->t_unit_res, ticket->t_curr_res, ticket->t_res_arr_sum, ticket->t_res_o_flow, ticket->t_res_num_ophdrs, ophdr_spc, ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc, ticket->t_res_num); for (i = 0; i < ticket->t_res_num; i++) { uint r_type = ticket->t_res_arr[i].r_type; xfs_warn(mp, "region[%u]: %s - %u bytes\n", i, ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? "bad-rtype" : res_type_str[r_type-1]), ticket->t_res_arr[i].r_len); } xfs_alert_tag(mp, XFS_PTAG_LOGRES, "xfs_log_write: reservation ran out. Need to up reservation"); xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); } /* * Calculate the potential space needed by the log vector. Each region gets * its own xlog_op_header_t and may need to be double word aligned. */ static int xlog_write_calc_vec_length( struct xlog_ticket *ticket, struct xfs_log_vec *log_vector) { struct xfs_log_vec *lv; int headers = 0; int len = 0; int i; /* acct for start rec of xact */ if (ticket->t_flags & XLOG_TIC_INITED) headers++; for (lv = log_vector; lv; lv = lv->lv_next) { headers += lv->lv_niovecs; for (i = 0; i < lv->lv_niovecs; i++) { struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; len += vecp->i_len; xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); } } ticket->t_res_num_ophdrs += headers; len += headers * sizeof(struct xlog_op_header); return len; } /* * If first write for transaction, insert start record We can't be trying to * commit if we are inited. We can't have any "partial_copy" if we are inited. */ static int xlog_write_start_rec( struct xlog_op_header *ophdr, struct xlog_ticket *ticket) { if (!(ticket->t_flags & XLOG_TIC_INITED)) return 0; ophdr->oh_tid = cpu_to_be32(ticket->t_tid); ophdr->oh_clientid = ticket->t_clientid; ophdr->oh_len = 0; ophdr->oh_flags = XLOG_START_TRANS; ophdr->oh_res2 = 0; ticket->t_flags &= ~XLOG_TIC_INITED; return sizeof(struct xlog_op_header); } static xlog_op_header_t * xlog_write_setup_ophdr( struct log *log, struct xlog_op_header *ophdr, struct xlog_ticket *ticket, uint flags) { ophdr->oh_tid = cpu_to_be32(ticket->t_tid); ophdr->oh_clientid = ticket->t_clientid; ophdr->oh_res2 = 0; /* are we copying a commit or unmount record? */ ophdr->oh_flags = flags; /* * We've seen logs corrupted with bad transaction client ids. This * makes sure that XFS doesn't generate them on. Turn this into an EIO * and shut down the filesystem. */ switch (ophdr->oh_clientid) { case XFS_TRANSACTION: case XFS_VOLUME: case XFS_LOG: break; default: xfs_warn(log->l_mp, "Bad XFS transaction clientid 0x%x in ticket 0x%p", ophdr->oh_clientid, ticket); return NULL; } return ophdr; } /* * Set up the parameters of the region copy into the log. This has * to handle region write split across multiple log buffers - this * state is kept external to this function so that this code can * can be written in an obvious, self documenting manner. */ static int xlog_write_setup_copy( struct xlog_ticket *ticket, struct xlog_op_header *ophdr, int space_available, int space_required, int *copy_off, int *copy_len, int *last_was_partial_copy, int *bytes_consumed) { int still_to_copy; still_to_copy = space_required - *bytes_consumed; *copy_off = *bytes_consumed; if (still_to_copy <= space_available) { /* write of region completes here */ *copy_len = still_to_copy; ophdr->oh_len = cpu_to_be32(*copy_len); if (*last_was_partial_copy) ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); *last_was_partial_copy = 0; *bytes_consumed = 0; return 0; } /* partial write of region, needs extra log op header reservation */ *copy_len = space_available; ophdr->oh_len = cpu_to_be32(*copy_len); ophdr->oh_flags |= XLOG_CONTINUE_TRANS; if (*last_was_partial_copy) ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; *bytes_consumed += *copy_len; (*last_was_partial_copy)++; /* account for new log op header */ ticket->t_curr_res -= sizeof(struct xlog_op_header); ticket->t_res_num_ophdrs++; return sizeof(struct xlog_op_header); } static int xlog_write_copy_finish( struct log *log, struct xlog_in_core *iclog, uint flags, int *record_cnt, int *data_cnt, int *partial_copy, int *partial_copy_len, int log_offset, struct xlog_in_core **commit_iclog) { if (*partial_copy) { /* * This iclog has already been marked WANT_SYNC by * xlog_state_get_iclog_space. */ xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); *record_cnt = 0; *data_cnt = 0; return xlog_state_release_iclog(log, iclog); } *partial_copy = 0; *partial_copy_len = 0; if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { /* no more space in this iclog - push it. */ xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); *record_cnt = 0; *data_cnt = 0; spin_lock(&log->l_icloglock); xlog_state_want_sync(log, iclog); spin_unlock(&log->l_icloglock); if (!commit_iclog) return xlog_state_release_iclog(log, iclog); ASSERT(flags & XLOG_COMMIT_TRANS); *commit_iclog = iclog; } return 0; } /* * Write some region out to in-core log * * This will be called when writing externally provided regions or when * writing out a commit record for a given transaction. * * General algorithm: * 1. Find total length of this write. This may include adding to the * lengths passed in. * 2. Check whether we violate the tickets reservation. * 3. While writing to this iclog * A. Reserve as much space in this iclog as can get * B. If this is first write, save away start lsn * C. While writing this region: * 1. If first write of transaction, write start record * 2. Write log operation header (header per region) * 3. Find out if we can fit entire region into this iclog * 4. Potentially, verify destination memcpy ptr * 5. Memcpy (partial) region * 6. If partial copy, release iclog; otherwise, continue * copying more regions into current iclog * 4. Mark want sync bit (in simulation mode) * 5. Release iclog for potential flush to on-disk log. * * ERRORS: * 1. Panic if reservation is overrun. This should never happen since * reservation amounts are generated internal to the filesystem. * NOTES: * 1. Tickets are single threaded data structures. * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the * syncing routine. When a single log_write region needs to span * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set * on all log operation writes which don't contain the end of the * region. The XLOG_END_TRANS bit is used for the in-core log * operation which contains the end of the continued log_write region. * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, * we don't really know exactly how much space will be used. As a result, * we don't update ic_offset until the end when we know exactly how many * bytes have been written out. */ int xlog_write( struct log *log, struct xfs_log_vec *log_vector, struct xlog_ticket *ticket, xfs_lsn_t *start_lsn, struct xlog_in_core **commit_iclog, uint flags) { struct xlog_in_core *iclog = NULL; struct xfs_log_iovec *vecp; struct xfs_log_vec *lv; int len; int index; int partial_copy = 0; int partial_copy_len = 0; int contwr = 0; int record_cnt = 0; int data_cnt = 0; int error; *start_lsn = 0; len = xlog_write_calc_vec_length(ticket, log_vector); if (log->l_cilp) { /* * Region headers and bytes are already accounted for. * We only need to take into account start records and * split regions in this function. */ if (ticket->t_flags & XLOG_TIC_INITED) ticket->t_curr_res -= sizeof(xlog_op_header_t); /* * Commit record headers need to be accounted for. These * come in as separate writes so are easy to detect. */ if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS)) ticket->t_curr_res -= sizeof(xlog_op_header_t); } else ticket->t_curr_res -= len; if (ticket->t_curr_res < 0) xlog_print_tic_res(log->l_mp, ticket); index = 0; lv = log_vector; vecp = lv->lv_iovecp; while (lv && index < lv->lv_niovecs) { void *ptr; int log_offset; error = xlog_state_get_iclog_space(log, len, &iclog, ticket, &contwr, &log_offset); if (error) return error; ASSERT(log_offset <= iclog->ic_size - 1); ptr = iclog->ic_datap + log_offset; /* start_lsn is the first lsn written to. That's all we need. */ if (!