- 根目录:
- drivers
- gpu
- drm
- i915
- i915_gem.c
C++程序
|
4155行
|
103.94 KB
/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/pci.h>
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
bool write);
static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
uint64_t offset,
uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
unsigned alignment,
bool map_and_fenceable);
static void i915_gem_clear_fence_reg(struct drm_device *dev,
struct drm_i915_fence_reg *reg);
static int i915_gem_phys_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
struct shrink_control *sc);
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
size_t size)
{
dev_priv->mm.object_count++;
dev_priv->mm.object_memory += size;
}
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
size_t size)
{
dev_priv->mm.object_count--;
dev_priv->mm.object_memory -= size;
}
static int
i915_gem_wait_for_error(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct completion *x = &dev_priv->error_completion;
unsigned long flags;
int ret;
if (!atomic_read(&dev_priv->mm.wedged))
return 0;
ret = wait_for_completion_interruptible(x);
if (ret)
return ret;
if (atomic_read(&dev_priv->mm.wedged)) {
/* GPU is hung, bump the completion count to account for
* the token we just consumed so that we never hit zero and
* end up waiting upon a subsequent completion event that
* will never happen.
*/
spin_lock_irqsave(&x->wait.lock, flags);
x->done++;
spin_unlock_irqrestore(&x->wait.lock, flags);
}
return 0;
}
int i915_mutex_lock_interruptible(struct drm_device *dev)
{
int ret;
ret = i915_gem_wait_for_error(dev);
if (ret)
return ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
WARN_ON(i915_verify_lists(dev));
return 0;
}
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
{
return obj->gtt_space && !obj->active && obj->pin_count == 0;
}
void i915_gem_do_init(struct drm_device *dev,
unsigned long start,
unsigned long mappable_end,
unsigned long end)
{
drm_i915_private_t *dev_priv = dev->dev_private;
drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
dev_priv->mm.gtt_start = start;
dev_priv->mm.gtt_mappable_end = mappable_end;
dev_priv->mm.gtt_end = end;
dev_priv->mm.gtt_total = end - start;
dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
/* Take over this portion of the GTT */
intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
}
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_init *args = data;
if (args->gtt_start >= args->gtt_end ||
(args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
return -EINVAL;
mutex_lock(&dev->struct_mutex);
i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
mutex_unlock(&dev->struct_mutex);
return 0;
}
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_get_aperture *args = data;
struct drm_i915_gem_object *obj;
size_t pinned;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
pinned = 0;
mutex_lock(&dev->struct_mutex);
list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
pinned += obj->gtt_space->size;
mutex_unlock(&dev->struct_mutex);
args->aper_size = dev_priv->mm.gtt_total;
args->aper_available_size = args->aper_size -pinned;
return 0;
}
static int
i915_gem_create(struct drm_file *file,
struct drm_device *dev,
uint64_t size,
uint32_t *handle_p)
{
struct drm_i915_gem_object *obj;
int ret;
u32 handle;
size = roundup(size, PAGE_SIZE);
/* Allocate the new object */
obj = i915_gem_alloc_object(dev, size);
if (obj == NULL)
return -ENOMEM;
ret = drm_gem_handle_create(file, &obj->base, &handle);
if (ret) {
drm_gem_object_release(&obj->base);
i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
kfree(obj);
return ret;
}
/* drop reference from allocate - handle holds it now */
drm_gem_object_unreference(&obj->base);
trace_i915_gem_object_create(obj);
*handle_p = handle;
return 0;
}
int
i915_gem_dumb_create(struct drm_file *file,
struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
/* have to work out size/pitch and return them */
args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
args->size = args->pitch * args->height;
return i915_gem_create(file, dev,
args->size, &args->handle);
}
int i915_gem_dumb_destroy(struct drm_file *file,
struct drm_device *dev,
uint32_t handle)
{
return drm_gem_handle_delete(file, handle);
}
/**
* Creates a new mm object and returns a handle to it.
*/
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_create *args = data;
return i915_gem_create(file, dev,
args->size, &args->handle);
}
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
obj->tiling_mode != I915_TILING_NONE;
}
static inline void
slow_shmem_copy(struct page *dst_page,
int dst_offset,
struct page *src_page,
int src_offset,
int length)
{
char *dst_vaddr, *src_vaddr;
dst_vaddr = kmap(dst_page);
src_vaddr = kmap(src_page);
memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
kunmap(src_page);
kunmap(dst_page);
}
static inline void
slow_shmem_bit17_copy(struct page *gpu_page,
int gpu_offset,
struct page *cpu_page,
int cpu_offset,
int length,
int is_read)
{
char *gpu_vaddr, *cpu_vaddr;
/* Use the unswizzled path if this page isn't affected. */
if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
if (is_read)
return slow_shmem_copy(cpu_page, cpu_offset,
gpu_page, gpu_offset, length);
else
return slow_shmem_copy(gpu_page, gpu_offset,
cpu_page, cpu_offset, length);
}
gpu_vaddr = kmap(gpu_page);
cpu_vaddr = kmap(cpu_page);
/* Copy the data, XORing A6 with A17 (1). The user already knows he's
* XORing with the other bits (A9 for Y, A9 and A10 for X)
*/
while (length > 0) {
int cacheline_end = ALIGN(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
if (is_read) {
memcpy(cpu_vaddr + cpu_offset,
gpu_vaddr + swizzled_gpu_offset,
this_length);
} else {
memcpy(gpu_vaddr + swizzled_gpu_offset,
cpu_vaddr + cpu_offset,
this_length);
}
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
kunmap(cpu_page);
kunmap(gpu_page);
}
/**
* This is the fast shmem pread path, which attempts to copy_from_user directly
* from the backing pages of the object to the user's address space. On a
* fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
*/
static int
i915_gem_shmem_pread_fast(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pread *args,
struct drm_file *file)
{
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
ssize_t remain;
loff_t offset;
char __user *user_data;
int page_offset, page_length;
user_data = (char __user *) (uintptr_t) args->data_ptr;
remain = args->size;
offset = args->offset;
while (remain > 0) {
struct page *page;
char *vaddr;
int ret;
/* Operation in this page
*
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_offset = offset_in_page(offset);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
if (IS_ERR(page))
return PTR_ERR(page);
vaddr = kmap_atomic(page);
ret = __copy_to_user_inatomic(user_data,
vaddr + page_offset,
page_length);
kunmap_atomic(vaddr);
mark_page_accessed(page);
page_cache_release(page);
if (ret)
return -EFAULT;
remain -= page_length;
user_data += page_length;
offset += page_length;
}
return 0;
}
/**
* This is the fallback shmem pread path, which allocates temporary storage
* in kernel space to copy_to_user into outside of the struct_mutex, so we
* can copy out of the object's backing pages while holding the struct mutex
* and not take page faults.
*/
static int
i915_gem_shmem_pread_slow(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pread *args,
struct drm_file *file)
{
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
struct mm_struct *mm = current->mm;
struct page **user_pages;
ssize_t remain;
loff_t offset, pinned_pages, i;
loff_t first_data_page, last_data_page, num_pages;
int shmem_page_offset;
int data_page_index, data_page_offset;
int page_length;
int ret;
uint64_t data_ptr = args->data_ptr;
int do_bit17_swizzling;
remain = args->size;
/* Pin the user pages containing the data. We can't fault while
* holding the struct mutex, yet we want to hold it while
* dereferencing the user data.
*/
first_data_page = data_ptr / PAGE_SIZE;
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
num_pages = last_data_page - first_data_page + 1;
user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
if (user_pages == NULL)
return -ENOMEM;
mutex_unlock(&dev->struct_mutex);
down_read(&mm->mmap_sem);
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
num_pages, 1, 0, user_pages, NULL);
up_read(&mm->mmap_sem);
mutex_lock(&dev->struct_mutex);
if (pinned_pages < num_pages) {
ret = -EFAULT;
goto out;
}
ret = i915_gem_object_set_cpu_read_domain_range(obj,
args->offset,
args->size);
if (ret)
goto out;
do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
offset = args->offset;
while (remain > 0) {
struct page *page;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* data_page_index = page number in get_user_pages return
* data_page_offset = offset with data_page_index page.
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
data_page_offset = offset_in_page(data_ptr);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
if ((data_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - data_page_offset;
page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
if (IS_ERR(page)) {
ret = PTR_ERR(page);
goto out;
}
if (do_bit17_swizzling) {
slow_shmem_bit17_copy(page,
shmem_page_offset,
user_pages[data_page_index],
data_page_offset,
page_length,
1);
} else {
slow_shmem_copy(user_pages[data_page_index],
data_page_offset,
page,
shmem_page_offset,
page_length);
}
mark_page_accessed(page);
page_cache_release(page);
remain -= page_length;
data_ptr += page_length;
offset += page_length;
}
out:
for (i = 0; i < pinned_pages; i++) {
SetPageDirty(user_pages[i]);
mark_page_accessed(user_pages[i]);
page_cache_release(user_pages[i]);
}
drm_free_large(user_pages);
return ret;
}
/**
* Reads data from the object referenced by handle.
*
* On error, the contents of *data are undefined.
*/
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pread *args = data;
struct drm_i915_gem_object *obj;
int ret = 0;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_WRITE,
(char __user *)(uintptr_t)args->data_ptr,
args->size))
return -EFAULT;
ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
args->size);
if (ret)
return -EFAULT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Bounds check source. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto out;
}
trace_i915_gem_object_pread(obj, args->offset, args->size);
ret = i915_gem_object_set_cpu_read_domain_range(obj,
args->offset,
args->size);
if (ret)
goto out;
ret = -EFAULT;
if (!i915_gem_object_needs_bit17_swizzle(obj))
ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
if (ret == -EFAULT)
ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/* This is the fast write path which cannot handle
* page faults in the source data
*/
static inline int
fast_user_write(struct io_mapping *mapping,
loff_t page_base, int page_offset,
char __user *user_data,
int length)
{
char *vaddr_atomic;
unsigned long unwritten;
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
user_data, length);
io_mapping_unmap_atomic(vaddr_atomic);
return unwritten;
}
/* Here's the write path which can sleep for
* page faults
*/
static inline void
slow_kernel_write(struct io_mapping *mapping,
loff_t gtt_base, int gtt_offset,
struct page *user_page, int user_offset,
int length)
{
char __iomem *dst_vaddr;
char *src_vaddr;
dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
src_vaddr = kmap(user_page);
memcpy_toio(dst_vaddr + gtt_offset,
src_vaddr + user_offset,
length);
kunmap(user_page);
io_mapping_unmap(dst_vaddr);
}
/**
* This is the fast pwrite path, where we copy the data directly from the
* user into the GTT, uncached.
