/* * ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces * * Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>, * Pilo Chambert <pilo.c@wanadoo.fr> * * Thanks to : Anders Torger <torger@ludd.luth.se>, * Henk Hesselink <henk@anda.nl> * for writing the digi96-driver * and RME for all informations. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * * **************************************************************************** * * Note #1 "Sek'd models" ................................... martin 2002-12-07 * * Identical soundcards by Sek'd were labeled: * RME Digi 32 = Sek'd Prodif 32 * RME Digi 32 Pro = Sek'd Prodif 96 * RME Digi 32/8 = Sek'd Prodif Gold * * **************************************************************************** * * Note #2 "full duplex mode" ............................... martin 2002-12-07 * * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical * in this mode. Rec data and play data are using the same buffer therefore. At * first you have got the playing bits in the buffer and then (after playing * them) they were overwitten by the captured sound of the CS8412/14. Both * modes (play/record) are running harmonically hand in hand in the same buffer * and you have only one start bit plus one interrupt bit to control this * paired action. * This is opposite to the latter rme96 where playing and capturing is totally * separated and so their full duplex mode is supported by alsa (using two * start bits and two interrupts for two different buffers). * But due to the wrong sequence of playing and capturing ALSA shows no solved * full duplex support for the rme32 at the moment. That's bad, but I'm not * able to solve it. Are you motivated enough to solve this problem now? Your * patch would be welcome! * * **************************************************************************** * * "The story after the long seeking" -- tiwai * * Ok, the situation regarding the full duplex is now improved a bit. * In the fullduplex mode (given by the module parameter), the hardware buffer * is split to halves for read and write directions at the DMA pointer. * That is, the half above the current DMA pointer is used for write, and * the half below is used for read. To mangle this strange behavior, an * software intermediate buffer is introduced. This is, of course, not good * from the viewpoint of the data transfer efficiency. However, this allows * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size. * * **************************************************************************** */ #include <linux/delay.h> #include <linux/gfp.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/moduleparam.h> #include <sound/core.h> #include <sound/info.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/pcm-indirect.h> #include <sound/asoundef.h> #include <sound/initval.h> #include <asm/io.h> static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ static int fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1}; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard."); module_param_array(fullduplex, bool, NULL, 0444); MODULE_PARM_DESC(fullduplex, "Support full-duplex mode."); MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>"); MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{RME,Digi32}," "{RME,Digi32/8}," "{RME,Digi32 PRO}}"); /* Defines for RME Digi32 series */ #define RME32_SPDIF_NCHANNELS 2 /* Playback and capture buffer size */ #define RME32_BUFFER_SIZE 0x20000 /* IO area size */ #define RME32_IO_SIZE 0x30000 /* IO area offsets */ #define RME32_IO_DATA_BUFFER 0x0 #define RME32_IO_CONTROL_REGISTER 0x20000 #define RME32_IO_GET_POS 0x20000 #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004 #define RME32_IO_RESET_POS 0x20100 /* Write control register bits */ #define RME32_WCR_START (1 << 0) /* startbit */ #define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono Setting the whole card to mono doesn't seem to be very useful. A software-solution can handle full-duplex with one direction in stereo and the other way in mono. So, the hardware should work all the time in stereo! */ #define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */ #define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */ #define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */ #define RME32_WCR_FREQ_1 (1 << 5) #define RME32_WCR_INP_0 (1 << 6) /* input switch */ #define RME32_WCR_INP_1 (1 << 7) #define RME32_WCR_RESET (1 << 8) /* Reset address */ #define RME32_WCR_MUTE (1 << 9) /* digital mute for output */ #define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */ #define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */ #define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */ #define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */ #define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */ #define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */ #define RME32_WCR_BITPOS_FREQ_0 4 #define RME32_WCR_BITPOS_FREQ_1 5 #define RME32_WCR_BITPOS_INP_0 6 #define RME32_WCR_BITPOS_INP_1 7 /* Read control register bits */ #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff #define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */ #define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */ #define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */ #define RME32_RCR_FREQ_1 (1 << 28) #define RME32_RCR_FREQ_2 (1 << 29) #define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */ #define RME32_RCR_IRQ (1 << 31) /* interrupt */ #define RME32_RCR_BITPOS_F0 27 #define RME32_RCR_BITPOS_F1 28 #define RME32_RCR_BITPOS_F2 29 /* Input types */ #define RME32_INPUT_OPTICAL 0 #define RME32_INPUT_COAXIAL 1 #define RME32_INPUT_INTERNAL 2 #define RME32_INPUT_XLR 3 /* Clock modes */ #define RME32_CLOCKMODE_SLAVE 0 #define RME32_CLOCKMODE_MASTER_32 1 #define RME32_CLOCKMODE_MASTER_44 2 #define RME32_CLOCKMODE_MASTER_48 3 /* Block sizes in bytes */ #define RME32_BLOCK_SIZE 8192 /* Software intermediate buffer (max) size */ #define RME32_MID_BUFFER_SIZE (1024*1024) /* Hardware revisions */ #define RME32_32_REVISION 192 #define