*start_lsn) *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); /* * This loop writes out as many regions as can fit in the amount * of space which was allocated by xlog_state_get_iclog_space(). */ while (lv && index < lv->lv_niovecs) { struct xfs_log_iovec *reg = &vecp[index]; struct xlog_op_header *ophdr; int start_rec_copy; int copy_len; int copy_off; ASSERT(reg->i_len % sizeof(__int32_t) == 0); ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0); start_rec_copy = xlog_write_start_rec(ptr, ticket); if (start_rec_copy) { record_cnt++; xlog_write_adv_cnt(&ptr, &len, &log_offset, start_rec_copy); } ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); if (!ophdr) return XFS_ERROR(EIO); xlog_write_adv_cnt(&ptr, &len, &log_offset, sizeof(struct xlog_op_header)); len += xlog_write_setup_copy(ticket, ophdr, iclog->ic_size-log_offset, reg->i_len, ©_off, ©_len, &partial_copy, &partial_copy_len); xlog_verify_dest_ptr(log, ptr); /* copy region */ ASSERT(copy_len >= 0); memcpy(ptr, reg->i_addr + copy_off, copy_len); xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len); copy_len += start_rec_copy + sizeof(xlog_op_header_t); record_cnt++; data_cnt += contwr ? copy_len : 0; error = xlog_write_copy_finish(log, iclog, flags, &record_cnt, &data_cnt, &partial_copy, &partial_copy_len, log_offset, commit_iclog); if (error) return error; /* * if we had a partial copy, we need to get more iclog * space but we don't want to increment the region * index because there is still more is this region to * write. * * If we completed writing this region, and we flushed * the iclog (indicated by resetting of the record * count), then we also need to get more log space. If * this was the last record, though, we are done and * can just return. */ if (partial_copy) break; if (++index == lv->lv_niovecs) { lv = lv->lv_next; index = 0; if (lv) vecp = lv->lv_iovecp; } if (record_cnt == 0) { if (!lv) return 0; break; } } } ASSERT(len == 0); xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); if (!commit_iclog) return xlog_state_release_iclog(log, iclog); ASSERT(flags & XLOG_COMMIT_TRANS); *commit_iclog = iclog; return 0; } /***************************************************************************** * * State Machine functions * ***************************************************************************** */ /* Clean iclogs starting from the head. This ordering must be * maintained, so an iclog doesn't become ACTIVE beyond one that * is SYNCING. This is also required to maintain the notion that we use * a ordered wait queue to hold off would be writers to the log when every * iclog is trying to sync to disk. * * State Change: DIRTY -> ACTIVE */ STATIC void xlog_state_clean_log(xlog_t *log) { xlog_in_core_t *iclog; int changed = 0; iclog = log->l_iclog; do { if (iclog->ic_state == XLOG_STATE_DIRTY) { iclog->ic_state = XLOG_STATE_ACTIVE; iclog->ic_offset = 0; ASSERT(iclog->ic_callback == NULL); /* * If the number of ops in this iclog indicate it just * contains the dummy transaction, we can * change state into IDLE (the second time around). * Otherwise we should change the state into * NEED a dummy. * We don't need to cover the dummy. */ if (!changed && (be32_to_cpu(iclog->ic_header.h_num_logops) == XLOG_COVER_OPS)) { changed = 1; } else { /* * We have two dirty iclogs so start over * This could also be num of ops indicates * this is not the dummy going out. */ changed = 2; } iclog->ic_header.h_num_logops = 0; memset(iclog->ic_header.h_cycle_data, 0, sizeof(iclog->ic_header.h_cycle_data)); iclog->ic_header.h_lsn = 0; } else if (iclog->ic_state == XLOG_STATE_ACTIVE) /* do nothing */; else break; /* stop cleaning */ iclog = iclog->ic_next; } while (iclog != log->l_iclog); /* log is locked when we are called */ /* * Change state for the dummy log recording. * We usually go to NEED. But we go to NEED2 if the changed indicates * we are done writing the dummy record. * If we are done with the second dummy recored (DONE2), then * we go to IDLE. */ if (changed) { switch (log->l_covered_state) { case XLOG_STATE_COVER_IDLE: case XLOG_STATE_COVER_NEED: case XLOG_STATE_COVER_NEED2: log->l_covered_state = XLOG_STATE_COVER_NEED; break; case XLOG_STATE_COVER_DONE: if (changed == 1) log->l_covered_state = XLOG_STATE_COVER_NEED2; else log->l_covered_state = XLOG_STATE_COVER_NEED; break; case XLOG_STATE_COVER_DONE2: if (changed == 1) log->l_covered_state = XLOG_STATE_COVER_IDLE; else log->l_covered_state = XLOG_STATE_COVER_NEED; break; default: ASSERT(0); } } } /* xlog_state_clean_log */ STATIC xfs_lsn_t xlog_get_lowest_lsn( xlog_t *log) { xlog_in_core_t *lsn_log; xfs_lsn_t lowest_lsn, lsn; lsn_log = log->l_iclog; lowest_lsn = 0; do { if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) { lsn = be64_to_cpu(lsn_log->ic_header.h_lsn); if ((lsn && !lowest_lsn) || (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) { lowest_lsn = lsn; } } lsn_log = lsn_log->ic_next; } while (lsn_log != log->l_iclog); return lowest_lsn; } STATIC void xlog_state_do_callback( xlog_t *log, int aborted, xlog_in_core_t *ciclog) { xlog_in_core_t *iclog; xlog_in_core_t *first_iclog; /* used to know when we've * processed all iclogs once */ xfs_log_callback_t *cb, *cb_next; int flushcnt = 0; xfs_lsn_t lowest_lsn; int ioerrors; /* counter: iclogs with errors */ int loopdidcallbacks; /* flag: inner loop did callbacks*/ int funcdidcallbacks; /* flag: function did callbacks */ int repeats; /* for issuing console warnings if * looping too many times */ int wake = 0; spin_lock(&log->l_icloglock); first_iclog = iclog = log->l_iclog; ioerrors = 0; funcdidcallbacks = 0; repeats = 0; do { /* * Scan all iclogs starting with the one pointed to by the * log. Reset this starting point each time the log is * unlocked (during callbacks). * * Keep looping through iclogs until one full pass is made * without running any callbacks. */ first_iclog = log->l_iclog; iclog = log->l_iclog; loopdidcallbacks = 0; repeats++; do { /* skip all iclogs in the ACTIVE & DIRTY states */ if (iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) { iclog = iclog->ic_next; continue; } /* * Between marking a filesystem SHUTDOWN and stopping * the log, we do flush all iclogs to disk (if there * wasn't a log I/O error). So, we do want things to * go smoothly in case of just a SHUTDOWN w/o a * LOG_IO_ERROR. */ if (!