/* * Copyright (C) 2006 - 2007 Ivo van Doorn * Copyright (C) 2007 Dmitry Torokhov * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the * Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/workqueue.h> #include <linux/capability.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/rfkill.h> #include <linux/sched.h> #include <linux/spinlock.h> #include <linux/miscdevice.h> #include <linux/wait.h> #include <linux/poll.h> #include <linux/fs.h> #include <linux/slab.h> #include "rfkill.h" #define POLL_INTERVAL (5 * HZ) #define RFKILL_BLOCK_HW BIT(0) #define RFKILL_BLOCK_SW BIT(1) #define RFKILL_BLOCK_SW_PREV BIT(2) #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\ RFKILL_BLOCK_SW |\ RFKILL_BLOCK_SW_PREV) #define RFKILL_BLOCK_SW_SETCALL BIT(31) struct rfkill { spinlock_t lock; const char *name; enum rfkill_type type; unsigned long state; u32 idx; bool registered; bool persistent; const struct rfkill_ops *ops; void *data; #ifdef CONFIG_RFKILL_LEDS struct led_trigger led_trigger; const char *ledtrigname; #endif struct device dev; struct list_head node; struct delayed_work poll_work; struct work_struct uevent_work; struct work_struct sync_work; }; #define to_rfkill(d) container_of(d, struct rfkill, dev) struct rfkill_int_event { struct list_head list; struct rfkill_event ev; }; struct rfkill_data { struct list_head list; struct list_head events; struct mutex mtx; wait_queue_head_t read_wait; bool input_handler; }; MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>"); MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); MODULE_DESCRIPTION("RF switch support"); MODULE_LICENSE("GPL"); /* * The locking here should be made much smarter, we currently have * a bit of a stupid situation because drivers might want to register * the rfkill struct under their own lock, and take this lock during * rfkill method calls -- which will cause an AB-BA deadlock situation. * * To fix that, we need to rework this code here to be mostly lock-free * and only use the mutex for list manipulations, not to protect the * various other global variables. Then we can avoid holding the mutex * around driver operations, and all is happy. */ static LIST_HEAD(rfkill_list); /* list of registered rf switches */ static DEFINE_MUTEX(rfkill_global_mutex); static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */ static unsigned int rfkill_default_state = 1; module_param_named(default_state, rfkill_default_state, uint, 0444); MODULE_PARM_DESC(default_state, "Default initial state for all radio types, 0 = radio off"); static struct { bool cur, sav; } rfkill_global_states[NUM_RFKILL_TYPES]; static bool rfkill_epo_lock_active; #ifdef CONFIG_RFKILL_LEDS static void rfkill_led_trigger_event(struct rfkill *rfkill) { struct led_trigger *trigger; if (!rfkill->registered) return; trigger = &rfkill->led_trigger; if (rfkill->state & RFKILL_BLOCK_ANY) led_trigger_event(trigger, LED_OFF); else led_trigger_event(trigger, LED_FULL); } static void rfkill_led_trigger_activate(struct led_classdev *led) { struct rfkill *rfkill; rfkill = container_of(led->trigger, struct rfkill, led_trigger); rfkill_led_trigger_event(rfkill); } static int rfkill_led_trigger_register(struct rfkill *rfkill) { rfkill->led_trigger.name = rfkill->ledtrigname ? : dev_name(&rfkill->dev); rfkill->led_trigger.activate = rfkill_led_trigger_activate; return led_trigger_register(&rfkill->led_trigger); } static void rfkill_led_trigger_unregister(struct rfkill *rfkill) { led_trigger_unregister(&rfkill->led_trigger); } #else static void rfkill_led_trigger_event(struct rfkill *rfkill) { } static inline int rfkill_led_trigger_register(struct rfkill *rfkill) { return 0; } static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill) { } #endif /* CONFIG_RFKILL_LEDS */ static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill, enum