RME32_328_REVISION_OLD 100 #define RME32_328_REVISION_NEW 101 #define RME32_PRO_REVISION_WITH_8412 192 #define RME32_PRO_REVISION_WITH_8414 150 struct rme32 { spinlock_t lock; int irq; unsigned long port; void __iomem *iobase; u32 wcreg; /* cached write control register value */ u32 wcreg_spdif; /* S/PDIF setup */ u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */ u32 rcreg; /* cached read control register value */ u8 rev; /* card revision number */ struct snd_pcm_substream *playback_substream; struct snd_pcm_substream *capture_substream; int playback_frlog; /* log2 of framesize */ int capture_frlog; size_t playback_periodsize; /* in bytes, zero if not used */ size_t capture_periodsize; /* in bytes, zero if not used */ unsigned int fullduplex_mode; int running; struct snd_pcm_indirect playback_pcm; struct snd_pcm_indirect capture_pcm; struct snd_card *card; struct snd_pcm *spdif_pcm; struct snd_pcm *adat_pcm; struct pci_dev *pci; struct snd_kcontrol *spdif_ctl; }; static DEFINE_PCI_DEVICE_TABLE(snd_rme32_ids) = { {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,}, {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,}, {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,}, {0,} }; MODULE_DEVICE_TABLE(pci, snd_rme32_ids); #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START) #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414) static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream); static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream); static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd); static void snd_rme32_proc_init(struct rme32 * rme32); static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32); static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32) { return (readl(rme32->iobase + RME32_IO_GET_POS) & RME32_RCR_AUDIO_ADDR_MASK); } /* silence callback for halfduplex mode */ static int snd_rme32_playback_silence(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ snd_pcm_uframes_t pos, snd_pcm_uframes_t count) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); count <<= rme32->playback_frlog; pos <<= rme32->playback_frlog; memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count); return 0; } /* copy callback for halfduplex mode */ static int snd_rme32_playback_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ snd_pcm_uframes_t pos, void __user *src, snd_pcm_uframes_t count) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); count <<= rme32->playback_frlog; pos <<= rme32->playback_frlog; if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, src, count)) return -EFAULT; return 0; } /* copy callback for halfduplex mode */ static int snd_rme32_capture_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ snd_pcm_uframes_t pos, void __user *dst, snd_pcm_uframes_t count) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); count <<= rme32->capture_frlog; pos <<= rme32->capture_frlog; if (copy_to_user_fromio(dst, rme32->iobase + RME32_IO_DATA_BUFFER + pos, count)) return -EFAULT; return 0; } /* * SPDIF I/O capabilities (half-duplex mode) */ static struct snd_pcm_hardware snd_rme32_spdif_info = { .info = (SNDRV_PCM_INFO_MMAP_IOMEM | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START), .formats = (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE), .rates = (SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000), .rate_min = 32000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = RME32_BUFFER_SIZE, .period_bytes_min = RME32_BLOCK_SIZE, .period_bytes_max = RME32_BLOCK_SIZE, .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, .fifo_size = 0, }; /* * ADAT I/O capabilities (half-duplex mode) */ static struct snd_pcm_hardware snd_rme32_adat_info = { .info = (SNDRV_PCM_INFO_MMAP_IOMEM | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START), .formats= SNDRV_PCM_FMTBIT_S16_LE, .rates = (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000), .rate_min = 44100, .rate_max = 48000, .channels_min = 8, .channels_max = 8, .buffer_bytes_max = RME32_BUFFER_SIZE, .period_bytes_min = RME32_BLOCK_SIZE, .period_bytes_max = RME32_BLOCK_SIZE, .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, .fifo_size = 0, }; /* * SPDIF I/O capabilities (full-duplex mode) */ static struct snd_pcm_hardware snd_rme32_spdif_fd_info = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START), .formats = (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE), .rates = (SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000), .rate_min = 32000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = RME32_MID_BUFFER_SIZE, .period_bytes_min = RME32_BLOCK_SIZE, .period_bytes_max = RME32_BLOCK_SIZE, .periods_min = 2, .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE, .fifo_size = 0, }; /* * ADAT I/O capabilities (full-duplex mode) */ static struct snd_pcm_hardware snd_rme32_adat_fd_info = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START), .formats= SNDRV_PCM_FMTBIT_S16_LE, .rates = (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000), .rate_min = 44100, .rate_max = 48000, .channels_min = 8, .channels_max = 8, .buffer_bytes_max = RME32_MID_BUFFER_SIZE, .period_bytes_min = RME32_BLOCK_SIZE, .period_bytes_max = RME32_BLOCK_SIZE, .periods_min = 2, .