*/
static int
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
drm_i915_private_t *dev_priv = dev->dev_private;
ssize_t remain;
loff_t offset, page_base;
char __user *user_data;
int page_offset, page_length;
user_data = (char __user *) (uintptr_t) args->data_ptr;
remain = args->size;
offset = obj->gtt_offset + args->offset;
while (remain > 0) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_base = offset & PAGE_MASK;
page_offset = offset_in_page(offset);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. Return the error and we'll
* retry in the slow path.
*/
if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
page_offset, user_data, page_length))
return -EFAULT;
remain -= page_length;
user_data += page_length;
offset += page_length;
}
return 0;
}
/**
* This is the fallback GTT pwrite path, which uses get_user_pages to pin
* the memory and maps it using kmap_atomic for copying.
*
* This code resulted in x11perf -rgb10text consuming about 10% more CPU
* than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
*/
static int
i915_gem_gtt_pwrite_slow(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
drm_i915_private_t *dev_priv = dev->dev_private;
ssize_t remain;
loff_t gtt_page_base, offset;
loff_t first_data_page, last_data_page, num_pages;
loff_t pinned_pages, i;
struct page **user_pages;
struct mm_struct *mm = current->mm;
int gtt_page_offset, data_page_offset, data_page_index, page_length;
int ret;
uint64_t data_ptr = args->data_ptr;
remain = args->size;
/* Pin the user pages containing the data. We can't fault while
* holding the struct mutex, and all of the pwrite implementations
* want to hold it while dereferencing the user data.
*/
first_data_page = data_ptr / PAGE_SIZE;
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
num_pages = last_data_page - first_data_page + 1;
user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
if (user_pages == NULL)
return -ENOMEM;
mutex_unlock(&dev->struct_mutex);
down_read(&mm->mmap_sem);
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
num_pages, 0, 0, user_pages, NULL);
up_read(&mm->mmap_sem);
mutex_lock(&dev->struct_mutex);
if (pinned_pages < num_pages) {
ret = -EFAULT;
goto out_unpin_pages;
}
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
goto out_unpin_pages;
ret = i915_gem_object_put_fence(obj);
if (ret)
goto out_unpin_pages;
offset = obj->gtt_offset + args->offset;
while (remain > 0) {
/* Operation in this page
*
* gtt_page_base = page offset within aperture
* gtt_page_offset = offset within page in aperture
* data_page_index = page number in get_user_pages return
* data_page_offset = offset with data_page_index page.
* page_length = bytes to copy for this page
*/
gtt_page_base = offset & PAGE_MASK;
gtt_page_offset = offset_in_page(offset);
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
data_page_offset = offset_in_page(data_ptr);
page_length = remain;
if ((gtt_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - gtt_page_offset;
if ((data_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - data_page_offset;
slow_kernel_write(dev_priv->mm.gtt_mapping,
gtt_page_base, gtt_page_offset,
user_pages[data_page_index],
data_page_offset,
page_length);
remain -= page_length;
offset += page_length;
data_ptr += page_length;
}
out_unpin_pages:
for (i = 0; i < pinned_pages; i++)
page_cache_release(user_pages[i]);
drm_free_large(user_pages);
return ret;
}
/**
* This is the fast shmem pwrite path, which attempts to directly
* copy_from_user into the kmapped pages backing the object.
*/
static int
i915_gem_shmem_pwrite_fast(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
ssize_t remain;
loff_t offset;
char __user *user_data;
int page_offset, page_length;
user_data = (char __user *) (uintptr_t) args->data_ptr;
remain = args->size;
offset = args->offset;
obj->dirty = 1;
while (remain > 0) {
struct page *page;
char *vaddr;
int ret;
/* Operation in this page
*
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_offset = offset_in_page(offset);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
if (IS_ERR(page))
return PTR_ERR(page);
vaddr = kmap_atomic(page, KM_USER0);
ret = __copy_from_user_inatomic(vaddr + page_offset,
user_data,
page_length);
kunmap_atomic(vaddr, KM_USER0);
set_page_dirty(page);
mark_page_accessed(page);
page_cache_release(page);
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. Return the error and we'll
* retry in the slow path.
*/
if (ret)
return -EFAULT;
remain -= page_length;
user_data += page_length;
offset += page_length;
}
return 0;
}
/**
* This is the fallback shmem pwrite path, which uses get_user_pages to pin
* the memory and maps it using kmap_atomic for copying.
*
* This avoids taking mmap_sem for faulting on the user's address while the
* struct_mutex is held.
*/
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
struct mm_struct *mm = current->mm;
struct page **user_pages;
ssize_t remain;
loff_t offset, pinned_pages, i;
loff_t first_data_page, last_data_page, num_pages;
int shmem_page_offset;
int data_page_index, data_page_offset;
int page_length;
int ret;
uint64_t data_ptr = args->data_ptr;
int do_bit17_swizzling;
remain = args->size;
/* Pin the user pages containing the data. We can't fault while
* holding the struct mutex, and all of the pwrite implementations
* want to hold it while dereferencing the user data.
*/
first_data_page = data_ptr / PAGE_SIZE;
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
num_pages = last_data_page - first_data_page + 1;
user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
if (user_pages == NULL)
return -ENOMEM;
mutex_unlock(&dev->struct_mutex);
down_read(&mm->mmap_sem);
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
num_pages, 0, 0, user_pages, NULL);
up_read(&mm->mmap_sem);
mutex_lock(&dev->struct_mutex);
if (pinned_pages < num_pages) {
ret = -EFAULT;
goto out;
}
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
if (ret)
goto out;
do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
offset = args->offset;
obj->dirty = 1;
while (remain > 0) {
struct page *page;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* data_page_index = page number in get_user_pages return
* data_page_offset = offset with data_page_index page.
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
data_page_offset = offset_in_page(data_ptr);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
if ((data_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - data_page_offset;
page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
if (IS_ERR(page)) {
ret = PTR_ERR(page);
goto out;
}
if (do_bit17_swizzling) {
slow_shmem_bit17_copy(page,
shmem_page_offset,
user_pages[data_page_index],
data_page_offset,
page_length,
0);
} else {
slow_shmem_copy(page,
shmem_page_offset,
user_pages[data_page_index],
data_page_offset,
page_length);
}
set_page_dirty(page);
mark_page_accessed(page);
page_cache_release(page);
remain -= page_length;
data_ptr += page_length;
offset += page_length;
}
out:
for (i = 0; i < pinned_pages; i++)
page_cache_release(user_pages[i]);
drm_free_large(user_pages);
return ret;
}
/**
* Writes data to the object referenced by handle.
*
* On error, the contents of the buffer that were to be modified are undefined.
*/
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pwrite *args = data;
struct drm_i915_gem_object *obj;
int ret;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_READ,
(char __user *)(uintptr_t)args->data_ptr,
args->size))
return -EFAULT;
ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
args->size);
if (ret)
return -EFAULT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Bounds check destination. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto out;
}
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
/* We can only do the GTT pwrite on untiled buffers, as otherwise
* it would end up going through the fenced access, and we'll get
* different detiling behavior between reading and writing.
* pread/pwrite currently are reading and writing from the CPU
* perspective, requiring manual detiling by the client.
*/
if (obj->phys_obj)
ret = i915_gem_phys_pwrite(dev, obj, args, file);
else if (obj->gtt_space &&
obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
ret = i915_gem_object_pin(obj, 0, true);
if (ret)
goto out;
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
goto out_unpin;
ret = i915_gem_object_put_fence(obj);
if (ret)
goto out_unpin;
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
if (ret == -EFAULT)
ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
out_unpin:
i915_gem_object_unpin(obj);
} else {
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
if (ret)
goto out;
ret = -EFAULT;
if (!i915_gem_object_needs_bit17_swizzle(obj))
ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
if (ret == -EFAULT)
ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
}
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Called when user space prepares to use an object with the CPU, either
* through the mmap ioctl's mapping or a GTT mapping.
*/
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_set_domain *args = data;
struct drm_i915_gem_object *obj;
uint32_t read_domains = args->read_domains;
uint32_t write_domain = args->write_domain;
int ret;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
/* Only handle setting domains to types used by the CPU. */
if (write_domain & I915_GEM_GPU_DOMAINS)
return -EINVAL;
if (read_domains & I915_GEM_GPU_DOMAINS)
return -EINVAL;
/* Having something in the write domain implies it's in the read
* domain, and only that read domain. Enforce that in the request.
*/
if (write_domain != 0 && read_domains != write_domain)
return -EINVAL;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (read_domains & I915_GEM_DOMAIN_GTT) {
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
/* Silently promote "you're not bound, there was nothing to do"
* to success, since the client was just asking us to
* make sure everything was done.
*/
if (ret == -EINVAL)
ret = 0;
} else {
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
}
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Called when user space has done writes to this buffer
*/
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_sw_finish *args = data;
struct drm_i915_gem_object *obj;
int ret = 0;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Pinned buffers may be scanout, so flush the cache */
if (obj->pin_count)
i915_gem_object_flush_cpu_write_domain(obj);
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Maps the contents of an object, returning the address it is mapped
* into.