(iclog->ic_state & XLOG_STATE_IOERROR)) { /* * Can only perform callbacks in order. Since * this iclog is not in the DONE_SYNC/ * DO_CALLBACK state, we skip the rest and * just try to clean up. If we set our iclog * to DO_CALLBACK, we will not process it when * we retry since a previous iclog is in the * CALLBACK and the state cannot change since * we are holding the l_icloglock. */ if (!(iclog->ic_state & (XLOG_STATE_DONE_SYNC | XLOG_STATE_DO_CALLBACK))) { if (ciclog && (ciclog->ic_state == XLOG_STATE_DONE_SYNC)) { ciclog->ic_state = XLOG_STATE_DO_CALLBACK; } break; } /* * We now have an iclog that is in either the * DO_CALLBACK or DONE_SYNC states. The other * states (WANT_SYNC, SYNCING, or CALLBACK were * caught by the above if and are going to * clean (i.e. we aren't doing their callbacks) * see the above if. */ /* * We will do one more check here to see if we * have chased our tail around. */ lowest_lsn = xlog_get_lowest_lsn(log); if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, be64_to_cpu(iclog->ic_header.h_lsn)) < 0) { iclog = iclog->ic_next; continue; /* Leave this iclog for * another thread */ } iclog->ic_state = XLOG_STATE_CALLBACK; /* * update the last_sync_lsn before we drop the * icloglock to ensure we are the only one that * can update it. */ ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), be64_to_cpu(iclog->ic_header.h_lsn)) <= 0); atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(iclog->ic_header.h_lsn)); } else ioerrors++; spin_unlock(&log->l_icloglock); /* * Keep processing entries in the callback list until * we come around and it is empty. We need to * atomically see that the list is empty and change the * state to DIRTY so that we don't miss any more * callbacks being added. */ spin_lock(&iclog->ic_callback_lock); cb = iclog->ic_callback; while (cb) { iclog->ic_callback_tail = &(iclog->ic_callback); iclog->ic_callback = NULL; spin_unlock(&iclog->ic_callback_lock); /* perform callbacks in the order given */ for (; cb; cb = cb_next) { cb_next = cb->cb_next; cb->cb_func(cb->cb_arg, aborted); } spin_lock(&iclog->ic_callback_lock); cb = iclog->ic_callback; } loopdidcallbacks++; funcdidcallbacks++; spin_lock(&log->l_icloglock); ASSERT(iclog->ic_callback == NULL); spin_unlock(&iclog->ic_callback_lock); if (!(iclog->ic_state & XLOG_STATE_IOERROR)) iclog->ic_state = XLOG_STATE_DIRTY; /* * Transition from DIRTY to ACTIVE if applicable. * NOP if STATE_IOERROR. */ xlog_state_clean_log(log); /* wake up threads waiting in xfs_log_force() */ wake_up_all(&iclog->ic_force_wait); iclog = iclog->ic_next; } while (first_iclog != iclog); if (repeats > 5000) { flushcnt += repeats; repeats = 0; xfs_warn(log->l_mp, "%s: possible infinite loop (%d iterations)", __func__, flushcnt); } } while (!ioerrors && loopdidcallbacks); /* * make one last gasp attempt to see if iclogs are being left in * limbo.. */ #ifdef DEBUG if (funcdidcallbacks) { first_iclog = iclog = log->l_iclog; do { ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK); /* * Terminate the loop if iclogs are found in states * which will cause other threads to clean up iclogs. * * SYNCING - i/o completion will go through logs * DONE_SYNC - interrupt thread should be waiting for * l_icloglock * IOERROR - give up hope all ye who enter here */ if (iclog->ic_state == XLOG_STATE_WANT_SYNC || iclog->ic_state == XLOG_STATE_SYNCING || iclog->ic_state == XLOG_STATE_DONE_SYNC || iclog->ic_state == XLOG_STATE_IOERROR ) break; iclog = iclog->ic_next; } while (first_iclog != iclog); } #endif if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR)) wake = 1; spin_unlock(&log->l_icloglock); if (wake) wake_up_all(&log->l_flush_wait); } /* * Finish transitioning this iclog to the dirty state. * * Make sure that we completely execute this routine only when this is * the last call to the iclog. There is a good chance that iclog flushes, * when we reach the end of the physical log, get turned into 2 separate * calls to bwrite. Hence, one iclog flush could generate two calls to this * routine. By using the reference count bwritecnt, we guarantee that only * the second completion goes through. * * Callbacks could take time, so they are done outside the scope of the * global state machine log lock. */ STATIC void xlog_state_done_syncing( xlog_in_core_t *iclog, int aborted) { xlog_t *log = iclog->ic_log; spin_lock(&log->l_icloglock); ASSERT(iclog->ic_state == XLOG_STATE_SYNCING || iclog->ic_state == XLOG_STATE_IOERROR); ASSERT(atomic_read(&iclog->ic_refcnt) == 0); ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2); /* * If we got an error, either on the first buffer, or in the case of * split log writes, on the second, we mark ALL iclogs STATE_IOERROR, * and none should ever be attempted to be written to disk * again. */ if (iclog->ic_state != XLOG_STATE_IOERROR) { if (--iclog->ic_bwritecnt == 1) { spin_unlock(&log->l_icloglock); return; } iclog->ic_state = XLOG_STATE_DONE_SYNC; } /* * Someone could be sleeping prior to writing out the next * iclog buffer, we wake them all, one will get to do the * I/O, the others get to wait for the result. */ wake_up_all(&iclog->ic_write_wait); spin_unlock(&log->l_icloglock); xlog_state_do_callback(log, aborted, iclog); /* also cleans log */ } /* xlog_state_done_syncing */ /* * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must * sleep. We wait on the flush queue on the head iclog as that should be * the first iclog to complete flushing. Hence if all iclogs are syncing, * we will wait here and all new writes will sleep until a sync completes. * * The in-core logs are used in a circular fashion. They are not used * out-of-order even when an iclog past the head is free. * * return: * * log_offset where xlog_write() can start writing into the in-core * log's data space. * * in-core log pointer to which xlog_write() should write. * * boolean indicating this is a continued write to an in-core log. * If this is the last write, then the in-core log's offset field * needs to be incremented, depending on the amount of data which * is copied. */ STATIC int xlog_state_get_iclog_space(xlog_t *log, int len, xlog_in_core_t **iclogp, xlog_ticket_t *ticket, int *continued_write, int *logoffsetp) { int log_offset; xlog_rec_header_t *head; xlog_in_core_t *iclog; int error; restart: spin_lock(&log->l_icloglock); if (XLOG_FORCED_SHUTDOWN(log)) { spin_unlock(&log->l_icloglock); return XFS_ERROR(EIO); } iclog = log->l_iclog; if (iclog->ic_state != XLOG_STATE_ACTIVE) { XFS_STATS_INC(xs_log_noiclogs); /* Wait for log writes to have flushed */ xlog_wait(&log->l_flush_wait, &log->l_icloglock); goto restart; } head = &iclog->ic_header; atomic_inc(&iclog->ic_refcnt); /* prevents sync */ log_offset = iclog->ic_offset; /* On the 1st write to an iclog, figure out lsn. This works * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are * committing to. If the offset is set, that's how many blocks * must be written. */ if (log_offset == 0) { ticket->t_curr_res -= log->l_iclog_hsize; xlog_tic_add_region(ticket, log->l_iclog_hsize, XLOG_REG_TYPE_LRHEADER); head->h_cycle = cpu_to_be32(log->l_curr_cycle); head->h_lsn = cpu_to_be64( xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); ASSERT(log->l_curr_block >= 0); } /* If there is enough room to write everything, then do