rfkill_operation op) { unsigned long flags; ev->idx = rfkill->idx; ev->type = rfkill->type; ev->op = op; spin_lock_irqsave(&rfkill->lock, flags); ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW); ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW | RFKILL_BLOCK_SW_PREV)); spin_unlock_irqrestore(&rfkill->lock, flags); } static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op) { struct rfkill_data *data; struct rfkill_int_event *ev; list_for_each_entry(data, &rfkill_fds, list) { ev = kzalloc(sizeof(*ev), GFP_KERNEL); if (!ev) continue; rfkill_fill_event(&ev->ev, rfkill, op); mutex_lock(&data->mtx); list_add_tail(&ev->list, &data->events); mutex_unlock(&data->mtx); wake_up_interruptible(&data->read_wait); } } static void rfkill_event(struct rfkill *rfkill) { if (!rfkill->registered) return; kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE); /* also send event to /dev/rfkill */ rfkill_send_events(rfkill, RFKILL_OP_CHANGE); } static bool __rfkill_set_hw_state(struct rfkill *rfkill, bool blocked, bool *change) { unsigned long flags; bool prev, any; BUG_ON(!rfkill); spin_lock_irqsave(&rfkill->lock, flags); prev = !!(rfkill->state & RFKILL_BLOCK_HW); if (blocked) rfkill->state |= RFKILL_BLOCK_HW; else rfkill->state &= ~RFKILL_BLOCK_HW; *change = prev != blocked; any = rfkill->state & RFKILL_BLOCK_ANY; spin_unlock_irqrestore(&rfkill->lock, flags); rfkill_led_trigger_event(rfkill); return any; } /** * rfkill_set_block - wrapper for set_block method * * @rfkill: the rfkill struct to use * @blocked: the new software state * * Calls the set_block method (when applicable) and handles notifications * etc. as well. */ static void rfkill_set_block(struct rfkill *rfkill, bool blocked) { unsigned long flags; int err; if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP)) return; /* * Some platforms (...!) generate input events which affect the * _hard_ kill state -- whenever something tries to change the * current software state query the hardware state too. */ if (rfkill->ops->query) rfkill->ops->query(rfkill, rfkill->data); spin_lock_irqsave(&rfkill->lock, flags); if (rfkill->state & RFKILL_BLOCK_SW) rfkill->state |= RFKILL_BLOCK_SW_PREV; else rfkill->state &= ~RFKILL_BLOCK_SW_PREV; if (blocked) rfkill->state |= RFKILL_BLOCK_SW; else rfkill->state &= ~RFKILL_BLOCK_SW; rfkill->state |= RFKILL_BLOCK_SW_SETCALL; spin_unlock_irqrestore(&rfkill->lock, flags); err = rfkill->ops->set_block(rfkill->data, blocked); spin_lock_irqsave(&rfkill->lock, flags); if (err) { /* * Failed -- reset status to _prev, this may be different * from what set set _PREV to earlier in this function * if rfkill_set_sw_state was invoked. */ if (rfkill->state & RFKILL_BLOCK_SW_PREV) rfkill->state |= RFKILL_BLOCK_SW; else rfkill->state &= ~RFKILL_BLOCK_SW; } rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL; rfkill->state &= ~RFKILL_BLOCK_SW_PREV; spin_unlock_irqrestore(&rfkill->lock, flags); rfkill_led_trigger_event(rfkill); rfkill_event(rfkill); } #ifdef CONFIG_RFKILL_INPUT static atomic_t rfkill_input_disabled = ATOMIC_INIT(0); /** * __rfkill_switch_all - Toggle state of all switches of given type * @type: type of interfaces to be affected * @state: the new state * * This function sets the state of all switches of given type, * unless a specific switch is claimed by userspace (in which case, * that switch is left alone) or suspended. * * Caller must have acquired rfkill_global_mutex. */ static void __rfkill_switch_all(const enum rfkill_type type, bool blocked) { struct rfkill *rfkill; rfkill_global_states[type].cur = blocked; list_for_each_entry(rfkill, &rfkill_list, node) { if (rfkill->type != type) continue; rfkill_set_block(rfkill, blocked); } } /** * rfkill_switch_all - Toggle state of all switches of given type * @type: type