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*/
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_mmap *args = data;
struct drm_gem_object *obj;
unsigned long addr;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
obj = drm_gem_object_lookup(dev, file, args->handle);
if (obj == NULL)
return -ENOENT;
if (obj->size > dev_priv->mm.gtt_mappable_end) {
drm_gem_object_unreference_unlocked(obj);
return -E2BIG;
}
down_write(¤t->mm->mmap_sem);
addr = do_mmap(obj->filp, 0, args->size,
PROT_READ | PROT_WRITE, MAP_SHARED,
args->offset);
up_write(¤t->mm->mmap_sem);
drm_gem_object_unreference_unlocked(obj);
if (IS_ERR((void *)addr))
return addr;
args->addr_ptr = (uint64_t) addr;
return 0;
}
/**
* i915_gem_fault - fault a page into the GTT
* vma: VMA in question
* vmf: fault info
*
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
* from userspace. The fault handler takes care of binding the object to
* the GTT (if needed), allocating and programming a fence register (again,
* only if needed based on whether the old reg is still valid or the object
* is tiled) and inserting a new PTE into the faulting process.
*
* Note that the faulting process may involve evicting existing objects
* from the GTT and/or fence registers to make room. So performance may
* suffer if the GTT working set is large or there are few fence registers
* left.
*/
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
pgoff_t page_offset;
unsigned long pfn;
int ret = 0;
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
PAGE_SHIFT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto out;
trace_i915_gem_object_fault(obj, page_offset, true, write);
/* Now bind it into the GTT if needed */
if (!obj->map_and_fenceable) {
ret = i915_gem_object_unbind(obj);
if (ret)
goto unlock;
}
if (!obj->gtt_space) {
ret = i915_gem_object_bind_to_gtt(obj, 0, true);
if (ret)
goto unlock;
ret = i915_gem_object_set_to_gtt_domain(obj, write);
if (ret)
goto unlock;
}
if (obj->tiling_mode == I915_TILING_NONE)
ret = i915_gem_object_put_fence(obj);
else
ret = i915_gem_object_get_fence(obj, NULL);
if (ret)
goto unlock;
if (i915_gem_object_is_inactive(obj))
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
obj->fault_mappable = true;
pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
page_offset;
/* Finally, remap it using the new GTT offset */
ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
unlock:
mutex_unlock(&dev->struct_mutex);
out:
switch (ret) {
case -EIO:
case -EAGAIN:
/* Give the error handler a chance to run and move the
* objects off the GPU active list. Next time we service the
* fault, we should be able to transition the page into the
* GTT without touching the GPU (and so avoid further
* EIO/EGAIN). If the GPU is wedged, then there is no issue
* with coherency, just lost writes.
*/
set_need_resched();
case 0:
case -ERESTARTSYS:
case -EINTR:
case -EBUSY:
/*
* EBUSY is ok: this just means that another thread
* already did the job.
*/
return VM_FAULT_NOPAGE;
case -ENOMEM:
return VM_FAULT_OOM;
default:
return VM_FAULT_SIGBUS;
}
}
/**
* i915_gem_create_mmap_offset - create a fake mmap offset for an object
* @obj: obj in question
*
* GEM memory mapping works by handing back to userspace a fake mmap offset
* it can use in a subsequent mmap(2) call. The DRM core code then looks
* up the object based on the offset and sets up the various memory mapping
* structures.
*
* This routine allocates and attaches a fake offset for @obj.
*/
static int
i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_gem_mm *mm = dev->mm_private;
struct drm_map_list *list;
struct drm_local_map *map;
int ret = 0;
/* Set the object up for mmap'ing */
list = &obj->base.map_list;
list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
if (!list->map)
return -ENOMEM;
map = list->map;
map->type = _DRM_GEM;
map->size = obj->base.size;
map->handle = obj;
/* Get a DRM GEM mmap offset allocated... */
list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
obj->base.size / PAGE_SIZE,
0, 0);
if (!list->file_offset_node) {
DRM_ERROR("failed to allocate offset for bo %d\n",
obj->base.name);
ret = -ENOSPC;
goto out_free_list;
}
list->file_offset_node = drm_mm_get_block(list->file_offset_node,
obj->base.size / PAGE_SIZE,
0);
if (!list->file_offset_node) {
ret = -ENOMEM;
goto out_free_list;
}
list->hash.key = list->file_offset_node->start;
ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
if (ret) {
DRM_ERROR("failed to add to map hash\n");
goto out_free_mm;
}
return 0;
out_free_mm:
drm_mm_put_block(list->file_offset_node);
out_free_list:
kfree(list->map);
list->map = NULL;
return ret;
}
/**
* i915_gem_release_mmap - remove physical page mappings
* @obj: obj in question
*
* Preserve the reservation of the mmapping with the DRM core code, but
* relinquish ownership of the pages back to the system.
*
* It is vital that we remove the page mapping if we have mapped a tiled
* object through the GTT and then lose the fence register due to
* resource pressure. Similarly if the object has been moved out of the
* aperture, than pages mapped into userspace must be revoked. Removing the
* mapping will then trigger a page fault on the next user access, allowing
* fixup by i915_gem_fault().
*/
void
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
{
if (!obj->fault_mappable)
return;
if (obj->base.dev->dev_mapping)
unmap_mapping_range(obj->base.dev->dev_mapping,
(loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
obj->base.size, 1);
obj->fault_mappable = false;
}
static void
i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_gem_mm *mm = dev->mm_private;
struct drm_map_list *list = &obj->base.map_list;
drm_ht_remove_item(&mm->offset_hash, &list->hash);
drm_mm_put_block(list->file_offset_node);
kfree(list->map);
list->map = NULL;
}
static uint32_t
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
{
uint32_t gtt_size;
if (INTEL_INFO(dev)->gen >= 4 ||
tiling_mode == I915_TILING_NONE)
return size;
/* Previous chips need a power-of-two fence region when tiling */
if (INTEL_INFO(dev)->gen == 3)
gtt_size = 1024*1024;
else
gtt_size = 512*1024;
while (gtt_size < size)
gtt_size <<= 1;
return gtt_size;
}
/**
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
* @obj: object to check
*
* Return the required GTT alignment for an object, taking into account
* potential fence register mapping.
*/
static uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev,
uint32_t size,
int tiling_mode)
{
/*
* Minimum alignment is 4k (GTT page size), but might be greater
* if a fence register is needed for the object.
*/
if (INTEL_INFO(dev)->gen >= 4 ||
tiling_mode == I915_TILING_NONE)
return 4096;
/*
* Previous chips need to be aligned to the size of the smallest
* fence register that can contain the object.
*/
return i915_gem_get_gtt_size(dev, size, tiling_mode);
}
/**
* i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
* unfenced object
* @dev: the device
* @size: size of the object
* @tiling_mode: tiling mode of the object
*
* Return the required GTT alignment for an object, only taking into account
* unfenced tiled surface requirements.
*/
uint32_t
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
uint32_t size,
int tiling_mode)
{
/*
* Minimum alignment is 4k (GTT page size) for sane hw.
*/
if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
tiling_mode == I915_TILING_NONE)
return 4096;
/* Previous hardware however needs to be aligned to a power-of-two
* tile height. The simplest method for determining this is to reuse
* the power-of-tile object size.
*/
return i915_gem_get_gtt_size(dev, size, tiling_mode);
}
int
i915_gem_mmap_gtt(struct drm_file *file,
struct drm_device *dev,
uint32_t handle,
uint64_t *offset)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
int ret;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
ret = -E2BIG;
goto out;
}
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to mmap a purgeable buffer\n");
ret = -EINVAL;
goto out;
}
if (!obj->base.map_list.map) {
ret = i915_gem_create_mmap_offset(obj);
if (ret)
goto out;
}
*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
* @dev: DRM device
* @data: GTT mapping ioctl data
* @file: GEM object info
*
* Simply returns the fake offset to userspace so it can mmap it.
* The mmap call will end up in drm_gem_mmap(), which will set things
* up so we can get faults in the handler above.
*
* The fault handler will take care of binding the object into the GTT
* (since it may have been evicted to make room for something), allocating
* a fence register, and mapping the appropriate aperture address into
* userspace.
*/
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap_gtt *args = data;
if (!(dev->driver->driver_features & DRIVER_GEM))
return -ENODEV;
return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}
static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
gfp_t gfpmask)
{
int page_count, i;
struct address_space *mapping;
struct inode *inode;
struct page *page;
/* Get the list of pages out of our struct file. They'll be pinned
* at this point until we release them.