it. Otherwise, * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC * bit is on, so this will get flushed out. Don't update ic_offset * until you know exactly how many bytes get copied. Therefore, wait * until later to update ic_offset. * * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's * can fit into remaining data section. */ if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { xlog_state_switch_iclogs(log, iclog, iclog->ic_size); /* * If I'm the only one writing to this iclog, sync it to disk. * We need to do an atomic compare and decrement here to avoid * racing with concurrent atomic_dec_and_lock() calls in * xlog_state_release_iclog() when there is more than one * reference to the iclog. */ if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) { /* we are the only one */ spin_unlock(&log->l_icloglock); error = xlog_state_release_iclog(log, iclog); if (error) return error; } else { spin_unlock(&log->l_icloglock); } goto restart; } /* Do we have enough room to write the full amount in the remainder * of this iclog? Or must we continue a write on the next iclog and * mark this iclog as completely taken? In the case where we switch * iclogs (to mark it taken), this particular iclog will release/sync * to disk in xlog_write(). */ if (len <= iclog->ic_size - iclog->ic_offset) { *continued_write = 0; iclog->ic_offset += len; } else { *continued_write = 1; xlog_state_switch_iclogs(log, iclog, iclog->ic_size); } *iclogp = iclog; ASSERT(iclog->ic_offset <= iclog->ic_size); spin_unlock(&log->l_icloglock); *logoffsetp = log_offset; return 0; } /* xlog_state_get_iclog_space */ /* * Atomically get the log space required for a log ticket. * * Once a ticket gets put onto the reserveq, it will only return after * the needed reservation is satisfied. * * This function is structured so that it has a lock free fast path. This is * necessary because every new transaction reservation will come through this * path. Hence any lock will be globally hot if we take it unconditionally on * every pass. * * As tickets are only ever moved on and off the reserveq under the * l_grant_reserve_lock, we only need to take that lock if we are going * to add the ticket to the queue and sleep. We can avoid taking the lock if the * ticket was never added to the reserveq because the t_queue list head will be * empty and we hold the only reference to it so it can safely be checked * unlocked. */ STATIC int xlog_grant_log_space(xlog_t *log, xlog_ticket_t *tic) { int free_bytes; int need_bytes; #ifdef DEBUG if (log->l_flags & XLOG_ACTIVE_RECOVERY) panic("grant Recovery problem"); #endif trace_xfs_log_grant_enter(log, tic); need_bytes = tic->t_unit_res; if (tic->t_flags & XFS_LOG_PERM_RESERV) need_bytes *= tic->t_ocnt; /* something is already sleeping; insert new transaction at end */ if (!list_empty_careful(&log->l_reserveq)) { spin_lock(&log->l_grant_reserve_lock); /* recheck the queue now we are locked */ if (list_empty(&log->l_reserveq)) { spin_unlock(&log->l_grant_reserve_lock); goto redo; } list_add_tail(&tic->t_queue, &log->l_reserveq); trace_xfs_log_grant_sleep1(log, tic); /* * Gotta check this before going to sleep, while we're * holding the grant lock. */ if (XLOG_FORCED_SHUTDOWN(log)) goto error_return; XFS_STATS_INC(xs_sleep_logspace); xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock); /* * If we got an error, and the filesystem is shutting down, * we'll catch it down below. So just continue... */ trace_xfs_log_grant_wake1(log, tic); } redo: if (XLOG_FORCED_SHUTDOWN(log)) goto error_return_unlocked; free_bytes = xlog_space_left(log, &log->l_grant_reserve_head); if (free_bytes < need_bytes) { spin_lock(&log->l_grant_reserve_lock); if (list_empty(&tic->t_queue)) list_add_tail(&tic->t_queue, &log->l_reserveq); trace_xfs_log_grant_sleep2(log, tic); if (XLOG_FORCED_SHUTDOWN(log)) goto error_return; xlog_grant_push_ail(log, need_bytes); XFS_STATS_INC(xs_sleep_logspace); xlog_wait(&tic->t_wait, &log->l_grant_reserve_lock); trace_xfs_log_grant_wake2(log, tic); goto redo; } if (!list_empty(&tic->t_queue)) { spin_lock(&log->l_grant_reserve_lock); list_del_init(&tic->t_queue); spin_unlock(&log->l_grant_reserve_lock); } /* we've got enough space */ xlog_grant_add_space(log, &log->l_grant_reserve_head, need_bytes); xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes); trace_xfs_log_grant_exit(log, tic); xlog_verify_grant_tail(log); return 0; error_return_unlocked: spin_lock(&log->l_grant_reserve_lock); error_return: list_del_init(&tic->t_queue); spin_unlock(&log->l_grant_reserve_lock); trace_xfs_log_grant_error(log, tic); /* * If we are failing, make sure the ticket doesn't have any * current reservations. We don't want to add this back when * the ticket/transaction gets cancelled. */ tic->t_curr_res = 0; tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ return XFS_ERROR(EIO); } /* xlog_grant_log_space */ /* * Replenish the byte reservation required by moving the grant write head. * * Similar to xlog_grant_log_space, the function is structured to have a lock * free fast path. */ STATIC int xlog_regrant_write_log_space(xlog_t *log, xlog_ticket_t *tic) { int free_bytes, need_bytes; tic->t_curr_res = tic->t_unit_res; xlog_tic_reset_res(tic); if (tic->t_cnt > 0) return 0; #ifdef DEBUG if (log->l_flags & XLOG_ACTIVE_RECOVERY) panic("regrant Recovery problem"); #endif trace_xfs_log_regrant_write_enter(log, tic); if (XLOG_FORCED_SHUTDOWN(log)) goto error_return_unlocked; /* If there are other waiters on the queue then give them a * chance at logspace before us. Wake up the first waiters, * if we do not wake up all the waiters then go to sleep waiting * for more free space, otherwise try to get some space for * this transaction. */ need_bytes = tic->t_unit_res; if (!list_empty_careful(&log->l_writeq)) { struct xlog_ticket *ntic; spin_lock(&log->l_grant_write_lock); free_bytes = xlog_space_left(log, &log->l_grant_write_head); list_for_each_entry(ntic, &log->l_writeq, t_queue) { ASSERT(ntic->t_flags & XLOG_TIC_PERM_RESERV); if (free_bytes < ntic->t_unit_res) break; free_bytes -= ntic->t_unit_res; wake_up(&ntic->t_wait); } if (ntic != list_first_entry(&log->l_writeq, struct xlog_ticket, t_queue)) { if (list_empty(&tic->t_queue)) list_add_tail(&tic->t_queue, &log->l_writeq); trace_xfs_log_regrant_write_sleep1(log, tic); xlog_grant_push_ail(log, need_bytes); XFS_STATS_INC(xs_sleep_logspace); xlog_wait(&tic->t_wait, &log->l_grant_write_lock); trace_xfs_log_regrant_write_wake1(log, tic); } else spin_unlock(&log->l_grant_write_lock); } redo: if (XLOG_FORCED_SHUTDOWN(log)) goto error_return_unlocked; free_bytes = xlog_space_left(log, &log->l_grant_write_head); if (free_bytes < need_bytes) { spin_lock(&log->l_grant_write_lock); if (list_empty(&tic->t_queue)) list_add_tail(&tic->t_queue, &log->l_writeq); if (XLOG_FORCED_SHUTDOWN(log)) goto error_return; xlog_grant_push_ail(log, need_bytes); XFS_STATS_INC(xs_sleep_logspace); trace_xfs_log_regrant_write_sleep2(log, tic); xlog_wait(&tic->t_wait, &log->l_grant_write_lock); trace_xfs_log_regrant_write_wake2(log, tic); goto redo; } if (!list_empty(&tic->t_queue)) { spin_lock(&log->l_grant_write_lock); list_del_init(&tic->t_queue); spin_unlock(&log->l_grant_write_lock); } /* we've got enough