of interfaces to be affected * @state: the new state * * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state). * Please refer to __rfkill_switch_all() for details. * * Does nothing if the EPO lock is active. */ void rfkill_switch_all(enum rfkill_type type, bool blocked) { if (atomic_read(&rfkill_input_disabled)) return; mutex_lock(&rfkill_global_mutex); if (!rfkill_epo_lock_active) __rfkill_switch_all(type, blocked); mutex_unlock(&rfkill_global_mutex); } /** * rfkill_epo - emergency power off all transmitters * * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED, * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex. * * The global state before the EPO is saved and can be restored later * using rfkill_restore_states(). */ void rfkill_epo(void) { struct rfkill *rfkill; int i; if (atomic_read(&rfkill_input_disabled)) return; mutex_lock(&rfkill_global_mutex); rfkill_epo_lock_active = true; list_for_each_entry(rfkill, &rfkill_list, node) rfkill_set_block(rfkill, true); for (i = 0; i < NUM_RFKILL_TYPES; i++) { rfkill_global_states[i].sav = rfkill_global_states[i].cur; rfkill_global_states[i].cur = true; } mutex_unlock(&rfkill_global_mutex); } /** * rfkill_restore_states - restore global states * * Restore (and sync switches to) the global state from the * states in rfkill_default_states. This can undo the effects of * a call to rfkill_epo(). */ void rfkill_restore_states(void) { int i; if (atomic_read(&rfkill_input_disabled)) return; mutex_lock(&rfkill_global_mutex); rfkill_epo_lock_active = false; for (i = 0; i < NUM_RFKILL_TYPES; i++) __rfkill_switch_all(i, rfkill_global_states[i].sav); mutex_unlock(&rfkill_global_mutex); } /** * rfkill_remove_epo_lock - unlock state changes * * Used by rfkill-input manually unlock state changes, when * the EPO switch is deactivated. */ void rfkill_remove_epo_lock(void) { if (atomic_read(&rfkill_input_disabled)) return; mutex_lock(&rfkill_global_mutex); rfkill_epo_lock_active = false; mutex_unlock(&rfkill_global_mutex); } /** * rfkill_is_epo_lock_active - returns true EPO is active * * Returns 0 (false) if there is NOT an active EPO contidion, * and 1 (true) if there is an active EPO contition, which * locks all radios in one of the BLOCKED states. * * Can be called in atomic context. */ bool rfkill_is_epo_lock_active(void) { return rfkill_epo_lock_active; } /** * rfkill_get_global_sw_state - returns global state for a type * @type: the type to get the global state of * * Returns the current global state for a given wireless * device type. */ bool rfkill_get_global_sw_state(const enum rfkill_type type) { return rfkill_global_states[type].cur; } #endif bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked) { bool ret, change; ret = __rfkill_set_hw_state(rfkill, blocked, &change); if (!rfkill->registered) return ret; if (change) schedule_work(&rfkill->uevent_work); return ret; } EXPORT_SYMBOL(rfkill_set_hw_state); static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) { u32 bit = RFKILL_BLOCK_SW; /* if in a ops->set_block right now, use other bit */ if (rfkill->state & RFKILL_BLOCK_SW_SETCALL) bit = RFKILL_BLOCK_SW_PREV; if (blocked) rfkill->state |= bit; else rfkill->state &= ~bit; } bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked) { unsigned long flags; bool prev, hwblock; BUG_ON(!rfkill); spin_lock_irqsave(&rfkill->lock, flags); prev = !!(rfkill->state & RFKILL_BLOCK_SW); __rfkill_set_sw_state(rfkill, blocked); hwblock = !!