*/
page_count = obj->base.size / PAGE_SIZE;
BUG_ON(obj->pages != NULL);
obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
if (obj->pages == NULL)
return -ENOMEM;
inode = obj->base.filp->f_path.dentry->d_inode;
mapping = inode->i_mapping;
gfpmask |= mapping_gfp_mask(mapping);
for (i = 0; i < page_count; i++) {
page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
if (IS_ERR(page))
goto err_pages;
obj->pages[i] = page;
}
if (obj->tiling_mode != I915_TILING_NONE)
i915_gem_object_do_bit_17_swizzle(obj);
return 0;
err_pages:
while (i--)
page_cache_release(obj->pages[i]);
drm_free_large(obj->pages);
obj->pages = NULL;
return PTR_ERR(page);
}
static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
{
int page_count = obj->base.size / PAGE_SIZE;
int i;
BUG_ON(obj->madv == __I915_MADV_PURGED);
if (obj->tiling_mode != I915_TILING_NONE)
i915_gem_object_save_bit_17_swizzle(obj);
if (obj->madv == I915_MADV_DONTNEED)
obj->dirty = 0;
for (i = 0; i < page_count; i++) {
if (obj->dirty)
set_page_dirty(obj->pages[i]);
if (obj->madv == I915_MADV_WILLNEED)
mark_page_accessed(obj->pages[i]);
page_cache_release(obj->pages[i]);
}
obj->dirty = 0;
drm_free_large(obj->pages);
obj->pages = NULL;
}
void
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *ring,
u32 seqno)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
BUG_ON(ring == NULL);
obj->ring = ring;
/* Add a reference if we're newly entering the active list. */
if (!obj->active) {
drm_gem_object_reference(&obj->base);
obj->active = 1;
}
/* Move from whatever list we were on to the tail of execution. */
list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
list_move_tail(&obj->ring_list, &ring->active_list);
obj->last_rendering_seqno = seqno;
if (obj->fenced_gpu_access) {
struct drm_i915_fence_reg *reg;
BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
obj->last_fenced_seqno = seqno;
obj->last_fenced_ring = ring;
reg = &dev_priv->fence_regs[obj->fence_reg];
list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
}
}
static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
list_del_init(&obj->ring_list);
obj->last_rendering_seqno = 0;
}
static void
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
BUG_ON(!obj->active);
list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
i915_gem_object_move_off_active(obj);
}
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (obj->pin_count != 0)
list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
else
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
BUG_ON(!list_empty(&obj->gpu_write_list));
BUG_ON(!obj->active);
obj->ring = NULL;
i915_gem_object_move_off_active(obj);
obj->fenced_gpu_access = false;
obj->active = 0;
obj->pending_gpu_write = false;
drm_gem_object_unreference(&obj->base);
WARN_ON(i915_verify_lists(dev));
}
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
{
struct inode *inode;
/* Our goal here is to return as much of the memory as
* is possible back to the system as we are called from OOM.
* To do this we must instruct the shmfs to drop all of its
* backing pages, *now*.
*/
inode = obj->base.filp->f_path.dentry->d_inode;
shmem_truncate_range(inode, 0, (loff_t)-1);
obj->madv = __I915_MADV_PURGED;
}
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
return obj->madv == I915_MADV_DONTNEED;
}
static void
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
uint32_t flush_domains)
{
struct drm_i915_gem_object *obj, *next;
list_for_each_entry_safe(obj, next,
&ring->gpu_write_list,
gpu_write_list) {
if (obj->base.write_domain & flush_domains) {
uint32_t old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
list_del_init(&obj->gpu_write_list);
i915_gem_object_move_to_active(obj, ring,
i915_gem_next_request_seqno(ring));
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
old_write_domain);
}
}
}
int
i915_add_request(struct intel_ring_buffer *ring,
struct drm_file *file,
struct drm_i915_gem_request *request)
{
drm_i915_private_t *dev_priv = ring->dev->dev_private;
uint32_t seqno;
int was_empty;
int ret;
BUG_ON(request == NULL);
ret = ring->add_request(ring, &seqno);
if (ret)
return ret;
trace_i915_gem_request_add(ring, seqno);
request->seqno = seqno;
request->ring = ring;
request->emitted_jiffies = jiffies;
was_empty = list_empty(&ring->request_list);
list_add_tail(&request->list, &ring->request_list);
if (file) {
struct drm_i915_file_private *file_priv = file->driver_priv;
spin_lock(&file_priv->mm.lock);
request->file_priv = file_priv;
list_add_tail(&request->client_list,
&file_priv->mm.request_list);
spin_unlock(&file_priv->mm.lock);
}
ring->outstanding_lazy_request = false;
if (!dev_priv->mm.suspended) {
mod_timer(&dev_priv->hangcheck_timer,
jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
if (was_empty)
queue_delayed_work(dev_priv->wq,
&dev_priv->mm.retire_work, HZ);
}
return 0;
}
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
struct drm_i915_file_private *file_priv = request->file_priv;
if (!file_priv)
return;
spin_lock(&file_priv->mm.lock);
if (request->file_priv) {
list_del(&request->client_list);
request->file_priv = NULL;
}
spin_unlock(&file_priv->mm.lock);
}
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
struct intel_ring_buffer *ring)
{
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
list_del(&request->list);
i915_gem_request_remove_from_client(request);
kfree(request);
}
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list);
obj->base.write_domain = 0;
list_del_init(&obj->gpu_write_list);
i915_gem_object_move_to_inactive(obj);
}
}
static void i915_gem_reset_fences(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < 16; i++) {
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
struct drm_i915_gem_object *obj = reg->obj;
if (!obj)
continue;
if (obj->tiling_mode)
i915_gem_release_mmap(obj);
reg->obj->fence_reg = I915_FENCE_REG_NONE;
reg->obj->fenced_gpu_access = false;
reg->obj->last_fenced_seqno = 0;
reg->obj->last_fenced_ring = NULL;
i915_gem_clear_fence_reg(dev, reg);
}
}
void i915_gem_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
int i;
for (i = 0; i < I915_NUM_RINGS; i++)
i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
/* Remove anything from the flushing lists. The GPU cache is likely
* to be lost on reset along with the data, so simply move the
* lost bo to the inactive list.
*/
while (!list_empty(&dev_priv->mm.flushing_list)) {
obj= list_first_entry(&dev_priv->mm.flushing_list,
struct drm_i915_gem_object,
mm_list);
obj->base.write_domain = 0;
list_del_init(&obj->gpu_write_list);
i915_gem_object_move_to_inactive(obj);
}
/* Move everything out of the GPU domains to ensure we do any
* necessary invalidation upon reuse.
*/
list_for_each_entry(obj,
&dev_priv->mm.inactive_list,
mm_list)
{
obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
}
/* The fence registers are invalidated so clear them out */
i915_gem_reset_fences(dev);
}
/**
* This function clears the request list as sequence numbers are passed.
*/
static void
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
{
uint32_t seqno;
int i;
if (list_empty(&ring->request_list))
return;
WARN_ON(i915_verify_lists(ring->dev));
seqno = ring->get_seqno(ring);
for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
if (seqno >= ring->sync_seqno[i])
ring->sync_seqno[i] = 0;
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
if (!i915_seqno_passed(seqno, request->seqno))
break;
trace_i915_gem_request_retire(ring, request->seqno);
list_del(&request->list);
i915_gem_request_remove_from_client(request);
kfree(request);
}
/* Move any buffers on the active list that are no longer referenced
* by the ringbuffer to the flushing/inactive lists as appropriate.
*/
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj;
obj= list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list);
if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
break;
if (obj->base.write_domain != 0)
i915_gem_object_move_to_flushing(obj);
else
i915_gem_object_move_to_inactive(obj);
}
if (unlikely(ring->trace_irq_seqno &&
i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
ring->irq_put(ring);
ring->trace_irq_seqno = 0;
}
WARN_ON(i915_verify_lists(ring->dev));
}
void
i915_gem_retire_requests(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i;
if (!list_empty(&dev_priv->mm.deferred_free_list)) {
struct drm_i915_gem_object *obj, *next;
/* We must be careful that during unbind() we do not
* accidentally infinitely recurse into retire requests.
* Currently:
* retire -> free -> unbind -> wait -> retire_ring
*/
list_for_each_entry_safe(obj, next,
&dev_priv->mm.deferred_free_list,
mm_list)
i915_gem_free_object_tail(obj);
}
for (i = 0; i < I915_NUM_RINGS; i++)
i915_gem_retire_requests_ring(&dev_priv->ring[i]);
}
static void
i915_gem_retire_work_handler(struct work_struct *work)
{
drm_i915_private_t *dev_priv;
struct drm_device *dev;
bool idle;
int i;
dev_priv = container_of(work, drm_i915_private_t,
mm.retire_work.work);
dev = dev_priv->dev;
/* Come back later if the device is busy... */
if (!mutex_trylock(&dev->struct_mutex)) {
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
return;
}
i915_gem_retire_requests(dev);
/* Send a periodic flush down the ring so we don't hold onto GEM
* objects indefinitely.
*/
idle = true;
for (i = 0; i < I915_NUM_RINGS; i++) {
struct intel_ring_buffer *ring = &dev_priv->ring[i];
if (!list_empty(&ring->gpu_write_list)) {
struct drm_i915_gem_request *request;
int ret;
ret = i915_gem_flush_ring(ring,
0, I915_GEM_GPU_DOMAINS);
request = kzalloc(sizeof(*request), GFP_KERNEL);
if (ret || request == NULL ||
i915_add_request(ring, NULL, request))
kfree(request);
}
idle &= list_empty(&ring->request_list);
}
if (!dev_priv->mm.suspended && !idle)
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
mutex_unlock(&dev->struct_mutex);
}
/**
* Waits for a sequence number to be signaled, and cleans up the
* request and object lists appropriately for that event.
*/
int
i915_wait_request(struct intel_ring_buffer *ring,
uint32_t seqno)
{
drm_i915_private_t *dev_priv = ring->dev->dev_private;
u32 ier;
int ret = 0;
BUG_ON(seqno == 0);
if (atomic_read(&dev_priv->mm.wedged)) {
struct completion *x = &dev_priv->error_completion;
bool recovery_complete;
unsigned long flags;
/* Give the error handler a chance to run. */
spin_lock_irqsave(&x->wait.lock, flags);
recovery_complete = x->done > 0;
spin_unlock_irqrestore(&x->wait.lock, flags);
return recovery_complete ? -EIO : -EAGAIN;
}
if (seqno == ring->outstanding_lazy_request) {
struct drm_i915_gem_request *request;
request = kzalloc(sizeof(*request), GFP_KERNEL);
if (request == NULL)
return -ENOMEM;
ret = i915_add_request(ring, NULL, request);
if (ret) {
kfree(request);
return ret;
}
seqno = request->seqno;
}
if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
if (HAS_PCH_SPLIT(ring->dev))
ier = I915_READ(DEIER) | I915_READ(GTIER);
else
ier = I915_READ(IER);
if (!ier) {
DRM_ERROR("something (likely vbetool) disabled "
"interrupts, re-enabling\n");
ring->dev->driver->irq_preinstall(ring->dev);
ring->dev->driver->irq_postinstall(ring->dev);
}
trace_i915_gem_request_wait_begin(ring, seqno);
ring->waiting_seqno = seqno;
if (ring->irq_get(ring)) {
if (dev_priv->mm.interruptible)
ret = wait_event_interruptible(ring->irq_queue,
i915_seqno_passed(ring->get_seqno(ring), seqno)
|| atomic_read(&dev_priv->mm.wedged));
else
wait_event(ring->irq_queue,
i915_seqno_passed(ring->get_seqno(ring), seqno)
|| atomic_read(&dev_priv->mm.wedged));
ring->irq_put(ring);
} else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
seqno) ||
atomic_read(&dev_priv->mm.wedged), 3000))
ret = -EBUSY;
ring->waiting_seqno = 0;
trace_i915_gem_request_wait_end(ring, seqno);
}
if (atomic_read(&dev_priv->mm.wedged))
ret = -EAGAIN;
if (ret && ret != -ERESTARTSYS)
DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
__func__, ret, seqno, ring->get_seqno(ring),
dev_priv->next_seqno);
/* Directly dispatch request retiring. While we have the work queue
* to handle this, the waiter on a request often wants an associated
* buffer to have made it to the inactive list, and we would need
* a separate wait queue to handle that.