space */ xlog_grant_add_space(log, &log->l_grant_write_head, need_bytes); trace_xfs_log_regrant_write_exit(log, tic); xlog_verify_grant_tail(log); return 0; error_return_unlocked: spin_lock(&log->l_grant_write_lock); error_return: list_del_init(&tic->t_queue); spin_unlock(&log->l_grant_write_lock); trace_xfs_log_regrant_write_error(log, tic); /* * If we are failing, make sure the ticket doesn't have any * current reservations. We don't want to add this back when * the ticket/transaction gets cancelled. */ tic->t_curr_res = 0; tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ return XFS_ERROR(EIO); } /* xlog_regrant_write_log_space */ /* The first cnt-1 times through here we don't need to * move the grant write head because the permanent * reservation has reserved cnt times the unit amount. * Release part of current permanent unit reservation and * reset current reservation to be one units worth. Also * move grant reservation head forward. */ STATIC void xlog_regrant_reserve_log_space(xlog_t *log, xlog_ticket_t *ticket) { trace_xfs_log_regrant_reserve_enter(log, ticket); if (ticket->t_cnt > 0) ticket->t_cnt--; xlog_grant_sub_space(log, &log->l_grant_reserve_head, ticket->t_curr_res); xlog_grant_sub_space(log, &log->l_grant_write_head, ticket->t_curr_res); ticket->t_curr_res = ticket->t_unit_res; xlog_tic_reset_res(ticket); trace_xfs_log_regrant_reserve_sub(log, ticket); /* just return if we still have some of the pre-reserved space */ if (ticket->t_cnt > 0) return; xlog_grant_add_space(log, &log->l_grant_reserve_head, ticket->t_unit_res); trace_xfs_log_regrant_reserve_exit(log, ticket); ticket->t_curr_res = ticket->t_unit_res; xlog_tic_reset_res(ticket); } /* xlog_regrant_reserve_log_space */ /* * Give back the space left from a reservation. * * All the information we need to make a correct determination of space left * is present. For non-permanent reservations, things are quite easy. The * count should have been decremented to zero. We only need to deal with the * space remaining in the current reservation part of the ticket. If the * ticket contains a permanent reservation, there may be left over space which * needs to be released. A count of N means that N-1 refills of the current * reservation can be done before we need to ask for more space. The first * one goes to fill up the first current reservation. Once we run out of * space, the count will stay at zero and the only space remaining will be * in the current reservation field. */ STATIC void xlog_ungrant_log_space(xlog_t *log, xlog_ticket_t *ticket) { int bytes; if (ticket->t_cnt > 0) ticket->t_cnt--; trace_xfs_log_ungrant_enter(log, ticket); trace_xfs_log_ungrant_sub(log, ticket); /* * If this is a permanent reservation ticket, we may be able to free * up more space based on the remaining count. */ bytes = ticket->t_curr_res; if (ticket->t_cnt > 0) { ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); bytes += ticket->t_unit_res*ticket->t_cnt; } xlog_grant_sub_space(log, &log->l_grant_reserve_head, bytes); xlog_grant_sub_space(log, &log->l_grant_write_head, bytes); trace_xfs_log_ungrant_exit(log, ticket); xfs_log_move_tail(log->l_mp, 1); } /* xlog_ungrant_log_space */ /* * Flush iclog to disk if this is the last reference to the given iclog and * the WANT_SYNC bit is set. * * When this function is entered, the iclog is not necessarily in the * WANT_SYNC state. It may be sitting around waiting to get filled. * * */ STATIC int xlog_state_release_iclog( xlog_t *log, xlog_in_core_t *iclog) { int sync = 0; /* do we sync? */ if (iclog->ic_state & XLOG_STATE_IOERROR) return XFS_ERROR(EIO); ASSERT(atomic_read(&iclog->ic_refcnt) > 0); if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) return 0; if (iclog->ic_state & XLOG_STATE_IOERROR) { spin_unlock(&log->l_icloglock); return XFS_ERROR(EIO); } ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE || iclog->ic_state == XLOG_STATE_WANT_SYNC); if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { /* update tail before writing to iclog */ xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); sync++; iclog->ic_state = XLOG_STATE_SYNCING; iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); xlog_verify_tail_lsn(log, iclog, tail_lsn); /* cycle incremented when incrementing curr_block */ } spin_unlock(&log->l_icloglock); /* * We let the log lock go, so it's possible that we hit a log I/O * error or some other SHUTDOWN condition that marks the iclog * as XLOG_STATE_IOERROR before the bwrite. However, we know that * this iclog has consistent data, so we ignore IOERROR * flags after this point. */ if (sync) return xlog_sync(log, iclog); return 0; } /* xlog_state_release_iclog */ /* * This routine will mark the current iclog in the ring as WANT_SYNC * and move the current iclog pointer to the next iclog in the ring. * When this routine is called from xlog_state_get_iclog_space(), the * exact size of the iclog has not yet been determined. All we know is * that every data block. We have run out of space in this log record. */ STATIC void xlog_state_switch_iclogs(xlog_t *log, xlog_in_core_t *iclog, int eventual_size) { ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); if (!eventual_size) eventual_size = iclog->ic_offset; iclog->ic_state = XLOG_STATE_WANT_SYNC; iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); log->l_prev_block = log->l_curr_block; log->l_prev_cycle = log->l_curr_cycle; /* roll log?: ic_offset changed later */ log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); /* Round up to next log-sunit */ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && log->l_mp->m_sb.sb_logsunit > 1) { __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); log->l_curr_block = roundup(log->l_curr_block, sunit_bb); } if (log->l_curr_block >= log->l_logBBsize) { log->l_curr_cycle++; if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) log->l_curr_cycle++; log->l_curr_block -= log->l_logBBsize; ASSERT(log->l_curr_block >= 0); } ASSERT(iclog == log->l_iclog); log->l_iclog = iclog->ic_next; } /* xlog_state_switch_iclogs */ /* * Write out all data in the in-core log as of this exact moment in time. * * Data may be written to the in-core log during this call. However, * we don't guarantee this data will be written out. A change from past * implementation means this routine will *not* write out zero length LRs. * * Basically, we try and perform an intelligent scan of the in-core logs. * If we determine there is no flushable data, we just return. There is no * flushable data if: * * 1. the current iclog is active and has no data; the previous iclog * is in the active or dirty state. * 2. the current iclog is drity, and the previous iclog is in the * active or dirty state. * * We may sleep if: * * 1. the current iclog is not in the active nor dirty state. * 2. the current iclog dirty, and the previous iclog is not in the * active nor dirty state. * 3. the current iclog is active, and there is another thread writing * to this particular iclog. * 4. a) the current iclog is active and has no other writers * b) when we return from flushing out this iclog, it is still * not in the active nor dirty state. */ int _xfs_log_force( struct xfs_mount *mp, uint flags, int *log_flushed) { struct log *log = mp->m_log; struct xlog_in_core *iclog; xfs_lsn_t lsn; XFS_STATS_INC(xs_log_force); if (log->l_cilp) xlog_cil_force(log); spin_lock(&log->l_icloglock); iclog = log->l_iclog; if (iclog->ic_state & XLOG_STATE_IOERROR) { spin_unlock(&log->l_icloglock); return XFS_ERROR(EIO); } /* If the head iclog is not active nor dirty, we just attach * ourselves to the head and go to sleep. */ if (iclog->ic_state == XLOG_STATE_ACTIVE || iclog->ic_state == XLOG_STATE_DIRTY) { /* * If the head is dirty or (active and empty), then * we need to look at the previous iclog. If the previous * iclog is active or dirty we are done. There is nothing * to sync out. Otherwise, we attach ourselves to the * previous iclog and go to sleep. */ if (iclog->ic_state == XLOG_STATE_DIRTY || (atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { iclog = iclog->ic_prev; if (iclog->ic_state == XLOG_STATE_ACTIVE || iclog->ic_state == XLOG_STATE_DIRTY) goto no_sleep; else goto maybe_sleep; } else { if (atomic_read(&iclog->ic_refcnt) == 0) { /* We are the only one with access to this * iclog. Flush it out now. There should * be a roundoff of zero to show that someone * has already taken care of the roundoff from * the previous sync. */ atomic_inc(&iclog->ic_refcnt); lsn = be64_to_cpu(iclog->ic_header.h_lsn); xlog_state_switch_iclogs(log, iclog, 0); spin_unlock(&log->l_icloglock); if (xlog_state_release_iclog(log, iclog)) return XFS_ERROR(EIO); if (log_flushed) *log_flushed = 1; spin_lock(&log->l_icloglock); if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn && iclog->ic_state != XLOG_STATE_DIRTY) goto maybe_sleep; else goto no_sleep; } else { /* Someone else is writing to this iclog. * Use its call to flush out the data. However, * the other thread may not force out this LR, * so we mark it WANT_SYNC. */ xlog_state_switch_iclogs(log, iclog, 0); goto maybe_sleep; } } } /* By the time we come around again, the iclog could've been filled * which would give it another lsn. If we have a new lsn, just * return because the relevant data has been flushed. */ maybe_sleep: if (flags & XFS_LOG_SYNC) { /* * We must check if we're shutting down here, before * we wait, while we're holding the l_icloglock. * Then we check again after waking up, in case our * sleep was disturbed by a bad news. */ if (iclog->ic_state & XLOG_STATE_IOERROR) { spin_unlock(&log->l_icloglock); return XFS_ERROR(EIO); } XFS_STATS_INC(xs_log_force_sleep); xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); /* * No need to grab the log lock here since we're * only deciding whether or not to return EIO * and the memory read should be atomic. */ if (iclog->ic_state & XLOG_STATE_IOERROR) return XFS_ERROR(EIO); if (log_flushed) *log_flushed = 1; } else { no_sleep: spin_unlock(&log->l_icloglock); } return 0; } /* * Wrapper for _xfs_log_force(), to be used when caller doesn't care * about errors or whether the log was flushed or not. This is the normal * interface to use when trying to unpin items or move the log forward. */ void xfs_log_force( xfs_mount_t *mp, uint flags) { int error; error = _xfs_log_force(mp, flags, NULL); if (error) xfs_warn(mp, "%s: error %d returned.", __func__, error); } /* * Force the in-core log to disk for a specific LSN. * * Find in-core log with lsn. * If it is in the DIRTY state, just return. * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC * state and go to sleep or return. * If it is in any other state, go to sleep or return. * * Synchronous forces are implemented with a signal variable. All callers * to force a given lsn to disk will wait on a the sv attached to the * specific in-core log. When given in-core log finally completes its * write to disk, that thread will wake up all threads waiting on the * sv. */ int _xfs_log_force_lsn( struct xfs_mount *mp, xfs_lsn_t lsn, uint flags, int *log_flushed) { struct log *log = mp->m_log; struct xlog_in_core *iclog; int already_slept = 0; ASSERT(lsn != 0); XFS_STATS_INC(xs_log_force); if (log->l_cilp) { lsn = xlog_cil_force_lsn(log, lsn); if (lsn == NULLCOMMITLSN) return 0; } try_again: spin_lock(&log->l_icloglock); iclog = log->l_iclog; if (iclog->ic_state & XLOG_STATE_IOERROR) { spin_unlock(&log->l_icloglock); return XFS_ERROR(EIO); } do { if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { iclog = iclog->ic_next; continue; } if (iclog->ic_state == XLOG_STATE_DIRTY) { spin_unlock(&log->l_icloglock); return 0; } if (iclog->ic_state == XLOG_STATE_ACTIVE) { /* * We sleep here if we haven't already slept (e.g. * this is the first time we've looked at the correct * iclog buf) and the buffer before us is going to * be sync'ed. The reason for this is that if we * are doing sync transactions here, by waiting for * the previous I/O to complete, we can allow a few * more transactions into this iclog before we close * it down. * * Otherwise, we mark the buffer WANT_SYNC, and bump * up the refcnt so we can release the log (which * drops the ref count). The state switch keeps new * transaction commits from using this buffer. When * the current commits finish writing into the buffer, * the refcount will drop to zero and the buffer will * go out then. */ if (!already_slept && (iclog->ic_prev->ic_state & (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) { ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR)); XFS_STATS_INC(xs_log_force_sleep); xlog_wait(&iclog->ic_prev->ic_write_wait, &log->l_icloglock); if (log_flushed) *log_flushed = 1; already_slept = 1; goto try_again; } atomic_inc(&iclog->ic_refcnt); xlog_state_switch_iclogs(log, iclog, 0); spin_unlock(&log->l_icloglock); if (xlog_state_release_iclog(log, iclog)) return XFS_ERROR(EIO); if (log_flushed) *log_flushed = 1; spin_lock(&log->l_icloglock); } if ((flags & XFS_LOG_SYNC) && /* sleep */ !(iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) { /* * Don't wait on completion if we know that we've * gotten a log write error. */ if (iclog->ic_state & XLOG_STATE_IOERROR) { spin_unlock(&log->l_icloglock); return XFS_ERROR(EIO); } XFS_STATS_INC(xs_log_force_sleep); xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); /* * No need to grab the log lock here since we're * only deciding whether or not to return EIO * and the memory read should be atomic. */ if (iclog->ic_state & XLOG_STATE_IOERROR) return XFS_ERROR(EIO); if (log_flushed) *log_flushed = 1; } else { /* just return */ spin_unlock(&log->l_icloglock); } return 0; } while (iclog != log->l_iclog); spin_unlock(&log->l_icloglock); return 0; } /* * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care * about errors or whether the log was flushed or not. This is the normal * interface to use when trying to unpin items or move the log forward. */ void xfs_log_force_lsn( xfs_mount_t *mp, xfs_lsn_t lsn, uint flags) { int error; error = _xfs_log_force_lsn(mp, lsn, flags, NULL); if (error) xfs_warn(mp, "%s: error %d returned.", __func__, error); } /* * Called when we want to mark the current iclog as being ready to sync to * disk. */ STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog) { assert_spin_locked(&log->l_icloglock); if (iclog->ic_state == XLOG_STATE_ACTIVE) { xlog_state_switch_iclogs(log, iclog, 0); } else { ASSERT(iclog->ic_state & (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR)); } } /***************************************************************************** * * TICKET functions * ***************************************************************************** */ /* * Free a used ticket when its refcount falls to zero. */ void xfs_log_ticket_put( xlog_ticket_t *ticket) { ASSERT(atomic_read(&ticket->t_ref) > 0); if (atomic_dec_and_test(&ticket->t_ref)) kmem_zone_free(xfs_log_ticket_zone, ticket); } xlog_ticket_t * xfs_log_ticket_get( xlog_ticket_t *ticket) { ASSERT(atomic_read(&ticket->t_ref) > 0); atomic_inc(&ticket->t_ref); return ticket; } /* * Allocate and initialise a new log ticket. */ xlog_ticket_t * xlog_ticket_alloc( struct log *log, int unit_bytes, int cnt, char client, uint xflags, int alloc_flags) { struct xlog_ticket *tic; uint num_headers; int iclog_space; tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags); if (!tic) return NULL; /* * Permanent reservations have up to 'cnt'-1 active log operations * in the log. A unit in this case is the amount of space for one * of these log operations. Normal reservations have a cnt of 1 * and their unit amount is the total amount of space required. * * The following lines of code account for non-transaction data * which occupy space in the on-disk log. * * Normal form of a transaction is: * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> * and then there are LR hdrs, split-recs and roundoff at end of syncs. * * We need to account for all the leadup data and trailer data * around the transaction data. * And then we need to account for the worst case in terms of using * more space. * The worst case will happen if: * - the placement of the transaction happens to be such that the * roundoff is at its maximum * - the transaction data is synced before the commit record is synced * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> * Therefore the commit record is in its own Log Record. * This can happen as the commit record is called with its * own region to xlog_write(). * This then means that in the worst case, roundoff can happen for * the commit-rec as well. * The commit-rec is smaller than padding in this scenario and so it is * not added separately. */ /* for trans header */ unit_bytes += sizeof(xlog_op_header_t); unit_bytes += sizeof(xfs_trans_header_t); /* for start-rec */ unit_bytes += sizeof(xlog_op_header_t); /* * for LR headers - the space for data in an iclog is the size minus * the space used for the headers. If we use the iclog size, then we * undercalculate the number of headers required. * * Furthermore - the addition of op headers for split-recs might * increase the space required enough to require more log and op * headers, so take that into account too. * * IMPORTANT: This reservation makes the assumption that if this * transaction is the first in an iclog and hence has the LR headers * accounted to it, then the remaining space in the iclog is * exclusively for this transaction. i.e. if the transaction is larger * than the iclog, it will be the only thing in that iclog. * Fundamentally, this means we must pass the entire log vector to * xlog_write to guarantee this. */ iclog_space = log->l_iclog_size - log->l_iclog_hsize; num_headers = howmany(unit_bytes, iclog_space); /* for split-recs - ophdrs added when data split over LRs */ unit_bytes += sizeof(xlog_op_header_t) * num_headers; /* add extra header reservations if we overrun */ while (!num_headers || howmany(unit_bytes, iclog_space) > num_headers) { unit_bytes += sizeof(xlog_op_header_t); num_headers++; } unit_bytes += log->l_iclog_hsize * num_headers; /* for commit-rec LR header - note: padding will subsume the ophdr */ unit_bytes += log->l_iclog_hsize; /* for roundoff padding for transaction data and one for commit record */ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && log->l_mp->m_sb.sb_logsunit > 1) { /* log su roundoff */ unit_bytes += 2*log->l_mp->m_sb.sb_logsunit; } else { /* BB roundoff */ unit_bytes += 2*BBSIZE; } atomic_set(&tic->t_ref, 1); INIT_LIST_HEAD(&tic->t_queue); tic->t_unit_res = unit_bytes; tic->t_curr_res = unit_bytes; tic->t_cnt = cnt; tic->t_ocnt = cnt; tic->t_tid = random32(); tic->t_clientid = client; tic->t_flags = XLOG_TIC_INITED; tic->t_trans_type = 0; if (xflags & XFS_LOG_PERM_RESERV) tic->t_flags |= XLOG_TIC_PERM_RESERV; init_waitqueue_head(&tic->t_wait); xlog_tic_reset_res(tic); return tic; } /****************************************************************************** * * Log debug routines * ****************************************************************************** */ #if defined(DEBUG) /* * Make sure that the destination ptr is within the valid data region of * one of the iclogs. This uses backup pointers stored in a different * part of the log in case we trash the log structure. */ void xlog_verify_dest_ptr( struct log *log, char *ptr) { int i; int good_ptr = 0; for (i = 0; i < log->l_iclog_bufs; i++) { if (ptr >= log->l_iclog_bak[i] && ptr <= log->l_iclog_bak[i] + log->l_iclog_size) good_ptr++; } if (!good_ptr) xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); } /* * Check to make sure the grant write head didn't just over lap the tail. If * the cycles are the same, we can't be overlapping. Otherwise, make sure that * the cycles differ by exactly one and check the byte count. * * This check is run unlocked, so can give false positives. Rather than assert * on failures, use a warn-once flag and a panic tag to allow the admin to * determine if they want to panic the machine when such an error occurs. For * debug kernels this will have the same effect as using an assert but, unlinke * an assert, it can be turned off at runtime. */ STATIC void xlog_verify_grant_tail( struct log *log) { int tail_cycle, tail_blocks; int cycle, space; xlog_crack_grant_head(&log->l_grant_write_head, &cycle, &space); xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); if (tail_cycle != cycle) { if (cycle - 1 != tail_cycle && !(log->l_flags & XLOG_TAIL_WARN)) { xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, "%s: cycle - 1 != tail_cycle", __func__); log->l_flags |= XLOG_TAIL_WARN; } if (space > BBTOB(tail_blocks) && !