(rfkill->state & RFKILL_BLOCK_HW); blocked = blocked || hwblock; spin_unlock_irqrestore(&rfkill->lock, flags); if (!rfkill->registered) return blocked; if (prev != blocked && !hwblock) schedule_work(&rfkill->uevent_work); rfkill_led_trigger_event(rfkill); return blocked; } EXPORT_SYMBOL(rfkill_set_sw_state); void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked) { unsigned long flags; BUG_ON(!rfkill); BUG_ON(rfkill->registered); spin_lock_irqsave(&rfkill->lock, flags); __rfkill_set_sw_state(rfkill, blocked); rfkill->persistent = true; spin_unlock_irqrestore(&rfkill->lock, flags); } EXPORT_SYMBOL(rfkill_init_sw_state); void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw) { unsigned long flags; bool swprev, hwprev; BUG_ON(!rfkill); spin_lock_irqsave(&rfkill->lock, flags); /* * No need to care about prev/setblock ... this is for uevent only * and that will get triggered by rfkill_set_block anyway. */ swprev = !!(rfkill->state & RFKILL_BLOCK_SW); hwprev = !!(rfkill->state & RFKILL_BLOCK_HW); __rfkill_set_sw_state(rfkill, sw); if (hw) rfkill->state |= RFKILL_BLOCK_HW; else rfkill->state &= ~RFKILL_BLOCK_HW; spin_unlock_irqrestore(&rfkill->lock, flags); if (!rfkill->registered) { rfkill->persistent = true; } else { if (swprev != sw || hwprev != hw) schedule_work(&rfkill->uevent_work); rfkill_led_trigger_event(rfkill); } } EXPORT_SYMBOL(rfkill_set_states); static ssize_t rfkill_name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sprintf(buf, "%s\n", rfkill->name); } static const char *rfkill_get_type_str(enum rfkill_type type) { BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_FM + 1); switch (type) { case RFKILL_TYPE_WLAN: return "wlan"; case RFKILL_TYPE_BLUETOOTH: return "bluetooth"; case RFKILL_TYPE_UWB: return "ultrawideband"; case RFKILL_TYPE_WIMAX: return "wimax"; case RFKILL_TYPE_WWAN: return "wwan"; case RFKILL_TYPE_GPS: return "gps"; case RFKILL_TYPE_FM: return "fm"; default: BUG(); } } static ssize_t rfkill_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type)); } static ssize_t rfkill_idx_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sprintf(buf, "%d\n", rfkill->idx); } static ssize_t rfkill_persistent_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sprintf(buf, "%d\n", rfkill->persistent); } static ssize_t rfkill_hard_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 ); } static ssize_t rfkill_soft_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 ); } static ssize_t rfkill_soft_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rfkill *rfkill = to_rfkill(dev); unsigned long state; int err; if (!capable(CAP_NET_ADMIN)) return -EPERM; err = strict_strtoul(buf, 0, &state); if (err) return err; if (state > 1 ) return -EINVAL; mutex_lock(&rfkill_global_mutex); rfkill_set_block(rfkill, state); mutex_unlock(&rfkill_global_mutex); return err ?: count; } static u8 user_state_from_blocked(unsigned long state) { if (state & RFKILL_BLOCK_HW) return RFKILL_USER_STATE_HARD_BLOCKED; if (state & RFKILL_BLOCK_SW) return RFKILL_USER_STATE_SOFT_BLOCKED; return RFKILL_USER_STATE_UNBLOCKED; } static ssize_t rfkill_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rfkill *rfkill = to_rfkill(dev); return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state)); } static ssize_t rfkill_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct rfkill *rfkill = to_rfkill(dev); unsigned long state; int err; if (!capable(CAP_NET_ADMIN)) return -EPERM; err = strict_strtoul(buf, 0, &state); if (err) return err; if (state != RFKILL_USER_STATE_SOFT_BLOCKED && state != RFKILL_USER_STATE_UNBLOCKED) return -EINVAL; mutex_lock(&rfkill_global_mutex); rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED); mutex_unlock(&rfkill_global_mutex); return err ?: count; } static ssize_t rfkill_claim_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", 0); } static ssize_t rfkill_claim_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return -EOPNOTSUPP; } static struct device_attribute