*/
if (ret == 0)
i915_gem_retire_requests_ring(ring);
return ret;
}
/**
* Ensures that all rendering to the object has completed and the object is
* safe to unbind from the GTT or access from the CPU.
*/
int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
{
int ret;
/* This function only exists to support waiting for existing rendering,
* not for emitting required flushes.
*/
BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
/* If there is rendering queued on the buffer being evicted, wait for
* it.
*/
if (obj->active) {
ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
if (ret)
return ret;
}
return 0;
}
/**
* Unbinds an object from the GTT aperture.
*/
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
int ret = 0;
if (obj->gtt_space == NULL)
return 0;
if (obj->pin_count != 0) {
DRM_ERROR("Attempting to unbind pinned buffer\n");
return -EINVAL;
}
/* blow away mappings if mapped through GTT */
i915_gem_release_mmap(obj);
/* Move the object to the CPU domain to ensure that
* any possible CPU writes while it's not in the GTT
* are flushed when we go to remap it. This will
* also ensure that all pending GPU writes are finished
* before we unbind.
*/
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
if (ret == -ERESTARTSYS)
return ret;
/* Continue on if we fail due to EIO, the GPU is hung so we
* should be safe and we need to cleanup or else we might
* cause memory corruption through use-after-free.
*/
if (ret) {
i915_gem_clflush_object(obj);
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
/* release the fence reg _after_ flushing */
ret = i915_gem_object_put_fence(obj);
if (ret == -ERESTARTSYS)
return ret;
trace_i915_gem_object_unbind(obj);
i915_gem_gtt_unbind_object(obj);
i915_gem_object_put_pages_gtt(obj);
list_del_init(&obj->gtt_list);
list_del_init(&obj->mm_list);
/* Avoid an unnecessary call to unbind on rebind. */
obj->map_and_fenceable = true;
drm_mm_put_block(obj->gtt_space);
obj->gtt_space = NULL;
obj->gtt_offset = 0;
if (i915_gem_object_is_purgeable(obj))
i915_gem_object_truncate(obj);
return ret;
}
int
i915_gem_flush_ring(struct intel_ring_buffer *ring,
uint32_t invalidate_domains,
uint32_t flush_domains)
{
int ret;
if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
return 0;
trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
ret = ring->flush(ring, invalidate_domains, flush_domains);
if (ret)
return ret;
if (flush_domains & I915_GEM_GPU_DOMAINS)
i915_gem_process_flushing_list(ring, flush_domains);
return 0;
}
static int i915_ring_idle(struct intel_ring_buffer *ring)
{
int ret;
if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
return 0;
if (!list_empty(&ring->gpu_write_list)) {
ret = i915_gem_flush_ring(ring,
I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
}
return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
}
int
i915_gpu_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
bool lists_empty;
int ret, i;
lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
list_empty(&dev_priv->mm.active_list));
if (lists_empty)
return 0;
/* Flush everything onto the inactive list. */
for (i = 0; i < I915_NUM_RINGS; i++) {
ret = i915_ring_idle(&dev_priv->ring[i]);
if (ret)
return ret;
}
return 0;
}
static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *pipelined)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 size = obj->gtt_space->size;
int regnum = obj->fence_reg;
uint64_t val;
val = (uint64_t)((obj->gtt_offset + size - 4096) &
0xfffff000) << 32;
val |= obj->gtt_offset & 0xfffff000;
val |= (uint64_t)((obj->stride / 128) - 1) <<
SANDYBRIDGE_FENCE_PITCH_SHIFT;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
if (pipelined) {
int ret = intel_ring_begin(pipelined, 6);
if (ret)
return ret;
intel_ring_emit(pipelined, MI_NOOP);
intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
intel_ring_emit(pipelined, (u32)val);
intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
intel_ring_emit(pipelined, (u32)(val >> 32));
intel_ring_advance(pipelined);
} else
I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
return 0;
}
static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *pipelined)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 size = obj->gtt_space->size;
int regnum = obj->fence_reg;
uint64_t val;
val = (uint64_t)((obj->gtt_offset + size - 4096) &
0xfffff000) << 32;
val |= obj->gtt_offset & 0xfffff000;
val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
if (pipelined) {
int ret = intel_ring_begin(pipelined, 6);
if (ret)
return ret;
intel_ring_emit(pipelined, MI_NOOP);
intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
intel_ring_emit(pipelined, (u32)val);
intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
intel_ring_emit(pipelined, (u32)(val >> 32));
intel_ring_advance(pipelined);
} else
I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
return 0;
}
static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *pipelined)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 size = obj->gtt_space->size;
u32 fence_reg, val, pitch_val;
int tile_width;
if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
(size & -size) != size ||
(obj->gtt_offset & (size - 1)),
"object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
obj->gtt_offset, obj->map_and_fenceable, size))
return -EINVAL;
if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
tile_width = 128;
else
tile_width = 512;
/* Note: pitch better be a power of two tile widths */
pitch_val = obj->stride / tile_width;
pitch_val = ffs(pitch_val) - 1;
val = obj->gtt_offset;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I915_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
fence_reg = obj->fence_reg;
if (fence_reg < 8)
fence_reg = FENCE_REG_830_0 + fence_reg * 4;
else
fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
if (pipelined) {
int ret = intel_ring_begin(pipelined, 4);
if (ret)
return ret;
intel_ring_emit(pipelined, MI_NOOP);
intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(pipelined, fence_reg);
intel_ring_emit(pipelined, val);
intel_ring_advance(pipelined);
} else
I915_WRITE(fence_reg, val);
return 0;
}
static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *pipelined)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 size = obj->gtt_space->size;
int regnum = obj->fence_reg;
uint32_t val;
uint32_t pitch_val;
if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
(size & -size) != size ||
(obj->gtt_offset & (size - 1)),
"object 0x%08x not 512K or pot-size 0x%08x aligned\n",
obj->gtt_offset, size))
return -EINVAL;
pitch_val = obj->stride / 128;
pitch_val = ffs(pitch_val) - 1;
val = obj->gtt_offset;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I830_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
if (pipelined) {
int ret = intel_ring_begin(pipelined, 4);
if (ret)
return ret;
intel_ring_emit(pipelined, MI_NOOP);
intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
intel_ring_emit(pipelined, val);
intel_ring_advance(pipelined);
} else
I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
return 0;
}
static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
return i915_seqno_passed(ring->get_seqno(ring), seqno);
}
static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *pipelined)
{
int ret;
if (obj->fenced_gpu_access) {
if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
ret = i915_gem_flush_ring(obj->last_fenced_ring,
0, obj->base.write_domain);
if (ret)
return ret;
}
obj->fenced_gpu_access = false;
}
if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
if (!ring_passed_seqno(obj->last_fenced_ring,
obj->last_fenced_seqno)) {
ret = i915_wait_request(obj->last_fenced_ring,
obj->last_fenced_seqno);
if (ret)
return ret;
}
obj->last_fenced_seqno = 0;
obj->last_fenced_ring = NULL;
}
/* Ensure that all CPU reads are completed before installing a fence
* and all writes before removing the fence.
*/
if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
mb();
return 0;
}
int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
int ret;
if (obj->tiling_mode)
i915_gem_release_mmap(obj);
ret = i915_gem_object_flush_fence(obj, NULL);
if (ret)
return ret;
if (obj->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
i915_gem_clear_fence_reg(obj->base.dev,
&dev_priv->fence_regs[obj->fence_reg]);
obj->fence_reg = I915_FENCE_REG_NONE;
}
return 0;
}
static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev,
struct intel_ring_buffer *pipelined)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_fence_reg *reg, *first, *avail;
int i;
/* First try to find a free reg */
avail = NULL;
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
reg = &dev_priv->fence_regs[i];
if (!reg->obj)
return reg;
if (!reg->obj->pin_count)
avail = reg;
}
if (avail == NULL)
return NULL;
/* None available, try to steal one or wait for a user to finish */
avail = first = NULL;
list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
if (reg->obj->pin_count)
continue;
if (first == NULL)
first = reg;
if (!pipelined ||
!reg->obj->last_fenced_ring ||
reg->obj->last_fenced_ring == pipelined) {
avail = reg;
break;
}
}
if (avail == NULL)
avail = first;
return avail;
}
/**
* i915_gem_object_get_fence - set up a fence reg for an object
* @obj: object to map through a fence reg
* @pipelined: ring on which to queue the change, or NULL for CPU access
* @interruptible: must we wait uninterruptibly for the register to retire?
*
* When mapping objects through the GTT, userspace wants to be able to write
* to them without having to worry about swizzling if the object is tiled.
*
* This function walks the fence regs looking for a free one for @obj,
* stealing one if it can't find any.
*
* It then sets up the reg based on the object's properties: address, pitch
* and tiling format.
