/* * net/sunrpc/rpc_pipe.c * * Userland/kernel interface for rpcauth_gss. * Code shamelessly plagiarized from fs/nfsd/nfsctl.c * and fs/sysfs/inode.c * * Copyright (c) 2002, Trond Myklebust <trond.myklebust@fys.uio.no> * */ #include <linux/module.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/pagemap.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/fsnotify.h> #include <linux/kernel.h> #include <asm/ioctls.h> #include <linux/fs.h> #include <linux/poll.h> #include <linux/wait.h> #include <linux/seq_file.h> #include <linux/sunrpc/clnt.h> #include <linux/workqueue.h> #include <linux/sunrpc/rpc_pipe_fs.h> #include <linux/sunrpc/cache.h> static struct vfsmount *rpc_mnt __read_mostly; static int rpc_mount_count; static struct file_system_type rpc_pipe_fs_type; static struct kmem_cache *rpc_inode_cachep __read_mostly; #define RPC_UPCALL_TIMEOUT (30*HZ) static void rpc_purge_list(struct rpc_inode *rpci, struct list_head *head, void (*destroy_msg)(struct rpc_pipe_msg *), int err) { struct rpc_pipe_msg *msg; if (list_empty(head)) return; do { msg = list_entry(head->next, struct rpc_pipe_msg, list); list_del_init(&msg->list); msg->errno = err; destroy_msg(msg); } while (!list_empty(head)); wake_up(&rpci->waitq); } static void rpc_timeout_upcall_queue(struct work_struct *work) { LIST_HEAD(free_list); struct rpc_inode *rpci = container_of(work, struct rpc_inode, queue_timeout.work); struct inode *inode = &rpci->vfs_inode; void (*destroy_msg)(struct rpc_pipe_msg *); spin_lock(&inode->i_lock); if (rpci->ops == NULL) { spin_unlock(&inode->i_lock); return; } destroy_msg = rpci->ops->destroy_msg; if (rpci->nreaders == 0) { list_splice_init(&rpci->pipe, &free_list); rpci->pipelen = 0; } spin_unlock(&inode->i_lock); rpc_purge_list(rpci, &free_list, destroy_msg, -ETIMEDOUT); } /** * rpc_queue_upcall - queue an upcall message to userspace * @inode: inode of upcall pipe on which to queue given message * @msg: message to queue * * Call with an @inode created by rpc_mkpipe() to queue an upcall. * A userspace process may then later read the upcall by performing a * read on an open file for this inode. It is up to the caller to * initialize the fields of @msg (other than @msg->list) appropriately. */ int rpc_queue_upcall(struct inode *inode, struct rpc_pipe_msg *msg) { struct rpc_inode *rpci = RPC_I(inode); int res = -EPIPE; spin_lock(&inode->i_lock); if (rpci->ops == NULL) goto out; if (rpci->nreaders) { list_add_tail(&msg->list, &rpci->pipe); rpci->pipelen += msg->len; res = 0; } else if (rpci->flags & RPC_PIPE_WAIT_FOR_OPEN) { if (list_empty(&rpci->pipe)) queue_delayed_work(rpciod_workqueue, &rpci->queue_timeout, RPC_UPCALL_TIMEOUT); list_add_tail(&msg->list, &rpci->pipe); rpci->pipelen += msg->len; res = 0; } out: spin_unlock(&inode->i_lock); wake_up(&rpci->waitq); return res; } EXPORT_SYMBOL_GPL(rpc_queue_upcall); static inline void rpc_inode_setowner(struct inode *inode, void *private) { RPC_I(inode)->private = private; } static void rpc_close_pipes(struct inode *inode) { struct rpc_inode *rpci = RPC_I(inode); const struct rpc_pipe_ops *ops; int need_release; mutex_lock(&inode->i_mutex); ops = rpci->ops; if (ops != NULL) { LIST_HEAD(free_list); spin_lock(&inode->i_lock); need_release = rpci->nreaders != 0 || rpci->nwriters != 0; rpci->nreaders = 0; list_splice_init(&rpci->in_upcall, &free_list); list_splice_init(&rpci->pipe, &free_list); rpci->pipelen = 0; rpci->ops = NULL; spin_unlock(&inode->i_lock); rpc_purge_list(rpci, &free_list, ops->destroy_msg, -EPIPE); rpci->nwriters = 0; if (need_release && ops->release_pipe) ops->release_pipe(inode); cancel_delayed_work_sync(&rpci->queue_timeout); } rpc_inode_setowner(inode, NULL); mutex_unlock(&inode->i_mutex); } static struct inode * rpc_alloc_inode(struct super_block *sb) { struct rpc_inode *rpci; rpci = (struct rpc_inode *)kmem_cache_alloc(rpc_inode_cachep, GFP_KERNEL); if (!rpci) return NULL; return &rpci->vfs_inode; } static void rpc_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); INIT_LIST_HEAD(&inode->i_dentry); kmem_cache_free(rpc_inode_cachep, RPC_I(inode)); } static void rpc_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, rpc_i_callback); } static int rpc_pipe_open(struct inode *inode, struct file *filp) { struct rpc_inode *rpci = RPC_I(inode); int first_open; int res = -ENXIO; mutex_lock(&inode->i_mutex); if (rpci->ops == NULL) goto out; first_open = rpci->nreaders == 0 && rpci->nwriters == 0; if (first_open && rpci->ops->open_pipe) { res = rpci->ops->open_pipe(inode); if (res) goto out; } if (filp->f_mode & FMODE_READ) rpci->nreaders++; if (filp->f_mode & FMODE_WRITE) rpci->nwriters++; res = 0; out: mutex_unlock(&inode->i_mutex); return res; } static int rpc_pipe_release(struct inode *inode, struct file *filp) { struct rpc_inode *rpci = RPC_I(inode); struct rpc_pipe_msg *msg; int last_close; mutex_lock(&inode->i_mutex); if (rpci->ops == NULL) goto out; msg = filp->private_data; if (msg != NULL) { spin_lock(&inode->i_lock); msg->errno = -EAGAIN; list_del_init(&msg->list); spin_unlock(&inode->i_lock); rpci->ops->destroy_msg(msg); } if (filp->f_mode & FMODE_WRITE) rpci->nwriters --; if (filp->f_mode & FMODE_READ) { rpci->nreaders --; if (rpci->nreaders == 0) { LIST_HEAD(free_list); spin_lock(&inode->i_lock); list_splice_init(&rpci->pipe, &free_list); rpci->pipelen = 0; spin_unlock(&inode->i_lock); rpc_purge_list(rpci, &free_list, rpci->ops->destroy_msg, -EAGAIN); } } last_close = rpci->nwriters == 0 && rpci->nreaders == 0; if (last_close && rpci->ops->release_pipe) rpci->ops->release_pipe(inode); out: mutex_unlock(&inode->i_mutex); return 0; } static ssize_t rpc_pipe_read(struct file *filp, char __user *buf, size_t len, loff_t *offset) { struct inode *inode = filp->f_path.dentry->d_inode; struct rpc_inode *rpci = RPC_I(inode); struct rpc_pipe_msg *msg; int res = 0; mutex_lock(&inode->i_mutex); if (rpci->ops == NULL) { res = -EPIPE; goto out_unlock; } msg = filp->private_data; if (msg == NULL) { spin_lock(&inode->i_lock); if (!list_empty(&rpci->pipe)) { msg = list_entry(rpci->pipe.next, struct rpc_pipe_msg, list); list_move(&msg->list, &rpci->in_upcall); rpci->pipelen -= msg->len; filp->private_data = msg; msg->copied = 0; } spin_unlock(&inode->i_lock); if (msg == NULL) goto out_unlock; } /* NOTE: it is up to the callback to update msg->copied */ res = rpci->ops->upcall(filp, msg, buf, len); if (res < 0 || msg->len == msg->copied) { filp->private_data = NULL; spin_lock(&inode->i_lock); list_del_init(&msg->list); spin_unlock(&inode->i_lock); rpci->ops->destroy_msg(msg); } out_unlock: mutex_unlock(&inode->i_mutex); return res; } static ssize_t rpc_pipe_write(struct file *filp, const char __user *buf, size_t len, loff_t *offset) { struct inode *inode = filp->f_path.dentry->d_inode; struct rpc_inode *rpci = RPC_I(inode); int res; mutex_lock(&inode->i_mutex); res = -EPIPE; if (rpci->ops != NULL) res = rpci->ops->downcall(filp, buf, len); mutex_unlock(&inode->i_mutex); return res; } static unsigned int rpc_pipe_poll(struct file *filp, struct poll_table_struct *wait) { struct rpc_inode *rpci; unsigned int mask = 0; rpci = RPC_I(filp->f_path.dentry->d_inode); poll_wait(filp, &rpci->waitq, wait); mask = POLLOUT | POLLWRNORM; if (rpci->ops == NULL) mask |= POLLERR | POLLHUP; if (filp->private_data || !list_empty(&rpci->pipe)) mask |= POLLIN | POLLRDNORM; return mask; } static long rpc_pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct inode *inode = filp->f_path.dentry->d_inode; struct rpc_inode *rpci = RPC_I(inode); int len; switch (cmd) { case FIONREAD: spin_lock(&inode->i_lock); if (rpci->ops == NULL) { spin_unlock(&inode->i_lock); return -EPIPE; } len = rpci->pipelen; if (filp->private_data) { struct rpc_pipe_msg *msg; msg = filp->private_data; len += msg->len - msg->copied; } spin_unlock(&inode->i_lock); return put_user(len, (int __user *)arg); default: return -EINVAL; } } static const struct file_operations rpc_pipe_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = rpc_pipe_read, .write = rpc_pipe_write, .poll = rpc_pipe_poll, .unlocked_ioctl = rpc_pipe_ioctl, .open = rpc_pipe_open, .release = rpc_pipe_release, }; static int rpc_show_info(struct seq_file *m, void *v) { struct rpc_clnt *clnt = m->private; seq_printf(m, "RPC server: %s\n", clnt->cl_server); seq_printf(m, "service: %s (%d) version %d\n", clnt->cl_protname, clnt->cl_prog, clnt->cl_vers); seq_printf(m, "address: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_ADDR)); seq_printf(m, "protocol: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PROTO)); seq_printf(m, "port: %s\n", rpc_peeraddr2str(clnt, RPC_DISPLAY_PORT)); return 0; } static int rpc_info_open(struct inode *inode, struct file *file) { struct rpc_clnt *clnt = NULL; int ret = single_open(file, rpc_show_info, NULL); if (!ret) { struct seq_file *m = file->private_data; spin_lock(&file->f_path.dentry->d_lock); if (!d_unhashed(file->f_path.dentry)) clnt = RPC_I(inode)->private; if (clnt != NULL && atomic_inc_not_zero(&clnt->cl_count)) { spin_unlock(&file->f_path.dentry->d_lock); m->private = clnt; } else { spin_unlock(&file->f_path.dentry->d_lock); single_release(inode, file); ret = -EINVAL; } } return ret; } static int rpc_info_release(struct inode *inode, struct file *file) { struct seq_file *m = file->private_data; struct rpc_clnt *clnt = (struct rpc_clnt *)m->private; if (clnt) rpc_release_client(clnt); return single_release(inode, file); } static const struct file_operations rpc_info_operations = { .owner = THIS_MODULE, .open = rpc_info_open, .read = seq_read, .llseek = seq_lseek, .release = rpc_info_release, }; /* * Description of fs contents. */ struct rpc_filelist { const char *name; const struct file_operations *i_fop; umode_t mode; }; struct vfsmount *rpc_get_mount(void) { int err; err = simple_pin_fs(&rpc_pipe_fs_type, &rpc_mnt, &rpc_mount_count); if (err != 0) return ERR_PTR(err); return rpc_mnt; } EXPORT_SYMBOL_GPL(rpc_get_mount); void rpc_put_mount(void) { simple_release_fs(&rpc_mnt, &rpc_mount_count); } EXPORT_SYMBOL_GPL(rpc_put_mount); static int rpc_delete_dentry(const struct dentry *dentry) { return 1; } static const struct dentry_operations rpc_dentry_operations = { .d_delete = rpc_delete_dentry, }; static struct inode * rpc_get_inode(struct super_block *sb, umode_t mode) { struct inode *inode = new_inode(sb); if (!inode) return NULL; inode->i_ino = get_next_ino(); inode->i_mode = mode; inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; switch(mode & S_IFMT) { case S_IFDIR: inode->i_fop = &simple_dir_operations; inode->i_op = &simple_dir_inode_operations; inc_nlink(inode); default: break; } return inode; } static int __rpc_create_common(struct inode *dir, struct dentry *dentry, umode_t mode, const struct file_operations *i_fop, void *private) { struct inode *inode; d_drop(dentry); inode = rpc_get_inode(dir->i_sb, mode); if (!inode) goto out_err; inode->i_ino = iunique(dir->i_sb, 100); if (i_fop) inode->i_fop = i_fop; if (private) rpc_inode_setowner(inode, private); d_add(dentry, inode); return 0; out_err: printk(KERN_WARNING "%s: %s failed to allocate inode for dentry %s\n", __FILE__, __func__, dentry->d_name.name); dput(dentry); return -ENOMEM; } static int __rpc_create(struct inode *dir, struct dentry *dentry, umode_t mode, const struct file_operations *i_fop, void *private) { int err; err = __rpc_create_common(dir, dentry, S_IFREG | mode, i_fop, private); if (err) return err; fsnotify_create(dir, dentry); return 0; } static int __rpc_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode, const struct file_operations *i_fop, void *private) { int err; err = __rpc_create_common(dir, dentry, S_IFDIR | mode, i_fop, private); if (err) return err; inc_nlink(dir); fsnotify_mkdir(dir, dentry); return 0; } static int __rpc_mkpipe(struct inode *dir, struct dentry *dentry, umode_t mode, const struct file_operations *i_fop, void *private, const struct rpc_pipe_ops *ops, int flags) { struct rpc_inode *rpci; int err; err = __rpc_create_common(dir, dentry, S_IFIFO | mode, i_fop, private); if (err) return err; rpci = RPC_I(dentry->d_inode); rpci->nkern_readwriters = 1; rpci->private = private; rpci->flags = flags; rpci->ops = ops; fsnotify_create(dir, dentry); return 0; } static int __rpc_rmdir(struct inode *dir, struct dentry *dentry) { int ret; dget(dentry); ret = simple_rmdir(dir, dentry); d_delete(dentry); dput(dentry); return ret; } static int __rpc_unlink(struct inode *dir, struct dentry *dentry) { int ret; dget(dentry); ret = simple_unlink(dir, dentry); d_delete(dentry); dput(dentry); return ret; } static int __rpc_rmpipe(struct inode *dir, struct dentry *dentry) { struct inode *inode = dentry->d_inode; struct rpc_inode *rpci = RPC_I(inode); rpci->nkern_readwriters--; if (rpci->nkern_readwriters != 0) return 0; rpc_close_pipes(inode); return __rpc_unlink(dir, dentry); } static struct dentry *__rpc_lookup_create(struct dentry *parent, struct qstr *name) { struct dentry *dentry; dentry = d_lookup(parent, name); if (!dentry) { dentry = d_alloc(parent, name); if (!dentry) { dentry = ERR_PTR(-ENOMEM); goto out_err; } } if (!dentry->d_inode) d_set_d_op(dentry, &rpc_dentry_operations); out_err: return dentry; } static struct dentry *__rpc_lookup_create_exclusive(struct dentry *parent, struct qstr *name) { struct dentry *dentry; dentry = __rpc_lookup_create(parent, name); if (IS_ERR(dentry)) return dentry; if (dentry->d_inode == NULL) return dentry; dput(dentry); return ERR_PTR(-EEXIST); } /* * FIXME: This probably has races. */ static void __rpc_depopulate(struct dentry *parent, const struct rpc_filelist *files, int start, int eof) { struct inode *dir = parent->d_inode; struct dentry *dentry; struct qstr name; int i; for (i = start; i < eof; i++) { name.name = files[i].name; name.len = strlen(files[i].name); name.hash = full_name_hash(name.name, name.len); dentry = d_lookup(parent, &name); if (dentry == NULL) continue; if (dentry->d_inode == NULL) goto next; switch (dentry->d_inode->i_mode & S_IFMT) { default: BUG(); case S_IFREG: __rpc_unlink(dir, dentry); break; case S_IFDIR: __rpc_rmdir(dir, dentry); } next: dput(dentry); } } static void rpc_depopulate(struct dentry *parent, const struct rpc_filelist *files, int start, int eof) { struct inode *dir = parent->d_inode; mutex_lock_nested(&dir->i_mutex, I_MUTEX_CHILD); __rpc_depopulate(parent, files, start, eof); mutex_unlock(&dir->i_mutex); } static int rpc_populate(struct dentry *parent, const struct rpc_filelist *files, int start, int eof, void *private) { struct inode *dir = parent->d_inode; struct dentry *dentry; int i, err; mutex_lock(&dir->i_mutex); for (i = start; i < eof; i++) { struct qstr q; q.name = files[i].name; q.len = strlen(files[i].name); q.hash = full_name_hash(q.name, q.len); dentry = __rpc_lookup_create_exclusive(parent, &q); err = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_bad; switch (files[i].mode & S_IFMT) { default: BUG(); case S_IFREG: err = __rpc_create(dir, dentry, files[i].mode, files[i].i_fop, private); break; case S_IFDIR: err = __rpc_mkdir(dir, dentry, files[i].mode, NULL, private); } if (err != 0) goto out_bad; } mutex_unlock(&dir->i_mutex); return 0; out_bad: __rpc_depopulate(parent, files, start, eof); mutex_unlock(&dir->i_mutex); printk(KERN_WARNING "%s: %s failed to populate directory %s\n", __FILE__, __func__, parent->d_name.name); return err; } static struct dentry *rpc_mkdir_populate(struct dentry *parent, struct qstr *name, umode_t mode, void *private, int (*populate)(struct dentry *, void *), void *args_populate) { struct dentry *dentry; struct inode *dir = parent->d_inode; int error; mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); dentry = __rpc_lookup_create_exclusive(parent, name); if (IS_ERR(dentry)) goto out; error = __rpc_mkdir(dir, dentry, mode, NULL, private); if (error != 0) goto out_err; if (populate != NULL) { error = populate(dentry, args_populate); if (error) goto err_rmdir; } out: mutex_unlock(&dir->i_mutex); return dentry; err_rmdir: __rpc_rmdir(dir, dentry); out_err: dentry = ERR_PTR(error); goto out; } static int rpc_rmdir_depopulate(struct dentry *dentry, void (*depopulate)(struct dentry *)) { struct dentry *parent; struct inode *dir; int error; parent = dget_parent(dentry); dir = parent->d_inode; mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); if (depopulate != NULL) depopulate(dentry); error = __rpc_rmdir(dir, dentry); mutex_unlock(&dir->i_mutex); dput(parent); return error; } /** * rpc_mkpipe - make an rpc_pipefs file for kernel<->userspace communication * : dentry of directory to create new "pipe" in * @name: name of pipe * @private: private data to associate with the pipe, for the caller's use * @ops: operations defining the behavior of the pipe: upcall, downcall, * release_pipe, open_pipe, and destroy_msg. * @flags: rpc_inode flags * * Data is made available for userspace to read by calls to * rpc_queue_upcall(). The actual reads will result in calls to * @ops->upcall, which will be called with the file pointer, * message, and userspace buffer to copy to. * * Writes can come at any time, and do not necessarily have to be * responses to upcalls. They will result in calls to @msg->downcall. * * The @private argument passed here will be available to all these methods * from the file pointer, via RPC_I(file->f_dentry->d_inode)->private. */ struct dentry *rpc_mkpipe(struct dentry *parent, const char *name, void *private, const struct rpc_pipe_ops *ops, int flags) { struct dentry *dentry; struct inode *dir = parent->d_inode; umode_t umode = S_IFIFO | S_IRUSR | S_IWUSR; struct qstr q; int err; if (ops->upcall == NULL) umode &= ~S_IRUGO; if (ops->downcall == NULL) umode &= ~S_IWUGO; q.name = name; q.len = strlen(name); q.hash = full_name_hash(q.name, q.len), mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); dentry = __rpc_lookup_create(parent, &q); if (IS_ERR(dentry)) goto out; if (dentry->d_inode) { struct rpc_inode *rpci = RPC_I(dentry->d_inode); if (rpci->private != private || rpci->ops != ops || rpci->flags != flags) { dput (dentry); err = -EBUSY; goto out_err; } rpci->nkern_readwriters++; goto out; } err = __rpc_mkpipe(dir, dentry, umode, &rpc_pipe_fops, private, ops, flags); if (err) goto out_err; out: mutex_unlock(&dir->i_mutex); return dentry; out_err: dentry = ERR_PTR(err); printk(KERN_WARNING "%s: %s() failed to create pipe %s/%s (errno = %d)\n", __FILE__, __func__, parent->d_name.name, name, err); goto out; } EXPORT_SYMBOL_GPL(rpc_mkpipe); /** * rpc_unlink - remove a pipe * @dentry: dentry for the pipe, as returned from rpc_mkpipe * * After this call, lookups will no longer find the pipe, and any * attempts to read or write using preexisting opens of the pipe will * return -EPIPE. */ int rpc_unlink(struct dentry *dentry) { struct dentry *parent; struct inode *dir; int error = 0; parent = dget_parent(dentry); dir = parent->d_inode; mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); error = __rpc_rmpipe(dir, dentry); mutex_unlock(&dir->i_mutex); dput(parent); return error; } EXPORT_SYMBOL_GPL(rpc_unlink); enum { RPCAUTH_info, RPCAUTH_EOF }; static const struct rpc_filelist authfiles[] = { [RPCAUTH_info] = { .name = "info", .i_fop = &rpc_info_operations, .mode = S_IFREG | S_IRUSR, }, }; static int rpc_clntdir_populate(struct dentry *dentry, void *private) { return rpc_populate(dentry, authfiles, RPCAUTH_info, RPCAUTH_EOF, private); } static void rpc_clntdir_depopulate(struct dentry *dentry) { rpc_depopulate(dentry, authfiles, RPCAUTH_info, RPCAUTH_EOF); } /** * rpc_create_client_dir - Create a new rpc_client directory in rpc_pipefs * @dentry: dentry from the rpc_pipefs root to the new directory * @name: &struct qstr for the name * @rpc_client: rpc client to associate with this directory * * This creates a directory at the given @path associated with * @rpc_clnt, which will contain a file named "info" with some basic * information about the client, together with any "pipes" that may * later be created using rpc_mkpipe(). */ struct dentry *rpc_create_client_dir(struct dentry *dentry, struct qstr *name, struct rpc_clnt *rpc_client) { return rpc_mkdir_populate(dentry, name, S_IRUGO | S_IXUGO, NULL, rpc_clntdir_populate, rpc_client); } /** * rpc_remove_client_dir - Remove a directory created with rpc_create_client_dir() * @dentry: directory to remove */ int rpc_remove_client_dir(struct dentry *dentry) { return rpc_rmdir_depopulate(dentry, rpc_clntdir_depopulate); } static const struct rpc_filelist cache_pipefs_files[3] = { [0] = { .name = "channel", .i_fop = &cache_file_operations_pipefs, .mode = S_IFREG|S_IRUSR|S_IWUSR, }, [1] = { .name = "content", .i_fop = &content_file_operations_pipefs, .mode = S_IFREG|S_IRUSR, }, [2] = { .name = "flush", .i_fop = &cache_flush_operations_pipefs, .mode = S_IFREG|S_IRUSR|S_IWUSR, }, }; static int rpc_cachedir_populate(struct dentry *dentry, void *private) { return rpc_populate(dentry, cache_pipefs_files, 0, 3, private); } static void rpc_cachedir_depopulate(struct dentry *dentry) { rpc_depopulate(dentry, cache_pipefs_files, 0, 3); } struct dentry *rpc_create_cache_dir(struct dentry *parent, struct qstr *name, mode_t umode, struct cache_detail *cd) { return rpc_mkdir_populate(parent, name, umode, NULL, rpc_cachedir_populate, cd); } void rpc_remove_cache_dir(struct dentry *dentry) { rpc_rmdir_depopulate(dentry, rpc_cachedir_depopulate); } /* * populate the filesystem */ static const struct super_operations s_ops = { .alloc_inode = rpc_alloc_inode, .destroy_inode = rpc_destroy_inode, .statfs = simple_statfs, }; #define RPCAUTH_GSSMAGIC 0x67596969 /* * We have a single directory with 1 node in it. */ enum { RPCAUTH_lockd, RPCAUTH_mount, RPCAUTH_nfs, RPCAUTH_portmap, RPCAUTH_statd, RPCAUTH_nfsd4_cb, RPCAUTH_cache, RPCAUTH_RootEOF }; static const struct rpc_filelist files[] = { [RPCAUTH_lockd] = { .name = "lockd", .mode = S_IFDIR | S_IRUGO | S_IXUGO, }, [RPCAUTH_mount] = { .name = "mount", .mode = S_IFDIR | S_IRUGO | S_IXUGO, }, [RPCAUTH_nfs] = { .name = "nfs", .mode = S_IFDIR | S_IRUGO | S_IXUGO, }, [RPCAUTH_portmap] = { .name = "portmap", .mode = S_IFDIR | S_IRUGO | S_IXUGO, }, [RPCAUTH_statd] = { .name = "statd", .mode = S_IFDIR | S_IRUGO | S_IXUGO, }, [RPCAUTH_nfsd4_cb] = { .name = "nfsd4_cb", .mode = S_IFDIR | S_IRUGO | S_IXUGO, }, [RPCAUTH_cache] = { .name = "cache", .mode = S_IFDIR | S_IRUGO | S_IXUGO, }, }; static int rpc_fill_super(struct super_block *sb, void *data, int silent) { struct inode *inode; struct dentry *root; sb->s_blocksize = PAGE_CACHE_SIZE; sb->s_blocksize_bits = PAGE_CACHE_SHIFT; sb->s_magic = RPCAUTH_GSSMAGIC; sb->s_op = &s_ops; sb->s_time_gran = 1; inode = rpc_get_inode(sb, S_IFDIR | 0755); if (!inode) return -ENOMEM; sb->s_root = root = d_alloc_root(inode); if (!root) { iput(inode); return -ENOMEM; } if (rpc_populate(root, files, RPCAUTH_lockd, RPCAUTH_RootEOF, NULL)) return -ENOMEM; return 0; } static struct dentry * rpc_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_single(fs_type, flags, data, rpc_fill_super); } static struct file_system_type rpc_pipe_fs_type = { .owner = THIS_MODULE, .name = "rpc_pipefs", .mount = rpc_mount, .kill_sb = kill_litter_super, }; static void init_once(void *foo) { struct rpc_inode *rpci = (struct rpc_inode *) foo; inode_init_once(&rpci->vfs_inode); rpci->private = NULL; rpci->nreaders = 0; rpci->nwriters = 0; INIT_LIST_HEAD(&rpci->in_upcall); INIT_LIST_HEAD(&rpci->in_downcall); INIT_LIST_HEAD(&rpci->pipe); rpci->pipelen = 0; init_waitqueue_head(&rpci->waitq); INIT_DELAYED_WORK(&rpci->queue_timeout, rpc_timeout_upcall_queue); rpci->ops = NULL; } int register_rpc_pipefs(void) { int err; rpc_inode_cachep = kmem_cache_create("rpc_inode_cache", sizeof(struct rpc_inode), 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), init_once); if (!rpc_inode_cachep) return -ENOMEM; err = register_filesystem(&rpc_pipe_fs_type); if (err) { kmem_cache_destroy(rpc_inode_cachep); return err; } return 0; } void unregister_rpc_pipefs(void) { kmem_cache_destroy(rpc_inode_cachep); unregister_filesystem(&rpc_pipe_fs_type); }