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE, .fifo_size = 0, }; static void snd_rme32_reset_dac(struct rme32 *rme32) { writel(rme32->wcreg | RME32_WCR_PD, rme32->iobase + RME32_IO_CONTROL_REGISTER); writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); } static int snd_rme32_playback_getrate(struct rme32 * rme32) { int rate; rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) + (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1); switch (rate) { case 1: rate = 32000; break; case 2: rate = 44100; break; case 3: rate = 48000; break; default: return -1; } return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate; } static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat) { int n; *is_adat = 0; if (rme32->rcreg & RME32_RCR_LOCK) { /* ADAT rate */ *is_adat = 1; } if (rme32->rcreg & RME32_RCR_ERF) { return -1; } /* S/PDIF rate */ n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) + (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) + (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2); if (RME32_PRO_WITH_8414(rme32)) switch (n) { /* supporting the CS8414 */ case 0: case 1: case 2: return -1; case 3: return 96000; case 4: return 88200; case 5: return 48000; case 6: return 44100; case 7: return 32000; default: return -1; break; } else switch (n) { /* supporting the CS8412 */ case 0: return -1; case 1: return 48000; case 2: return 44100; case 3: return 32000; case 4: return 48000; case 5: return 44100; case 6: return 44056; case 7: return 32000; default: break; } return -1; } static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate) { int ds; ds = rme32->wcreg & RME32_WCR_DS_BM; switch (rate) { case 32000: rme32->wcreg &= ~RME32_WCR_DS_BM; rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & ~RME32_WCR_FREQ_1; break; case 44100: rme32->wcreg &= ~RME32_WCR_DS_BM; rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & ~RME32_WCR_FREQ_0; break; case 48000: rme32->wcreg &= ~RME32_WCR_DS_BM; rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | RME32_WCR_FREQ_1; break; case 64000: if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) return -EINVAL; rme32->wcreg |= RME32_WCR_DS_BM; rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & ~RME32_WCR_FREQ_1; break; case 88200: if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) return -EINVAL; rme32->wcreg |= RME32_WCR_DS_BM; rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & ~RME32_WCR_FREQ_0; break; case 96000: if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) return -EINVAL; rme32->wcreg |= RME32_WCR_DS_BM; rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | RME32_WCR_FREQ_1; break; default: return -EINVAL; } if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) || (ds && !(rme32->wcreg & RME32_WCR_DS_BM))) { /* change to/from double-speed: reset the DAC (if available) */ snd_rme32_reset_dac(rme32); } else { writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); } return 0; } static int snd_rme32_setclockmode(struct rme32 * rme32, int mode) { switch (mode) { case RME32_CLOCKMODE_SLAVE: /* AutoSync */ rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) & ~RME32_WCR_FREQ_1; break; case RME32_CLOCKMODE_MASTER_32: /* Internal 32.0kHz */ rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & ~RME32_WCR_FREQ_1; break; case RME32_CLOCKMODE_MASTER_44: /* Internal 44.1kHz */ rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) | RME32_WCR_FREQ_1; break; case RME32_CLOCKMODE_MASTER_48: /* Internal 48.0kHz */ rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | RME32_WCR_FREQ_1; break; default: return -EINVAL; } writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); return 0; } static int snd_rme32_getclockmode(struct rme32 * rme32) { return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) + (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1); } static int snd_rme32_setinputtype(struct rme32 * rme32, int type) { switch (type) { case RME32_INPUT_OPTICAL: rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) & ~RME32_WCR_INP_1; break; case RME32_INPUT_COAXIAL: rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) & ~RME32_WCR_INP_1; break; case RME32_INPUT_INTERNAL: rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) | RME32_WCR_INP_1; break; case RME32_INPUT_XLR: rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) | RME32_WCR_INP_1; break; default: return -EINVAL; } writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); return 0; } static int snd_rme32_getinputtype(struct rme32 * rme32) { return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) + (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1); } static void snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback) { int frlog; if (n_channels == 2) { frlog = 1; } else { /* assume 8 channels */ frlog = 3; } if (is_playback) { frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1; rme32->playback_frlog = frlog; } else { frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1; rme32->capture_frlog = frlog; } } static int snd_rme32_setformat(struct rme32 * rme32, int format) { switch (format) { case SNDRV_PCM_FORMAT_S16_LE: rme32->wcreg &= ~RME32_WCR_MODE24; break; case SNDRV_PCM_FORMAT_S32_LE: rme32->wcreg |= RME32_WCR_MODE24; break; default: return -EINVAL; } writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); return 0; } static int snd_rme32_playback_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { int err, rate, dummy; struct rme32 *rme32 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; if (rme32->fullduplex_mode) { err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); if (err < 0) return err; } else { runtime->dma_area = (void __force *)(rme32->iobase + RME32_IO_DATA_BUFFER); runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER; runtime->dma_bytes = RME32_BUFFER_SIZE; } spin_lock_irq(&rme32->lock); if ((rme32->rcreg & RME32_RCR_KMODE) && (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { /* AutoSync */ if ((int)params_rate(params) != rate) { spin_unlock_irq(&rme32->lock); return -EIO; } } else if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) { spin_unlock_irq(&rme32->lock); return err; } if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) { spin_unlock_irq(&rme32->lock); return err; } snd_rme32_setframelog(rme32, params_channels(params), 1); if (rme32->capture_periodsize != 0) { if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) { spin_unlock_irq(&rme32->lock); return -EBUSY; } } rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog; /* S/PDIF setup */ if ((rme32->wcreg & RME32_WCR_ADAT) == 0) { rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP); rme32->wcreg |= rme32->wcreg_spdif_stream; writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); } spin_unlock_irq(&rme32->lock); return 0; } static int snd_rme32_capture_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { int err, isadat, rate; struct rme32 *rme32 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; if (rme32->fullduplex_mode) { err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); if (err < 0) return err; } else { runtime->dma_area = (void __force *)rme32->iobase + RME32_IO_DATA_BUFFER; runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER; runtime->dma_bytes = RME32_BUFFER_SIZE; } spin_lock_irq(&rme32->lock); /* enable AutoSync for record-preparing */ rme32->wcreg |= RME32_WCR_AUTOSYNC; writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) { spin_unlock_irq(&rme32->lock); return err; } if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) { spin_unlock_irq(&rme32->lock); return err; } if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { if ((int)params_rate(params) != rate) { spin_unlock_irq(&rme32->lock); return -EIO; } if ((isadat && runtime->hw.channels_min == 2) || (!isadat && runtime->hw.channels_min == 8)) { spin_unlock_irq(&rme32->lock); return -EIO; } } /* AutoSync off for recording */ rme32->wcreg &= ~RME32_WCR_AUTOSYNC; writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); snd_rme32_setframelog(rme32, params_channels(params), 0); if (rme32->playback_periodsize != 0) { if (params_period_size(params) << rme32->capture_frlog != rme32->playback_periodsize) { spin_unlock_irq(&rme32->lock); return -EBUSY; } } rme32->capture_periodsize = params_period_size(params) << rme32->capture_frlog; spin_unlock_irq(&rme32->lock); return 0; } static int snd_rme32_pcm_hw_free(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); if (! rme32->fullduplex_mode) return 0; return snd_pcm_lib_free_pages(substream); } static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause) { if (!from_pause) { writel(0, rme32->iobase + RME32_IO_RESET_POS); } rme32->wcreg |= RME32_WCR_START; writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); } static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause) { /* * Check if there is an unconfirmed IRQ, if so confirm it, or else * the hardware will not stop generating interrupts */ rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); if (rme32->rcreg & RME32_RCR_IRQ) { writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ); } rme32->wcreg &= ~RME32_WCR_START; if (rme32->wcreg & RME32_WCR_SEL) rme32->wcreg |= RME32_WCR_MUTE; writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); if (! to_pause) writel(0, rme32->iobase + RME32_IO_RESET_POS); } static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id) { struct rme32 *rme32 = (struct rme32 *) dev_id; rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); if (!(rme32->rcreg & RME32_RCR_IRQ)) { return IRQ_NONE; } else { if (rme32->capture_substream) { snd_pcm_period_elapsed(rme32->capture_substream); } if (rme32->playback_substream) { snd_pcm_period_elapsed(rme32->playback_substream); } writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ); } return IRQ_HANDLED; } static unsigned int period_bytes[] = { RME32_BLOCK_SIZE }; static struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = { .count = ARRAY_SIZE(period_bytes), .list = period_bytes, .mask = 0 }; static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime) { if (! rme32->fullduplex_mode) { snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, RME32_BUFFER_SIZE, RME32_BUFFER_SIZE); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, &hw_constraints_period_bytes); } } static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream) { int rate, dummy; struct rme32 *rme32 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_set_sync(substream); spin_lock_irq(&rme32->lock); if (rme32->playback_substream != NULL) { spin_unlock_irq(&rme32->lock); return -EBUSY; } rme32->wcreg &= ~RME32_WCR_ADAT; writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); rme32->playback_substream = substream; spin_unlock_irq(&rme32->lock); if (rme32->fullduplex_mode) runtime->hw = snd_rme32_spdif_fd_info; else runtime->hw = snd_rme32_spdif_info; if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) { runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; runtime->hw.rate_max = 96000; } if ((rme32->rcreg & RME32_RCR_KMODE) && (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { /* AutoSync */ runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); runtime->hw.rate_min = rate; runtime->hw.rate_max = rate; } snd_rme32_set_buffer_constraint(rme32, runtime); rme32->wcreg_spdif_stream = rme32->wcreg_spdif; rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE | SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id); return 0; } static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream) { int isadat, rate; struct rme32 *rme32 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_set_sync(substream); spin_lock_irq(&rme32->lock); if (rme32->capture_substream != NULL) { spin_unlock_irq(&rme32->lock); return -EBUSY; } rme32->capture_substream = substream; spin_unlock_irq(&rme32->lock); if (rme32->fullduplex_mode) runtime->hw = snd_rme32_spdif_fd_info; else runtime->hw = snd_rme32_spdif_info; if (RME32_PRO_WITH_8414(rme32)) { runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; runtime->hw.rate_max = 96000; } if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { if (isadat) { return -EIO; } runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); runtime->hw.rate_min = rate; runtime->hw.rate_max = rate; } snd_rme32_set_buffer_constraint(rme32, runtime); return 0; } static int snd_rme32_playback_adat_open(struct snd_pcm_substream *substream) { int rate, dummy; struct rme32 *rme32 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_set_sync(substream); spin_lock_irq(&rme32->lock); if (rme32->playback_substream != NULL) { spin_unlock_irq(&rme32->lock); return -EBUSY; } rme32->wcreg |= RME32_WCR_ADAT; writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); rme32->playback_substream = substream; spin_unlock_irq(&rme32->lock); if (rme32->fullduplex_mode) runtime->hw = snd_rme32_adat_fd_info; else runtime->hw = snd_rme32_adat_info; if ((rme32->rcreg & RME32_RCR_KMODE) && (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { /* AutoSync */ runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); runtime->hw.rate_min = rate; runtime->hw.rate_max = rate; } snd_rme32_set_buffer_constraint(rme32, runtime); return 0; } static int snd_rme32_capture_adat_open(struct snd_pcm_substream *substream) { int isadat, rate; struct rme32 *rme32 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; if (rme32->fullduplex_mode) runtime->hw = snd_rme32_adat_fd_info; else runtime->hw = snd_rme32_adat_info; if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { if (!isadat) { return -EIO; } runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); runtime->hw.rate_min = rate; runtime->hw.rate_max = rate; } snd_pcm_set_sync(substream); spin_lock_irq(&rme32->lock); if (rme32->capture_substream != NULL) { spin_unlock_irq(&rme32->lock); return -EBUSY; } rme32->capture_substream = substream; spin_unlock_irq(&rme32->lock); snd_rme32_set_buffer_constraint(rme32, runtime); return 0; } static int snd_rme32_playback_close(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); int spdif = 0; spin_lock_irq(&rme32->lock); rme32->playback_substream = NULL; rme32->playback_periodsize = 0; spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0; spin_unlock_irq(&rme32->lock); if (spdif) { rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE | SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id); } return 0; } static int snd_rme32_capture_close(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); spin_lock_irq(&rme32->lock); rme32->capture_substream = NULL; rme32->capture_periodsize = 0; spin_unlock_irq(&rme32->lock); return 0; } static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); spin_lock_irq(&rme32->lock); if (rme32->fullduplex_mode) { memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm)); rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE; rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); } else { writel(0, rme32->iobase + RME32_IO_RESET_POS); } if (rme32->wcreg & RME32_WCR_SEL) rme32->wcreg &= ~RME32_WCR_MUTE; writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); spin_unlock_irq(&rme32->lock); return 0; } static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); spin_lock_irq(&rme32->lock); if (rme32->fullduplex_mode) { memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm)); rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE; rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2; rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); } else { writel(0, rme32->iobase + RME32_IO_RESET_POS); } spin_unlock_irq(&rme32->lock); return 0; } static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); struct snd_pcm_substream *s; spin_lock(&rme32->lock); snd_pcm_group_for_each_entry(s, substream) { if (s != rme32->playback_substream && s != rme32->capture_substream) continue; switch (cmd) { case SNDRV_PCM_TRIGGER_START: rme32->running |= (1 << s->stream); if (rme32->fullduplex_mode) { /* remember the current DMA position */ if (s == rme32->playback_substream) { rme32->playback_pcm.hw_io = rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32); } else { rme32->capture_pcm.hw_io = rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32); } } break; case SNDRV_PCM_TRIGGER_STOP: rme32->running &= ~(1 << s->stream); break; } snd_pcm_trigger_done(s, substream); } /* prefill playback buffer */ if (cmd == SNDRV_PCM_TRIGGER_START && rme32->fullduplex_mode) { snd_pcm_group_for_each_entry(s, substream) { if (s == rme32->playback_substream) { s->ops->ack(s); break; } } } switch (cmd) { case SNDRV_PCM_TRIGGER_START: if (rme32->running && ! RME32_ISWORKING(rme32)) snd_rme32_pcm_start(rme32, 0); break; case SNDRV_PCM_TRIGGER_STOP: if (! rme32->running && RME32_ISWORKING(rme32)) snd_rme32_pcm_stop(rme32, 0); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: if (rme32->running && RME32_ISWORKING(rme32)) snd_rme32_pcm_stop(rme32, 1); break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: if (rme32->running && ! RME32_ISWORKING(rme32)) snd_rme32_pcm_start(rme32, 1); break; } spin_unlock(&rme32->lock); return 0; } /* pointer callback for halfduplex mode */ static snd_pcm_uframes_t snd_rme32_playback_pointer(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog; } static snd_pcm_uframes_t snd_rme32_capture_pointer(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog; } /* ack and pointer callbacks for fullduplex mode */ static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream, struct snd_pcm_indirect *rec, size_t bytes) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data, substream->runtime->dma_area + rec->sw_data, bytes); } static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); struct snd_pcm_indirect *rec, *cprec; rec = &rme32->playback_pcm; cprec = &rme32->capture_pcm; spin_lock(&rme32->lock); rec->hw_queue_size = RME32_BUFFER_SIZE; if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE)) rec->hw_queue_size -= cprec->hw_ready; spin_unlock(&rme32->lock); snd_pcm_indirect_playback_transfer(substream, rec, snd_rme32_pb_trans_copy); return 0; } static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream, struct snd_pcm_indirect *rec, size_t bytes) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); memcpy_fromio(substream->runtime->dma_area + rec->sw_data, rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data, bytes); } static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm, snd_rme32_cp_trans_copy); return 0; } static snd_pcm_uframes_t snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm, snd_rme32_pcm_byteptr(rme32)); } static snd_pcm_uframes_t snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream) { struct rme32 *rme32 = snd_pcm_substream_chip(substream); return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm, snd_rme32_pcm_byteptr(rme32)); } /* for halfduplex mode */ static struct snd_pcm_ops snd_rme32_playback_spdif_ops = { .open = snd_rme32_playback_spdif_open, .close = snd_rme32_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_rme32_playback_hw_params, .hw_free = snd_rme32_pcm_hw_free, .prepare = snd_rme32_playback_prepare, .trigger = snd_rme32_pcm_trigger, .pointer = snd_rme32_playback_pointer, .copy = snd_rme32_playback_copy, .silence = snd_rme32_playback_silence, .mmap = snd_pcm_lib_mmap_iomem, }; static struct snd_pcm_ops snd_rme32_capture_spdif_ops = { .open = snd_rme32_capture_spdif_open, .close = snd_rme32_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_rme32_capture_hw_params, .hw_free = snd_rme32_pcm_hw_free, .prepare = snd_rme32_capture_prepare, .trigger = snd_rme32_pcm_trigger, .pointer = snd_rme32_capture_pointer, .copy = snd_rme32_capture_copy, .mmap = snd_pcm_lib_mmap_iomem, }; static struct snd_pcm_ops snd_rme32_playback_adat_ops = { .open = snd_rme32_playback_adat_open, .close = snd_rme32_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_rme32_playback_hw_params, .prepare = snd_rme32_playback_prepare, .trigger = snd_rme32_pcm_trigger, .pointer = snd_rme32_playback_pointer, .copy = snd_rme32_playback_copy, .silence = snd_rme32_playback_silence, .mmap = snd_pcm_lib_mmap_iomem, }; static struct snd_pcm_ops snd_rme32_capture_adat_ops = { .open = snd_rme32_capture_adat_open, .close = snd_rme32_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_rme32_capture_hw_params, .prepare = snd_rme32_capture_prepare, .trigger = snd_rme32_pcm_trigger, .pointer = snd_rme32_capture_pointer, .copy = snd_rme32_capture_copy, .mmap = snd_pcm_lib_mmap_iomem, }; /* for fullduplex mode */ static struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = { .open = snd_rme32_playback_spdif_open, .close = snd_rme32_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_rme32_playback_hw_params, .hw_free = snd_rme32_pcm_hw_free, .prepare = snd_rme32_playback_prepare, .trigger = snd_rme32_pcm_trigger, .pointer = snd_rme32_playback_fd_pointer, .ack = snd_rme32_playback_fd_ack, }; static struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = { .open = snd_rme32_capture_spdif_open, .close = snd_rme32_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_rme32_capture_hw_params, .hw_free = snd_rme32_pcm_hw_free, .prepare = snd_rme32_capture_prepare, .trigger = snd_rme32_pcm_trigger, .pointer = snd_rme32_capture_fd_pointer, .ack = snd_rme32_capture_fd_ack, }; static struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = { .open = snd_rme32_playback_adat_open, .close = snd_rme32_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_rme32_playback_hw_params, .prepare = snd_rme32_playback_prepare, .trigger = snd_rme32_pcm_trigger, .pointer = snd_rme32_playback_fd_pointer, .ack = snd_rme32_playback_fd_ack, }; static struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = { .open = snd_rme32_capture_adat_open, .close = snd_rme32_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_rme32_capture_hw_params, .prepare = snd_rme32_capture_prepare, .trigger = snd_rme32_pcm_trigger, .pointer = snd_rme32_capture_fd_pointer, .ack = snd_rme32_capture_fd_ack, }; static void snd_rme32_free(void *private_data) { struct rme32 *rme32 = (struct rme32 *) private_data; if (rme32 == NULL) { return; } if (rme32->irq >= 0) { snd_rme32_pcm_stop(rme32, 0); free_irq(rme32->irq, (void *) rme32); rme32->irq = -1; } if (rme32->iobase) { iounmap(rme32->iobase); rme32->iobase = NULL; } if (rme32->port) { pci_release_regions(rme32->pci); rme32->port = 0; } pci_disable_device(rme32->pci); } static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm) { struct rme32 *rme32 = (struct rme32 *) pcm->private_data; rme32->spdif_pcm = NULL; } static void snd_rme32_free_adat_pcm(struct snd_pcm *pcm) { struct rme32 *rme32 = (struct rme32 *) pcm->private_data; rme32->adat_pcm = NULL; } static int __devinit snd_rme32_create(struct rme32 * rme32) { struct pci_dev *pci = rme32->pci; int err; rme32->irq = -1; spin_lock_init(&rme32->lock); if ((err = pci_enable_device(pci)) < 0) return err; if ((err = pci_request_regions(pci, "RME32")) < 0) return err; rme32->port = pci_resource_start(rme32->pci, 0); rme32->iobase = ioremap_nocache(rme32->port, RME32_IO_SIZE); if (!rme32->iobase) { snd_printk(KERN_ERR "unable to remap memory region 0x%lx-0x%lx\n", rme32->port, rme32->port + RME32_IO_SIZE - 1); return -ENOMEM; } if (request_irq(pci->irq, snd_rme32_interrupt, IRQF_SHARED, "RME32", rme32)) { snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); return -EBUSY; } rme32->irq = pci->irq; /* read the card's revision number */ pci_read_config_byte(pci, 8, &rme32->rev); /* set up ALSA pcm device for S/PDIF */ if ((err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm)) < 0) { return err; } rme32->spdif_pcm->private_data = rme32; rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm; strcpy(rme32->spdif_pcm->name, "Digi32 IEC958"); if (rme32->fullduplex_mode) { snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme32_playback_spdif_fd_ops); snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme32_capture_spdif_fd_ops); snd_pcm_lib_preallocate_pages_for_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS, snd_dma_continuous_data(GFP_KERNEL), 0, RME32_MID_BUFFER_SIZE); rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; } else { snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme32_playback_spdif_ops); snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme32_capture_spdif_ops); rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; } /* set up ALSA pcm device for ADAT */ if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) || (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) { /* ADAT is not available on DIGI32 and DIGI32 Pro */ rme32->adat_pcm = NULL; } else { if ((err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1, 1, 1, &rme32->adat_pcm)) < 0) { return err; } rme32->adat_pcm->private_data = rme32; rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm; strcpy(rme32->adat_pcm->name, "Digi32 ADAT"); if (rme32->fullduplex_mode) { snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme32_playback_adat_fd_ops); snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme32_capture_adat_fd_ops); snd_pcm_lib_preallocate_pages_for_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS, snd_dma_continuous_data(GFP_KERNEL), 