*/
int
i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *pipelined)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_fence_reg *reg;
int ret;
/* XXX disable pipelining. There are bugs. Shocking. */
pipelined = NULL;
/* Just update our place in the LRU if our fence is getting reused. */
if (obj->fence_reg != I915_FENCE_REG_NONE) {
reg = &dev_priv->fence_regs[obj->fence_reg];
list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
if (obj->tiling_changed) {
ret = i915_gem_object_flush_fence(obj, pipelined);
if (ret)
return ret;
if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
pipelined = NULL;
if (pipelined) {
reg->setup_seqno =
i915_gem_next_request_seqno(pipelined);
obj->last_fenced_seqno = reg->setup_seqno;
obj->last_fenced_ring = pipelined;
}
goto update;
}
if (!pipelined) {
if (reg->setup_seqno) {
if (!ring_passed_seqno(obj->last_fenced_ring,
reg->setup_seqno)) {
ret = i915_wait_request(obj->last_fenced_ring,
reg->setup_seqno);
if (ret)
return ret;
}
reg->setup_seqno = 0;
}
} else if (obj->last_fenced_ring &&
obj->last_fenced_ring != pipelined) {
ret = i915_gem_object_flush_fence(obj, pipelined);
if (ret)
return ret;
}
return 0;
}
reg = i915_find_fence_reg(dev, pipelined);
if (reg == NULL)
return -ENOSPC;
ret = i915_gem_object_flush_fence(obj, pipelined);
if (ret)
return ret;
if (reg->obj) {
struct drm_i915_gem_object *old = reg->obj;
drm_gem_object_reference(&old->base);
if (old->tiling_mode)
i915_gem_release_mmap(old);
ret = i915_gem_object_flush_fence(old, pipelined);
if (ret) {
drm_gem_object_unreference(&old->base);
return ret;
}
if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
pipelined = NULL;
old->fence_reg = I915_FENCE_REG_NONE;
old->last_fenced_ring = pipelined;
old->last_fenced_seqno =
pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
drm_gem_object_unreference(&old->base);
} else if (obj->last_fenced_seqno == 0)
pipelined = NULL;
reg->obj = obj;
list_move_tail(®->lru_list, &dev_priv->mm.fence_list);
obj->fence_reg = reg - dev_priv->fence_regs;
obj->last_fenced_ring = pipelined;
reg->setup_seqno =
pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
obj->last_fenced_seqno = reg->setup_seqno;
update:
obj->tiling_changed = false;
switch (INTEL_INFO(dev)->gen) {
case 7:
case 6:
ret = sandybridge_write_fence_reg(obj, pipelined);
break;
case 5:
case 4:
ret = i965_write_fence_reg(obj, pipelined);
break;
case 3:
ret = i915_write_fence_reg(obj, pipelined);
break;
case 2:
ret = i830_write_fence_reg(obj, pipelined);
break;
}
return ret;
}
/**
* i915_gem_clear_fence_reg - clear out fence register info
* @obj: object to clear
*
* Zeroes out the fence register itself and clears out the associated
* data structures in dev_priv and obj.
*/
static void
i915_gem_clear_fence_reg(struct drm_device *dev,
struct drm_i915_fence_reg *reg)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t fence_reg = reg - dev_priv->fence_regs;
switch (INTEL_INFO(dev)->gen) {
case 7:
case 6:
I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
break;
case 5:
case 4:
I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
break;
case 3:
if (fence_reg >= 8)
fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
else
case 2:
fence_reg = FENCE_REG_830_0 + fence_reg * 4;
I915_WRITE(fence_reg, 0);
break;
}
list_del_init(®->lru_list);
reg->obj = NULL;
reg->setup_seqno = 0;
}
/**
* Finds free space in the GTT aperture and binds the object there.
*/
static int
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
unsigned alignment,
bool map_and_fenceable)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_mm_node *free_space;
gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
u32 size, fence_size, fence_alignment, unfenced_alignment;
bool mappable, fenceable;
int ret;
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to bind a purgeable object\n");
return -EINVAL;
}
fence_size = i915_gem_get_gtt_size(dev,
obj->base.size,
obj->tiling_mode);
fence_alignment = i915_gem_get_gtt_alignment(dev,
obj->base.size,
obj->tiling_mode);
unfenced_alignment =
i915_gem_get_unfenced_gtt_alignment(dev,
obj->base.size,
obj->tiling_mode);
if (alignment == 0)
alignment = map_and_fenceable ? fence_alignment :
unfenced_alignment;
if (map_and_fenceable && alignment & (fence_alignment - 1)) {
DRM_ERROR("Invalid object alignment requested %u\n", alignment);
return -EINVAL;
}
size = map_and_fenceable ? fence_size : obj->base.size;
/* If the object is bigger than the entire aperture, reject it early
* before evicting everything in a vain attempt to find space.
*/
if (obj->base.size >
(map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
DRM_ERROR("Attempting to bind an object larger than the aperture\n");
return -E2BIG;
}
search_free:
if (map_and_fenceable)
free_space =
drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
size, alignment, 0,
dev_priv->mm.gtt_mappable_end,
0);
else
free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
size, alignment, 0);
if (free_space != NULL) {
if (map_and_fenceable)
obj->gtt_space =
drm_mm_get_block_range_generic(free_space,
size, alignment, 0,
dev_priv->mm.gtt_mappable_end,
0);
else
obj->gtt_space =
drm_mm_get_block(free_space, size, alignment);
}
if (obj->gtt_space == NULL) {
/* If the gtt is empty and we're still having trouble
* fitting our object in, we're out of memory.
*/
ret = i915_gem_evict_something(dev, size, alignment,
map_and_fenceable);
if (ret)
return ret;
goto search_free;
}
ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
if (ret) {
drm_mm_put_block(obj->gtt_space);
obj->gtt_space = NULL;
if (ret == -ENOMEM) {
/* first try to reclaim some memory by clearing the GTT */
ret = i915_gem_evict_everything(dev, false);
if (ret) {
/* now try to shrink everyone else */
if (gfpmask) {
gfpmask = 0;
goto search_free;
}
return -ENOMEM;
}
goto search_free;
}
return ret;
}
ret = i915_gem_gtt_bind_object(obj);
if (ret) {
i915_gem_object_put_pages_gtt(obj);
drm_mm_put_block(obj->gtt_space);
obj->gtt_space = NULL;
if (i915_gem_evict_everything(dev, false))
return ret;
goto search_free;
}
list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
/* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
obj->gtt_offset = obj->gtt_space->start;
fenceable =
obj->gtt_space->size == fence_size &&
(obj->gtt_space->start & (fence_alignment -1)) == 0;
mappable =
obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
obj->map_and_fenceable = mappable && fenceable;
trace_i915_gem_object_bind(obj, map_and_fenceable);
return 0;
}
void
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
{
/* If we don't have a page list set up, then we're not pinned
* to GPU, and we can ignore the cache flush because it'll happen
* again at bind time.
*/
if (obj->pages == NULL)
return;
/* If the GPU is snooping the contents of the CPU cache,
* we do not need to manually clear the CPU cache lines. However,
* the caches are only snooped when the render cache is
* flushed/invalidated. As we always have to emit invalidations
* and flushes when moving into and out of the RENDER domain, correct
* snooping behaviour occurs naturally as the result of our domain
* tracking.
*/
if (obj->cache_level != I915_CACHE_NONE)
return;
trace_i915_gem_object_clflush(obj);
drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
}
/** Flushes any GPU write domain for the object if it's dirty. */
static int
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
{
if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
return 0;
/* Queue the GPU write cache flushing we need. */
return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
}
/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
{
uint32_t old_write_domain;
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
return;
/* No actual flushing is required for the GTT write domain. Writes
* to it immediately go to main memory as far as we know, so there's
* no chipset flush. It also doesn't land in render cache.
*
* However, we do have to enforce the order so that all writes through
* the GTT land before any writes to the device, such as updates to
* the GATT itself.
*/
wmb();
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
old_write_domain);
}
/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
{
uint32_t old_write_domain;
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
return;
i915_gem_clflush_object(obj);
intel_gtt_chipset_flush();
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
old_write_domain);
}
/**
* Moves a single object to the GTT read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
{
uint32_t old_write_domain, old_read_domains;
int ret;
/* Not valid to be called on unbound objects. */
if (obj->gtt_space == NULL)
return -EINVAL;
if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
return 0;
ret = i915_gem_object_flush_gpu_write_domain(obj);
if (ret)
return ret;
if (obj->pending_gpu_write || write) {
ret = i915_gem_object_wait_rendering(obj);
if (ret)
return ret;
}
i915_gem_object_flush_cpu_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
obj->dirty = 1;
}
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
}
/*
* Prepare buffer for display plane. Use uninterruptible for possible flush
* wait, as in modesetting process we're not supposed to be interrupted.
*/
int
i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *pipelined)
{
uint32_t old_read_domains;
int ret;
/* Not valid to be called on unbound objects. */
if (obj->gtt_space == NULL)
return -EINVAL;
ret = i915_gem_object_flush_gpu_write_domain(obj);
if (ret)
return ret;
/* Currently, we are always called from an non-interruptible context. */
if (pipelined != obj->ring) {
ret = i915_gem_object_wait_rendering(obj);
if (ret)
return ret;
}
i915_gem_object_flush_cpu_write_domain(obj);
old_read_domains = obj->base.read_domains;
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
obj->base.write_domain);
return 0;
}
int
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
{
int ret;
if (!obj->active)
return 0;
if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
if (ret)
return ret;
}
return i915_gem_object_wait_rendering(obj);
}
/**
* Moves a single object to the CPU read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
static int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
{
uint32_t old_write_domain, old_read_domains;
int ret;
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
return 0;
ret = i915_gem_object_flush_gpu_write_domain(obj);
if (ret)
return ret;
ret = i915_gem_object_wait_rendering(obj);
if (ret)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
/* If we have a partially-valid cache of the object in the CPU,
* finish invalidating it and free the per-page flags.