rfkill_dev_attrs[] = { __ATTR(name, S_IRUGO, rfkill_name_show, NULL), __ATTR(type, S_IRUGO, rfkill_type_show, NULL), __ATTR(index, S_IRUGO, rfkill_idx_show, NULL), __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL), __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store), __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store), __ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store), __ATTR(hard, S_IRUGO, rfkill_hard_show, NULL), __ATTR_NULL }; static void rfkill_release(struct device *dev) { struct rfkill *rfkill = to_rfkill(dev); kfree(rfkill); } static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env) { struct rfkill *rfkill = to_rfkill(dev); unsigned long flags; u32 state; int error; error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name); if (error) return error; error = add_uevent_var(env, "RFKILL_TYPE=%s", rfkill_get_type_str(rfkill->type)); if (error) return error; spin_lock_irqsave(&rfkill->lock, flags); state = rfkill->state; spin_unlock_irqrestore(&rfkill->lock, flags); error = add_uevent_var(env, "RFKILL_STATE=%d", user_state_from_blocked(state)); return error; } void rfkill_pause_polling(struct rfkill *rfkill) { BUG_ON(!rfkill); if (!rfkill->ops->poll) return; cancel_delayed_work_sync(&rfkill->poll_work); } EXPORT_SYMBOL(rfkill_pause_polling); #ifdef CONFIG_RFKILL_PM void rfkill_resume_polling(struct rfkill *rfkill) { BUG_ON(!rfkill); if (!rfkill->ops->poll) return; schedule_work(&rfkill->poll_work.work); } EXPORT_SYMBOL(rfkill_resume_polling); static int rfkill_suspend(struct device *dev, pm_message_t state) { struct rfkill *rfkill = to_rfkill(dev); rfkill_pause_polling(rfkill); return 0; } static int rfkill_resume(struct device *dev) { struct rfkill *rfkill = to_rfkill(dev); bool cur; if (!rfkill->persistent) { cur = !!(rfkill->state & RFKILL_BLOCK_SW); rfkill_set_block(rfkill, cur); } rfkill_resume_polling(rfkill); return 0; } #endif static struct class rfkill_class = { .name = "rfkill", .dev_release = rfkill_release, .dev_attrs = rfkill_dev_attrs, .dev_uevent = rfkill_dev_uevent, #ifdef CONFIG_RFKILL_PM .suspend = rfkill_suspend, .resume = rfkill_resume, #endif }; bool rfkill_blocked(struct rfkill *rfkill) { unsigned long flags; u32 state; spin_lock_irqsave(&rfkill->lock, flags); state = rfkill->state; spin_unlock_irqrestore(&rfkill->lock, flags); return !!(state & RFKILL_BLOCK_ANY); } EXPORT_SYMBOL(rfkill_blocked); struct rfkill * __must_check rfkill_alloc(const char *name, struct device *parent, const enum rfkill_type type, const struct rfkill_ops *ops, void *ops_data) { struct rfkill *rfkill; struct device *dev; if (WARN_ON(!ops)) return NULL; if (WARN_ON(!ops->set_block)) return NULL; if (WARN_ON(!name)) return NULL; if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES)) return NULL; rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL); if (!rfkill) return NULL; spin_lock_init(&rfkill->lock); INIT_LIST_HEAD(&rfkill->node); rfkill->type = type; rfkill->name = name; rfkill->ops = ops; rfkill->data = ops_data; dev = &rfkill->dev; dev->class = &rfkill_class; dev->parent = parent; device_initialize(dev); return rfkill; } EXPORT_SYMBOL(rfkill_alloc); static void rfkill_poll(struct work_struct *work) { struct rfkill *rfkill; rfkill = container_of(work, struct rfkill, poll_work.work); /* * Poll hardware state -- driver will use one of the * rfkill_set{,_hw,_sw}_state functions and use its * return value to update the current status. */ rfkill->ops->poll(rfkill, rfkill->data); schedule_delayed_work(&rfkill->poll_work, round_jiffies_relative(POLL_INTERVAL)); } static void rfkill_uevent_work(struct work_struct *work) { struct rfkill *rfkill; rfkill = container_of(work, struct rfkill, uevent_work); mutex_lock(&rfkill_global_mutex); rfkill_event(rfkill); mutex_unlock(&rfkill_global_mutex); } static void rfkill_sync_work(struct work_struct *work) { struct rfkill *rfkill; bool cur; rfkill = container_of(work, struct rfkill, sync_work); mutex_lock(&rfkill_global_mutex); cur = rfkill_global_states[rfkill->type].cur; rfkill_set_block(rfkill, cur); mutex_unlock(&rfkill_global_mutex); } int __must_check rfkill_register(struct rfkill *rfkill) { static unsigned long rfkill_no; struct device *dev = &rfkill->dev; int error; BUG_ON(!rfkill); mutex_lock(&rfkill_global_mutex); if (rfkill->registered) { error = -EALREADY; goto unlock; } rfkill->idx = rfkill_no; dev_set_name(dev, "rfkill%lu", rfkill_no); rfkill_no++; list_add_tail(&rfkill->node, &rfkill_list); error = device_add(dev); if (error) goto remove; error = rfkill_led_trigger_register(rfkill); if (error) goto devdel; rfkill->registered = true; INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll); INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work); INIT_WORK(&rfkill->sync_work, rfkill_sync_work); if (rfkill->ops->poll) schedule_delayed_work(&rfkill->poll_work, round_jiffies_relative(POLL_INTERVAL)); if (!rfkill->persistent || rfkill_epo_lock_active) { schedule_work(&rfkill->sync_work); } else { #ifdef CONFIG_RFKILL_INPUT bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW); if (!atomic_read(&rfkill_input_disabled)) __rfkill_switch_all(rfkill->type, soft_blocked); #endif } rfkill_send_events(rfkill, RFKILL_OP_ADD); mutex_unlock(&rfkill_global_mutex); return 0; devdel: device_del(&rfkill->dev); remove: list_del_init(&rfkill->node); unlock: mutex_unlock(&rfkill_global_mutex); return error; } EXPORT_SYMBOL(rfkill_register); void rfkill_unregister(struct rfkill *rfkill) { BUG_ON(!rfkill); if (rfkill->ops->poll) cancel_delayed_work_sync(&rfkill->poll_work); cancel_work_sync(&rfkill->uevent_work); cancel_work_sync(&rfkill->sync_work); rfkill->registered = false; device_del(&rfkill->dev); mutex_lock(&rfkill_global_mutex); rfkill_send_events(rfkill, RFKILL_OP_DEL); list_del_init(&rfkill->node); mutex_unlock(&rfkill_global_mutex); rfkill_led_trigger_unregister(rfkill); } EXPORT_SYMBOL(rfkill_unregister); void rfkill_destroy(struct rfkill *rfkill) { if (rfkill) put_device(&rfkill->dev); } EXPORT_SYMBOL(rfkill_destroy); static int rfkill_fop_open(struct inode *inode, struct file *file) { struct rfkill_data *data; struct rfkill *rfkill; struct rfkill_int_event *ev, *tmp; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; INIT_LIST_HEAD(&data->events); mutex_init(&data->mtx); init_waitqueue_head(&data->read_wait); mutex_lock(&rfkill_global_mutex); mutex_lock(&data->mtx); /* * start getting events from elsewhere but hold mtx to get * startup events added first */ list_for_each_entry(rfkill, &rfkill_list, node) { ev = kzalloc(sizeof(*ev), GFP_KERNEL); if (!ev) goto free; rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD); list_add_tail(&ev->list, &data->events); } list_add(&data->list, &rfkill_fds); mutex_unlock(&data->mtx); mutex_unlock(&rfkill_global_mutex); file->private_data = data; return nonseekable_open(inode, file); free: mutex_unlock(&data->mtx); mutex_unlock(&rfkill_global_mutex); mutex_destroy(&data->mtx); list_for_each_entry_safe(ev, tmp, &data->events, list) kfree(ev); kfree(data); return -ENOMEM; } static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait) { struct rfkill_data *data = file->private_data; unsigned int res = POLLOUT | POLLWRNORM; poll_wait(file, &data->read_wait, wait); mutex_lock(&data->mtx); if (!list_empty(&data->events)) res = POLLIN | POLLRDNORM; mutex_unlock(&data->mtx); return res; } static bool rfkill_readable(struct rfkill_data *data) { bool r; mutex_lock(&data->mtx); r = !list_empty(&data->events); mutex_unlock(&data->mtx); return r; } static ssize_t rfkill_fop_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { struct rfkill_data *data = file->private_data; struct rfkill_int_event *ev; unsigned long sz; int ret; mutex_lock(&data->mtx); while (list_empty(&data->events)) { if (file->f_flags & O_NONBLOCK) { ret = -EAGAIN; goto out; } mutex_unlock(&data->mtx); ret = wait_event_interruptible(data->read_wait, rfkill_readable(data)); mutex_lock(&data->mtx); if (ret) goto out; } ev = list_first_entry(&data->events, struct rfkill_int_event, list); sz = min_t(unsigned long, sizeof(ev->ev), count); ret = sz; if (copy_to_user(buf, &ev->ev, sz)) ret = -EFAULT; list_del(&ev->list); kfree(ev); out: mutex_unlock(&data->mtx); return ret; } static ssize_t rfkill_fop_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct rfkill *rfkill; struct rfkill_event ev; /* we don't need the 'hard' variable but accept it */ if (count < RFKILL_EVENT_SIZE_V1 - 1) return -EINVAL; /* * Copy as much data as we can accept into our 'ev' buffer, * but tell userspace how much we've copied so it can determine * our API version even in a write() call, if it cares. */ count = min(count, sizeof(ev)); if (copy_from_user(&ev, buf, count)) return -EFAULT; if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL) return -EINVAL; if (ev.type >= NUM_RFKILL_TYPES) return -EINVAL; mutex_lock(&rfkill_global_mutex); if (ev.op == RFKILL_OP_CHANGE_ALL) { if (ev.type == RFKILL_TYPE_ALL) { enum rfkill_type i; for (i = 0; i < NUM_RFKILL_TYPES; i++) rfkill_global_states[i].cur = ev.soft; } else { rfkill_global_states[ev.type].cur = ev.soft; } } list_for_each_entry(rfkill, &rfkill_list, node) { if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL) continue; if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL) continue; rfkill_set_block(rfkill, ev.soft); } mutex_unlock(&rfkill_global_mutex); return count; } static int rfkill_fop_release(struct inode *inode, struct file *file) { struct rfkill_data *data = file->private_data; struct rfkill_int_event *ev, *tmp; mutex_lock(&rfkill_global_mutex); list_del(&data->list); mutex_unlock(&rfkill_global_mutex); mutex_destroy(&data->mtx); list_for_each_entry_safe(ev, tmp, &data->events, list) kfree(ev); #ifdef CONFIG_RFKILL_INPUT if (data->input_handler) if (atomic_dec_return(&rfkill_input_disabled) == 0) printk(KERN_DEBUG "rfkill: input handler enabled\n"); #endif kfree(data); return 0; } #ifdef CONFIG_RFKILL_INPUT static long rfkill_fop_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct rfkill_data *data = file->private_data; if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC) return -ENOSYS; if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT) return -ENOSYS; mutex_lock(&data->mtx); if (!data->input_handler) { if (atomic_inc_return(&rfkill_input_disabled) == 1) printk(KERN_DEBUG "rfkill: input handler disabled\n"); data->input_handler = true; } mutex_unlock(&data->mtx); return 0; } #endif static const struct file_operations rfkill_fops = { .owner = THIS_MODULE, .open = rfkill_fop_open, .read = rfkill_fop_read, .write = rfkill_fop_write, .poll = rfkill_fop_poll, .release = rfkill_fop_release, #ifdef CONFIG_RFKILL_INPUT .unlocked_ioctl = rfkill_fop_ioctl, .compat_ioctl = rfkill_fop_ioctl, #endif .llseek = no_llseek, }; static struct miscdevice rfkill_miscdev = { .name = "rfkill", .fops = &rfkill_fops, .minor = MISC_DYNAMIC_MINOR, }; static int __init rfkill_init(void) { int error; int i; for (i = 0; i < NUM_RFKILL_TYPES; i++) rfkill_global_states[i].cur = !rfkill_default_state; error = class_register(&rfkill_class); if (error) goto out; error = misc_register(&rfkill_miscdev); if (error) { class_unregister(&rfkill_class); goto out; } #ifdef CONFIG_RFKILL_INPUT error = rfkill_handler_init(); if (error) { misc_deregister(&rfkill_miscdev); class_unregister(&rfkill_class); goto out; } #endif out: return error; } subsys_initcall(rfkill_init); static void __exit rfkill_exit(void) { #ifdef CONFIG_RFKILL_INPUT rfkill_handler_exit(); #endif misc_deregister(&rfkill_miscdev); class_unregister(&rfkill_class); } module_exit(rfkill_exit);