0, RME32_MID_BUFFER_SIZE); rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; } else { snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme32_playback_adat_ops); snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme32_capture_adat_ops); rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; } } rme32->playback_periodsize = 0; rme32->capture_periodsize = 0; /* make sure playback/capture is stopped, if by some reason active */ snd_rme32_pcm_stop(rme32, 0); /* reset DAC */ snd_rme32_reset_dac(rme32); /* reset buffer pointer */ writel(0, rme32->iobase + RME32_IO_RESET_POS); /* set default values in registers */ rme32->wcreg = RME32_WCR_SEL | /* normal playback */ RME32_WCR_INP_0 | /* input select */ RME32_WCR_MUTE; /* muting on */ writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); /* init switch interface */ if ((err = snd_rme32_create_switches(rme32->card, rme32)) < 0) { return err; } /* init proc interface */ snd_rme32_proc_init(rme32); rme32->capture_substream = NULL; rme32->playback_substream = NULL; return 0; } /* * proc interface */ static void snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer) { int n; struct rme32 *rme32 = (struct rme32 *) entry->private_data; rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); snd_iprintf(buffer, rme32->card->longname); snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1); snd_iprintf(buffer, "\nGeneral settings\n"); if (rme32->fullduplex_mode) snd_iprintf(buffer, " Full-duplex mode\n"); else snd_iprintf(buffer, " Half-duplex mode\n"); if (RME32_PRO_WITH_8414(rme32)) { snd_iprintf(buffer, " receiver: CS8414\n"); } else { snd_iprintf(buffer, " receiver: CS8412\n"); } if (rme32->wcreg & RME32_WCR_MODE24) { snd_iprintf(buffer, " format: 24 bit"); } else { snd_iprintf(buffer, " format: 16 bit"); } if (rme32->wcreg & RME32_WCR_MONO) { snd_iprintf(buffer, ", Mono\n"); } else { snd_iprintf(buffer, ", Stereo\n"); } snd_iprintf(buffer, "\nInput settings\n"); switch (snd_rme32_getinputtype(rme32)) { case RME32_INPUT_OPTICAL: snd_iprintf(buffer, " input: optical"); break; case RME32_INPUT_COAXIAL: snd_iprintf(buffer, " input: coaxial"); break; case RME32_INPUT_INTERNAL: snd_iprintf(buffer, " input: internal"); break; case RME32_INPUT_XLR: snd_iprintf(buffer, " input: XLR"); break; } if (snd_rme32_capture_getrate(rme32, &n) < 0) { snd_iprintf(buffer, "\n sample rate: no valid signal\n"); } else { if (n) { snd_iprintf(buffer, " (8 channels)\n"); } else { snd_iprintf(buffer, " (2 channels)\n"); } snd_iprintf(buffer, " sample rate: %d Hz\n", snd_rme32_capture_getrate(rme32, &n)); } snd_iprintf(buffer, "\nOutput settings\n"); if (rme32->wcreg & RME32_WCR_SEL) { snd_iprintf(buffer, " output signal: normal playback"); } else { snd_iprintf(buffer, " output signal: same as input"); } if (rme32->wcreg & RME32_WCR_MUTE) { snd_iprintf(buffer, " (muted)\n"); } else { snd_iprintf(buffer, "\n"); } /* master output frequency */ if (! ((!(rme32->wcreg & RME32_WCR_FREQ_0)) && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) { snd_iprintf(buffer, " sample rate: %d Hz\n", snd_rme32_playback_getrate(rme32)); } if (rme32->rcreg & RME32_RCR_KMODE) { snd_iprintf(buffer, " sample clock source: AutoSync\n"); } else { snd_iprintf(buffer, " sample clock source: Internal\n"); } if (rme32->wcreg & RME32_WCR_PRO) { snd_iprintf(buffer, " format: AES/EBU (professional)\n"); } else { snd_iprintf(buffer, " format: IEC958 (consumer)\n"); } if (rme32->wcreg & RME32_WCR_EMP) { snd_iprintf(buffer, " emphasis: on\n"); } else { snd_iprintf(buffer, " emphasis: off\n"); } } static void __devinit snd_rme32_proc_init(struct rme32 * rme32) { struct snd_info_entry *entry; if (! snd_card_proc_new(rme32->card, "rme32", &entry)) snd_info_set_text_ops(entry, rme32, snd_rme32_proc_read); } /* * control interface */ #define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info static int snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); spin_lock_irq(&rme32->lock); ucontrol->value.integer.value[0] = rme32->wcreg & RME32_WCR_SEL ? 0 : 1; spin_unlock_irq(&rme32->lock); return 0; } static int snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL; spin_lock_irq(&rme32->lock); val = (rme32->wcreg & ~RME32_WCR_SEL) | val; change = val != rme32->wcreg; if (ucontrol->value.integer.value[0]) val &= ~RME32_WCR_MUTE; else val |= RME32_WCR_MUTE; rme32->wcreg = val; writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER); spin_unlock_irq(&rme32->lock); return change; } static int snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); static char *texts[4] = { "Optical", "Coaxial", "Internal", "XLR" }; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; switch (rme32->pci->device) { case PCI_DEVICE_ID_RME_DIGI32: case PCI_DEVICE_ID_RME_DIGI32_8: uinfo->value.enumerated.items = 3; break; case PCI_DEVICE_ID_RME_DIGI32_PRO: uinfo->value.enumerated.items = 4; break; default: snd_BUG(); break; } if (uinfo->value.enumerated.item > uinfo->value.enumerated.items - 1) { uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1; } strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); unsigned int items = 3; spin_lock_irq(&rme32->lock); ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32); switch (rme32->pci->device) { case PCI_DEVICE_ID_RME_DIGI32: case PCI_DEVICE_ID_RME_DIGI32_8: items = 3; break; case PCI_DEVICE_ID_RME_DIGI32_PRO: items = 4; break; default: snd_BUG(); break; } if (ucontrol->value.enumerated.item[0] >= items) { ucontrol->value.enumerated.item[0] = items - 1; } spin_unlock_irq(&rme32->lock); return 0; } static int snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); unsigned int val; int change, items = 3; switch (rme32->pci->device) { case PCI_DEVICE_ID_RME_DIGI32: case PCI_DEVICE_ID_RME_DIGI32_8: items = 3; break; case PCI_DEVICE_ID_RME_DIGI32_PRO: items = 4; break; default: snd_BUG(); break; } val = ucontrol->value.enumerated.item[0] % items; spin_lock_irq(&rme32->lock); change = val != (unsigned