*/
i915_gem_object_set_to_full_cpu_read_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* Flush the CPU cache if it's still invalid. */
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj);
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
/* If we're writing through the CPU, then the GPU read domains will
* need to be invalidated at next use.
*/
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
}
/**
* Moves the object from a partially CPU read to a full one.
*
* Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
* and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
*/
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
{
if (!obj->page_cpu_valid)
return;
/* If we're partially in the CPU read domain, finish moving it in.
*/
if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
int i;
for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
if (obj->page_cpu_valid[i])
continue;
drm_clflush_pages(obj->pages + i, 1);
}
}
/* Free the page_cpu_valid mappings which are now stale, whether
* or not we've got I915_GEM_DOMAIN_CPU.
*/
kfree(obj->page_cpu_valid);
obj->page_cpu_valid = NULL;
}
/**
* Set the CPU read domain on a range of the object.
*
* The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
* not entirely valid. The page_cpu_valid member of the object flags which
* pages have been flushed, and will be respected by
* i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
* of the whole object.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
uint64_t offset, uint64_t size)
{
uint32_t old_read_domains;
int i, ret;
if (offset == 0 && size == obj->base.size)
return i915_gem_object_set_to_cpu_domain(obj, 0);
ret = i915_gem_object_flush_gpu_write_domain(obj);
if (ret)
return ret;
ret = i915_gem_object_wait_rendering(obj);
if (ret)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
/* If we're already fully in the CPU read domain, we're done. */
if (obj->page_cpu_valid == NULL &&
(obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
return 0;
/* Otherwise, create/clear the per-page CPU read domain flag if we're
* newly adding I915_GEM_DOMAIN_CPU
*/
if (obj->page_cpu_valid == NULL) {
obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
GFP_KERNEL);
if (obj->page_cpu_valid == NULL)
return -ENOMEM;
} else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
/* Flush the cache on any pages that are still invalid from the CPU's
* perspective.
*/
for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
i++) {
if (obj->page_cpu_valid[i])
continue;
drm_clflush_pages(obj->pages + i, 1);
obj->page_cpu_valid[i] = 1;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
old_read_domains = obj->base.read_domains;
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
obj->base.write_domain);
return 0;
}
/* Throttle our rendering by waiting until the ring has completed our requests
* emitted over 20 msec ago.
*
* Note that if we were to use the current jiffies each time around the loop,
* we wouldn't escape the function with any frames outstanding if the time to
* render a frame was over 20ms.
*
* This should get us reasonable parallelism between CPU and GPU but also
* relatively low latency when blocking on a particular request to finish.
*/
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_file_private *file_priv = file->driver_priv;
unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
struct drm_i915_gem_request *request;
struct intel_ring_buffer *ring = NULL;
u32 seqno = 0;
int ret;
if (atomic_read(&dev_priv->mm.wedged))
return -EIO;
spin_lock(&file_priv->mm.lock);
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
if (time_after_eq(request->emitted_jiffies, recent_enough))
break;
ring = request->ring;
seqno = request->seqno;
}
spin_unlock(&file_priv->mm.lock);
if (seqno == 0)
return 0;
ret = 0;
if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
/* And wait for the seqno passing without holding any locks and
* causing extra latency for others. This is safe as the irq
* generation is designed to be run atomically and so is
* lockless.
*/
if (ring->irq_get(ring)) {
ret = wait_event_interruptible(ring->irq_queue,
i915_seqno_passed(ring->get_seqno(ring), seqno)
|| atomic_read(&dev_priv->mm.wedged));
ring->irq_put(ring);
if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
ret = -EIO;
}
}
if (ret == 0)
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
return ret;
}
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
uint32_t alignment,
bool map_and_fenceable)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
WARN_ON(i915_verify_lists(dev));
if (obj->gtt_space != NULL) {
if ((alignment && obj->gtt_offset & (alignment - 1)) ||
(map_and_fenceable && !obj->map_and_fenceable)) {
WARN(obj->pin_count,
"bo is already pinned with incorrect alignment:"
" offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
" obj->map_and_fenceable=%d\n",
obj->gtt_offset, alignment,
map_and_fenceable,
obj->map_and_fenceable);
ret = i915_gem_object_unbind(obj);
if (ret)
return ret;
}
}
if (obj->gtt_space == NULL) {
ret = i915_gem_object_bind_to_gtt(obj, alignment,
map_and_fenceable);
if (ret)
return ret;
}
if (obj->pin_count++ == 0) {
if (!obj->active)
list_move_tail(&obj->mm_list,
&dev_priv->mm.pinned_list);
}
obj->pin_mappable |= map_and_fenceable;
WARN_ON(i915_verify_lists(dev));
return 0;
}
void
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
WARN_ON(i915_verify_lists(dev));
BUG_ON(obj->pin_count == 0);
BUG_ON(obj->gtt_space == NULL);
if (--obj->pin_count == 0) {
if (!obj->active)
list_move_tail(&obj->mm_list,
&dev_priv->mm.inactive_list);
obj->pin_mappable = false;
}
WARN_ON(i915_verify_lists(dev));
}
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pin *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to pin a purgeable buffer\n");
ret = -EINVAL;
goto out;
}
if (obj->pin_filp != NULL && obj->pin_filp != file) {
DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
args->handle);
ret = -EINVAL;
goto out;
}
obj->user_pin_count++;
obj->pin_filp = file;
if (obj->user_pin_count == 1) {
ret = i915_gem_object_pin(obj, args->alignment, true);
if (ret)
goto out;
}
/* XXX - flush the CPU caches for pinned objects
* as the X server doesn't manage domains yet
*/
i915_gem_object_flush_cpu_write_domain(obj);
args->offset = obj->gtt_offset;
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pin *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->pin_filp != file) {
DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
args->handle);
ret = -EINVAL;
goto out;
}
obj->user_pin_count--;
if (obj->user_pin_count == 0) {
obj->pin_filp = NULL;
i915_gem_object_unpin(obj);
}
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_busy *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Count all active objects as busy, even if they are currently not used
* by the gpu. Users of this interface expect objects to eventually
* become non-busy without any further actions, therefore emit any
* necessary flushes here.
*/
args->busy = obj->active;
if (args->busy) {
/* Unconditionally flush objects, even when the gpu still uses this
* object. Userspace calling this function indicates that it wants to
* use this buffer rather sooner than later, so issuing the required
* flush earlier is beneficial.
*/
if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
ret = i915_gem_flush_ring(obj->ring,
0, obj->base.write_domain);
} else if (obj->ring->outstanding_lazy_request ==
obj->last_rendering_seqno) {
struct drm_i915_gem_request *request;
/* This ring is not being cleared by active usage,
* so emit a request to do so.
*/
request = kzalloc(sizeof(*request), GFP_KERNEL);
if (request)
ret = i915_add_request(obj->ring, NULL,request);
else
ret = -ENOMEM;
}
/* Update the active list for the hardware's current position.
* Otherwise this only updates on a delayed timer or when irqs
* are actually unmasked, and our working set ends up being
* larger than required.
*/
i915_gem_retire_requests_ring(obj->ring);
args->busy = obj->active;
}
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
return i915_gem_ring_throttle(dev, file_priv);
}
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_madvise *args = data;
struct drm_i915_gem_object *obj;
int ret;
switch (args->madv) {
case I915_MADV_DONTNEED:
case I915_MADV_WILLNEED:
break;
default:
return -EINVAL;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->pin_count) {
ret = -EINVAL;
goto out;
}
if (obj->madv != __I915_MADV_PURGED)
obj->madv = args->madv;
/* if the object is no longer bound, discard its backing storage */
if (i915_gem_object_is_purgeable(obj) &&
obj->gtt_space == NULL)
i915_gem_object_truncate(obj);
args->retained = obj->madv != __I915_MADV_PURGED;
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
size_t size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct address_space *mapping;
obj = kzalloc(sizeof(*obj), GFP_KERNEL);
if (obj == NULL)
return NULL;
if (drm_gem_object_init(dev, &obj->base, size) != 0) {
kfree(obj);
return NULL;
}
mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
i915_gem_info_add_obj(dev_priv, size);
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->cache_level = I915_CACHE_NONE;
obj->base.driver_private = NULL;
obj->fence_reg = I915_FENCE_REG_NONE;
INIT_LIST_HEAD(&obj->mm_list);
INIT_LIST_HEAD(&obj->gtt_list);
INIT_LIST_HEAD(&obj->ring_list);
INIT_LIST_HEAD(&obj->exec_list);
INIT_LIST_HEAD(&obj->gpu_write_list);
obj->madv = I915_MADV_WILLNEED;
/* Avoid an unnecessary call to unbind on the first bind. */
obj->map_and_fenceable = true;
return obj;
}
int i915_gem_init_object(struct drm_gem_object *obj)
{
BUG();
return 0;
}
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
ret = i915_gem_object_unbind(obj);
if (ret == -ERESTARTSYS) {
list_move(&obj->mm_list,
&dev_priv->mm.deferred_free_list);
return;
}
trace_i915_gem_object_destroy(obj);
if (obj->base.map_list.map)
i915_gem_free_mmap_offset(obj);
drm_gem_object_release(&obj->base);
i915_gem_info_remove_obj(dev_priv, obj->base.size);
kfree(obj->page_cpu_valid);
kfree(obj->bit_17);
kfree(obj);
}
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
struct drm_device *dev = obj->base.dev;
while (obj->pin_count > 0)
i915_gem_object_unpin(obj);
if (obj->phys_obj)
i915_gem_detach_phys_object(dev, obj);
i915_gem_free_object_tail(obj);
}
int
i915_gem_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
mutex_lock(&dev->struct_mutex);
if (dev_priv->mm.suspended) {
mutex_unlock(&dev->struct_mutex);
return 0;
}
ret = i915_gpu_idle(dev);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
/* Under UMS, be paranoid and evict. */
if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
ret = i915_gem_evict_inactive(dev, false);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
}
i915_gem_reset_fences(dev);
/* Hack! Don't let anybody do execbuf while we don't control the chip.