(log->l_flags & XLOG_TAIL_WARN)) { xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, "%s: space > BBTOB(tail_blocks)", __func__); log->l_flags |= XLOG_TAIL_WARN; } } } /* check if it will fit */ STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog, xfs_lsn_t tail_lsn) { int blocks; if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { blocks = log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); } else { ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); if (BLOCK_LSN(tail_lsn) == log->l_prev_block) xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; if (blocks < BTOBB(iclog->ic_offset) + 1) xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); } } /* xlog_verify_tail_lsn */ /* * Perform a number of checks on the iclog before writing to disk. * * 1. Make sure the iclogs are still circular * 2. Make sure we have a good magic number * 3. Make sure we don't have magic numbers in the data * 4. Check fields of each log operation header for: * A. Valid client identifier * B. tid ptr value falls in valid ptr space (user space code) * C. Length in log record header is correct according to the * individual operation headers within record. * 5. When a bwrite will occur within 5 blocks of the front of the physical * log, check the preceding blocks of the physical log to make sure all * the cycle numbers agree with the current cycle number. */ STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog, int count, boolean_t syncing) { xlog_op_header_t *ophead; xlog_in_core_t *icptr; xlog_in_core_2_t *xhdr; xfs_caddr_t ptr; xfs_caddr_t base_ptr; __psint_t field_offset; __uint8_t clientid; int len, i, j, k, op_len; int idx; /* check validity of iclog pointers */ spin_lock(&log->l_icloglock); icptr = log->l_iclog; for (i=0; i < log->l_iclog_bufs; i++) { if (icptr == NULL) xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); icptr = icptr->ic_next; } if (icptr != log->l_iclog) xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); spin_unlock(&log->l_icloglock); /* check log magic numbers */ if (be32_to_cpu(iclog->ic_header.h_magicno) != XLOG_HEADER_MAGIC_NUM) xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); ptr = (xfs_caddr_t) &iclog->ic_header; for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count; ptr += BBSIZE) { if (be32_to_cpu(*(__be32 *)ptr) == XLOG_HEADER_MAGIC_NUM) xfs_emerg(log->l_mp, "%s: unexpected magic num", __func__); } /* check fields */ len = be32_to_cpu(iclog->ic_header.h_num_logops); ptr = iclog->ic_datap; base_ptr = ptr; ophead = (xlog_op_header_t *)ptr; xhdr = iclog->ic_data; for (i = 0; i < len; i++) { ophead = (xlog_op_header_t *)ptr; /* clientid is only 1 byte */ field_offset = (__psint_t) ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr); if (syncing == B_FALSE || (field_offset & 0x1ff)) { clientid = ophead->oh_clientid; } else { idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap); if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); clientid = xlog_get_client_id( xhdr[j].hic_xheader.xh_cycle_data[k]); } else { clientid = xlog_get_client_id( iclog->ic_header.h_cycle_data[idx]); } } if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) xfs_warn(log->l_mp, "%s: invalid clientid %d op 0x%p offset 0x%lx", __func__, clientid, ophead, (unsigned long)field_offset); /* check length */ field_offset = (__psint_t) ((xfs_caddr_t)&(ophead->oh_len) - base_ptr); if (syncing == B_FALSE || (field_offset & 0x1ff)) { op_len = be32_to_cpu(ophead->oh_len); } else { idx = BTOBBT((__psint_t)&ophead->oh_len - (__psint_t)iclog->ic_datap); if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); } else { op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); } } ptr += sizeof(xlog_op_header_t) + op_len; } } /* xlog_verify_iclog */ #endif /* * Mark all iclogs IOERROR. l_icloglock is held by the caller. */ STATIC int xlog_state_ioerror( xlog_t *log) { xlog_in_core_t *iclog, *ic; iclog = log->l_iclog; if (! (iclog->ic_state & XLOG_STATE_IOERROR)) { /* * Mark all the incore logs IOERROR. * From now on, no log flushes will result. */ ic = iclog; do { ic->ic_state = XLOG_STATE_IOERROR; ic = ic->ic_next; } while (ic != iclog); return 0; } /* * Return non-zero, if state transition has already happened. */ return 1; } /* * This is called from xfs_force_shutdown, when we're forcibly * shutting down the filesystem, typically because of an IO error. * Our main objectives here are to make sure that: * a. the filesystem gets marked 'SHUTDOWN' for all interested * parties to find out, 'atomically'. * b. those who're sleeping on log reservations, pinned objects and * other resources get woken up, and be told the bad news. * c. nothing new gets queued up after (a) and (b) are done. * d. if !logerror, flush the iclogs to disk, then seal them off * for business. * * Note: for delayed logging the !logerror case needs to flush the regions * held in memory out to the iclogs before flushing them to disk. This needs * to be done before the log is marked as shutdown, otherwise the flush to the * iclogs will fail. */ int xfs_log_force_umount( struct xfs_mount *mp, int logerror) { xlog_ticket_t *tic; xlog_t *log; int retval; log = mp->m_log; /* * If this happens during log recovery, don't worry about * locking; the log isn't open for business yet. */ if (!log || log->l_flags & XLOG_ACTIVE_RECOVERY) { mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; if (mp->m_sb_bp) XFS_BUF_DONE(mp->m_sb_bp); return 0; } /* * Somebody could've already done the hard work for us. * No need to get locks for this. */ if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) { ASSERT(XLOG_FORCED_SHUTDOWN(log)); return 1; } retval = 0; /* * Flush the in memory commit item list before marking the log as * being shut down. We need to do it in this order to ensure all the * completed transactions are flushed to disk with the xfs_log_force() * call below. */ if (!logerror && (mp->m_flags & XFS_MOUNT_DELAYLOG)) xlog_cil_force(log); /* * mark the filesystem and the as in a shutdown state and wake * everybody up to tell them the bad news. */ spin_lock(&log->l_icloglock); mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; if (mp->m_sb_bp) XFS_BUF_DONE(mp->m_sb_bp); /* * This flag is sort of redundant because of the mount flag, but * it's good to maintain the separation between the log and the rest * of XFS. */ log->l_flags |= XLOG_IO_ERROR; /* * If we hit a log error, we want to mark all the iclogs IOERROR * while we're still holding the loglock. */ if (logerror) retval = xlog_state_ioerror(log); spin_unlock(&log->l_icloglock); /* * We don't want anybody waiting for log reservations after this. That * means we have to wake up everybody queued up on reserveq as well as * writeq. In addition, we make sure in xlog_{re}grant_log_space that * we don't enqueue anything once the SHUTDOWN flag is set, and this * action is protected by the grant locks. */ spin_lock(&log->l_grant_reserve_lock); list_for_each_entry(tic, &log->l_reserveq, t_queue) wake_up(&tic->t_wait); spin_unlock(&log->l_grant_reserve_lock); spin_lock(&log->l_grant_write_lock); list_for_each_entry(tic, &log->l_writeq, t_queue) wake_up(&tic->t_wait); spin_unlock(&log->l_grant_write_lock); if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) { ASSERT(!logerror); /* * Force the incore logs to disk before shutting the * log down completely. */ _xfs_log_force(mp, XFS_LOG_SYNC, NULL); spin_lock(&log->l_icloglock); retval = xlog_state_ioerror(log); spin_unlock(&log->l_icloglock); } /* * Wake up everybody waiting on xfs_log_force. * Callback all log item committed functions as if the * log writes were completed. */ xlog_state_do_callback(log, XFS_LI_ABORTED, NULL); #ifdef XFSERRORDEBUG { xlog_in_core_t *iclog; spin_lock(&log->l_icloglock); iclog = log->l_iclog; do { ASSERT(iclog->ic_callback == 0); iclog = iclog->ic_next; } while (iclog != log->l_iclog); spin_unlock(&log->l_icloglock); } #endif /* return non-zero if log IOERROR transition had already happened */ return retval; } STATIC int xlog_iclogs_empty(xlog_t *log) { xlog_in_core_t *iclog; iclog = log->l_iclog; do { /* endianness does not matter here, zero is zero in * any language. */ if (iclog->ic_header.h_num_logops) return 0; iclog = iclog->ic_next; } while (iclog != log->l_iclog); return 1; }