int)snd_rme32_getinputtype(rme32); snd_rme32_setinputtype(rme32, val); spin_unlock_irq(&rme32->lock); return change; } static int snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static char *texts[4] = { "AutoSync", "Internal 32.0kHz", "Internal 44.1kHz", "Internal 48.0kHz" }; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = 4; if (uinfo->value.enumerated.item > 3) { uinfo->value.enumerated.item = 3; } strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); spin_lock_irq(&rme32->lock); ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32); spin_unlock_irq(&rme32->lock); return 0; } static int snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ucontrol->value.enumerated.item[0] % 3; spin_lock_irq(&rme32->lock); change = val != (unsigned int)snd_rme32_getclockmode(rme32); snd_rme32_setclockmode(rme32, val); spin_unlock_irq(&rme32->lock); return change; } static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes) { u32 val = 0; val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0; if (val & RME32_WCR_PRO) val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0; else val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0; return val; } static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val) { aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0); if (val & RME32_WCR_PRO) aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0; else aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0; } static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); snd_rme32_convert_to_aes(&ucontrol->value.iec958, rme32->wcreg_spdif); return 0; } static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); int change; u32 val; val = snd_rme32_convert_from_aes(&ucontrol->value.iec958); spin_lock_irq(&rme32->lock); change = val != rme32->wcreg_spdif; rme32->wcreg_spdif = val; spin_unlock_irq(&rme32->lock); return change; } static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value * ucontrol) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); snd_rme32_convert_to_aes(&ucontrol->value.iec958, rme32->wcreg_spdif_stream); return 0; } static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value * ucontrol) { struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); int change; u32 val; val = snd_rme32_convert_from_aes(&ucontrol->value.iec958); spin_lock_irq(&rme32->lock); change = val != rme32->wcreg_spdif_stream; rme32->wcreg_spdif_stream = val; rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP); rme32->wcreg |= val; writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); spin_unlock_irq(&rme32->lock); return change; } static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value * ucontrol) { ucontrol->value.iec958.status[0] = kcontrol->private_value; return 0; } static struct snd_kcontrol_new snd_rme32_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .info = snd_rme32_control_spdif_info, .get = snd_rme32_control_spdif_get, .put = snd_rme32_control_spdif_put }, { .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM), .info = snd_rme32_control_spdif_stream_info, .get = snd_rme32_control_spdif_stream_get, .put = snd_rme32_control_spdif_stream_put }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK), .info = snd_rme32_control_spdif_mask_info, .get = snd_rme32_control_spdif_mask_get, .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK), .info = snd_rme32_control_spdif_mask_info, .get = snd_rme32_control_spdif_mask_get, .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input Connector", .info = snd_rme32_info_inputtype_control, .get = snd_rme32_get_inputtype_control, .put = snd_rme32_put_inputtype_control }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Loopback Input", .info = snd_rme32_info_loopback_control, .get = snd_rme32_get_loopback_control, .put = snd_rme32_put_loopback_control }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Sample Clock Source", .info = snd_rme32_info_clockmode_control, .get = snd_rme32_get_clockmode_control, .put = snd_rme32_put_clockmode_control } }; static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32) { int idx, err; struct snd_kcontrol *kctl; for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) { if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32))) < 0) return err; if (idx == 1) /* IEC958 (S/PDIF) Stream */ rme32->spdif_ctl = kctl; } return 0; } /* * Card initialisation */ static void snd_rme32_card_free(struct snd_card *card) { snd_rme32_free(card->private_data); } static int __devinit snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct rme32 *rme32; struct snd_card *card; int err; if (dev >= SNDRV_CARDS) { return -ENODEV; } if (!enable[dev]) { dev++; return -ENOENT; } err = snd_card_create(index[dev], id[dev], THIS_MODULE, sizeof(struct rme32), &card); if (err < 0) return err; card->private_free = snd_rme32_card_free; rme32 = (struct rme32 *) card->private_data; rme32->card = card; rme32->pci = pci; snd_card_set_dev(card, &pci->dev); if (fullduplex[dev]) rme32->fullduplex_mode = 1; if ((err = snd_rme32_create(rme32)) < 0) { snd_card_free(card); return err; } strcpy(card->driver, "Digi32"); switch (rme32->pci->device) { case PCI_DEVICE_ID_RME_DIGI32: strcpy(card->shortname, "RME Digi32"); break; case PCI_DEVICE_ID_RME_DIGI32_8: strcpy(card->shortname, "RME Digi32/8"); break; case PCI_DEVICE_ID_RME_DIGI32_PRO: strcpy(card->shortname, "RME Digi32 PRO"); break; } sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d", card->shortname, rme32->rev, rme32->port, rme32->irq); if ((err = snd_card_register(card)) < 0) { snd_card_free(card); return err; } pci_set_drvdata(pci, card); dev++; return 0; } static void __devexit snd_rme32_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } static struct pci_driver driver = { .name = "RME Digi32", .id_table = snd_rme32_ids, .probe = snd_rme32_probe, .remove = __devexit_p(snd_rme32_remove), }; static int __init alsa_card_rme32_init(void) { return pci_register_driver(&driver); } static void __exit alsa_card_rme32_exit(void) { pci_unregister_driver(&driver); } module_init(alsa_card_rme32_init) module_exit(alsa_card_rme32_exit)