* We need to replace this with a semaphore, or something.
* And not confound mm.suspended!
*/
dev_priv->mm.suspended = 1;
del_timer_sync(&dev_priv->hangcheck_timer);
i915_kernel_lost_context(dev);
i915_gem_cleanup_ringbuffer(dev);
mutex_unlock(&dev->struct_mutex);
/* Cancel the retire work handler, which should be idle now. */
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
return 0;
}
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
ret = intel_init_render_ring_buffer(dev);
if (ret)
return ret;
if (HAS_BSD(dev)) {
ret = intel_init_bsd_ring_buffer(dev);
if (ret)
goto cleanup_render_ring;
}
if (HAS_BLT(dev)) {
ret = intel_init_blt_ring_buffer(dev);
if (ret)
goto cleanup_bsd_ring;
}
dev_priv->next_seqno = 1;
return 0;
cleanup_bsd_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
return ret;
}
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i;
for (i = 0; i < I915_NUM_RINGS; i++)
intel_cleanup_ring_buffer(&dev_priv->ring[i]);
}
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret, i;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
if (atomic_read(&dev_priv->mm.wedged)) {
DRM_ERROR("Reenabling wedged hardware, good luck\n");
atomic_set(&dev_priv->mm.wedged, 0);
}
mutex_lock(&dev->struct_mutex);
dev_priv->mm.suspended = 0;
ret = i915_gem_init_ringbuffer(dev);
if (ret != 0) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
BUG_ON(!list_empty(&dev_priv->mm.active_list));
BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
for (i = 0; i < I915_NUM_RINGS; i++) {
BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
}
mutex_unlock(&dev->struct_mutex);
ret = drm_irq_install(dev);
if (ret)
goto cleanup_ringbuffer;
return 0;
cleanup_ringbuffer:
mutex_lock(&dev->struct_mutex);
i915_gem_cleanup_ringbuffer(dev);
dev_priv->mm.suspended = 1;
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
drm_irq_uninstall(dev);
return i915_gem_idle(dev);
}
void
i915_gem_lastclose(struct drm_device *dev)
{
int ret;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return;
ret = i915_gem_idle(dev);
if (ret)
DRM_ERROR("failed to idle hardware: %d\n", ret);
}
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
INIT_LIST_HEAD(&ring->gpu_write_list);
}
void
i915_gem_load(struct drm_device *dev)
{
int i;
drm_i915_private_t *dev_priv = dev->dev_private;
INIT_LIST_HEAD(&dev_priv->mm.active_list);
INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
for (i = 0; i < I915_NUM_RINGS; i++)
init_ring_lists(&dev_priv->ring[i]);
for (i = 0; i < 16; i++)
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
i915_gem_retire_work_handler);
init_completion(&dev_priv->error_completion);
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
if (IS_GEN3(dev)) {
u32 tmp = I915_READ(MI_ARB_STATE);
if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
/* arb state is a masked write, so set bit + bit in mask */
tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
I915_WRITE(MI_ARB_STATE, tmp);
}
}
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
/* Old X drivers will take 0-2 for front, back, depth buffers */
if (!drm_core_check_feature(dev, DRIVER_MODESET))
dev_priv->fence_reg_start = 3;
if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
dev_priv->num_fence_regs = 16;
else
dev_priv->num_fence_regs = 8;
/* Initialize fence registers to zero */
for (i = 0; i < dev_priv->num_fence_regs; i++) {
i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
}
i915_gem_detect_bit_6_swizzle(dev);
init_waitqueue_head(&dev_priv->pending_flip_queue);
dev_priv->mm.interruptible = true;
dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
register_shrinker(&dev_priv->mm.inactive_shrinker);
}
/*
* Create a physically contiguous memory object for this object
* e.g. for cursor + overlay regs
*/
static int i915_gem_init_phys_object(struct drm_device *dev,
int id, int size, int align)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_phys_object *phys_obj;
int ret;
if (dev_priv->mm.phys_objs[id - 1] || !size)
return 0;
phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
if (!phys_obj)
return -ENOMEM;
phys_obj->id = id;
phys_obj->handle = drm_pci_alloc(dev, size, align);
if (!phys_obj->handle) {
ret = -ENOMEM;
goto kfree_obj;
}
#ifdef CONFIG_X86
set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
dev_priv->mm.phys_objs[id - 1] = phys_obj;
return 0;
kfree_obj:
kfree(phys_obj);
return ret;
}
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_phys_object *phys_obj;
if (!dev_priv->mm.phys_objs[id - 1])
return;
phys_obj = dev_priv->mm.phys_objs[id - 1];
if (phys_obj->cur_obj) {
i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
}
#ifdef CONFIG_X86
set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
drm_pci_free(dev, phys_obj->handle);
kfree(phys_obj);
dev_priv->mm.phys_objs[id - 1] = NULL;
}
void i915_gem_free_all_phys_object(struct drm_device *dev)
{
int i;
for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
i915_gem_free_phys_object(dev, i);
}
void i915_gem_detach_phys_object(struct drm_device *dev,
struct drm_i915_gem_object *obj)
{
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
char *vaddr;
int i;
int page_count;
if (!obj->phys_obj)
return;
vaddr = obj->phys_obj->handle->vaddr;
page_count = obj->base.size / PAGE_SIZE;
for (i = 0; i < page_count; i++) {
struct page *page = shmem_read_mapping_page(mapping, i);
if (!IS_ERR(page)) {
char *dst = kmap_atomic(page);
memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
kunmap_atomic(dst);
drm_clflush_pages(&page, 1);
set_page_dirty(page);
mark_page_accessed(page);
page_cache_release(page);
}
}
intel_gtt_chipset_flush();
obj->phys_obj->cur_obj = NULL;
obj->phys_obj = NULL;
}
int
i915_gem_attach_phys_object(struct drm_device *dev,
struct drm_i915_gem_object *obj,
int id,
int align)
{
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret = 0;
int page_count;
int i;
if (id > I915_MAX_PHYS_OBJECT)
return -EINVAL;
if (obj->phys_obj) {
if (obj->phys_obj->id == id)
return 0;
i915_gem_detach_phys_object(dev, obj);
}
/* create a new object */
if (!dev_priv->mm.phys_objs[id - 1]) {
ret = i915_gem_init_phys_object(dev, id,
obj->base.size, align);
if (ret) {
DRM_ERROR("failed to init phys object %d size: %zu\n",
id, obj->base.size);
return ret;
}
}
/* bind to the object */
obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
obj->phys_obj->cur_obj = obj;
page_count = obj->base.size / PAGE_SIZE;
for (i = 0; i < page_count; i++) {
struct page *page;
char *dst, *src;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
return PTR_ERR(page);
src = kmap_atomic(page);
dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
memcpy(dst, src, PAGE_SIZE);
kunmap_atomic(src);
mark_page_accessed(page);
page_cache_release(page);
}
return 0;
}
static int
i915_gem_phys_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
unsigned long unwritten;
/* The physical object once assigned is fixed for the lifetime
* of the obj, so we can safely drop the lock and continue
* to access vaddr.
*/
mutex_unlock(&dev->struct_mutex);
unwritten = copy_from_user(vaddr, user_data, args->size);
mutex_lock(&dev->struct_mutex);
if (unwritten)
return -EFAULT;
}
intel_gtt_chipset_flush();
return 0;
}
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
/* Clean up our request list when the client is going away, so that
* later retire_requests won't dereference our soon-to-be-gone
* file_priv.
*/
spin_lock(&file_priv->mm.lock);
while (!list_empty(&file_priv->mm.request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&file_priv->mm.request_list,
struct drm_i915_gem_request,
client_list);
list_del(&request->client_list);
request->file_priv = NULL;
}
spin_unlock(&file_priv->mm.lock);
}
static int
i915_gpu_is_active(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int lists_empty;
lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
list_empty(&dev_priv->mm.active_list);
return !lists_empty;
}
static int
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
{
struct drm_i915_private *dev_priv =
container_of(shrinker,
struct drm_i915_private,
mm.inactive_shrinker);
struct drm_device *dev = dev_priv->dev;
struct drm_i915_gem_object *obj, *next;
int nr_to_scan = sc->nr_to_scan;
int cnt;
if (!mutex_trylock(&dev->struct_mutex))
return 0;
/* "fast-path" to count number of available objects */
if (nr_to_scan == 0) {
cnt = 0;
list_for_each_entry(obj,
&dev_priv->mm.inactive_list,
mm_list)
cnt++;
mutex_unlock(&dev->struct_mutex);
return cnt / 100 * sysctl_vfs_cache_pressure;
}
rescan:
/* first scan for clean buffers */
i915_gem_retire_requests(dev);
list_for_each_entry_safe(obj, next,
&dev_priv->mm.inactive_list,
mm_list) {
if (i915_gem_object_is_purgeable(obj)) {
if (i915_gem_object_unbind(obj) == 0 &&
--nr_to_scan == 0)
break;
}
}
/* second pass, evict/count anything still on the inactive list */
cnt = 0;
list_for_each_entry_safe(obj, next,
&dev_priv->mm.inactive_list,
mm_list) {
if (nr_to_scan &&
i915_gem_object_unbind(obj) == 0)
nr_to_scan--;
else
cnt++;
}
if (nr_to_scan && i915_gpu_is_active(dev)) {
/*
* We are desperate for pages, so as a last resort, wait
* for the GPU to finish and discard whatever we can.
* This has a dramatic impact to reduce the number of
* OOM-killer events whilst running the GPU aggressively.
*/
if (i915_gpu_idle(dev) == 0)
goto rescan;
}
mutex_unlock(&dev->struct_mutex);
return cnt / 100 * sysctl_vfs_cache_pressure;
}